US2527026A - Multitap resistor and method of making same - Google Patents

Multitap resistor and method of making same Download PDF

Info

Publication number
US2527026A
US2527026A US26764A US2676448A US2527026A US 2527026 A US2527026 A US 2527026A US 26764 A US26764 A US 26764A US 2676448 A US2676448 A US 2676448A US 2527026 A US2527026 A US 2527026A
Authority
US
United States
Prior art keywords
core
resistance
resistor
terminal
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US26764A
Inventor
George J Mucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clarostat Manufacturing Co Inc
Original Assignee
Clarostat Manufacturing Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarostat Manufacturing Co Inc filed Critical Clarostat Manufacturing Co Inc
Priority to US26764A priority Critical patent/US2527026A/en
Application granted granted Critical
Publication of US2527026A publication Critical patent/US2527026A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/24Adjustable resistors the contact moving along turns of a helical resistive element, or vica versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/12Arrangements of current collectors

Definitions

  • This invention relates to a functionally and structurally improved multitap resistor.
  • a resistor constructed according to the present invention there is employed instead of a continuous winding of uniform resistance wire, a series of individual wire-wound resistance elements, each element having a wire size which provides a specified resistance between successive terminal taps, while also affording a spacing between the taps of a resistance leg, such that substantially less than the permitted ten per cent variation from the specified resistance will occur.
  • the resistance value of a section might require only A; of an inch of windinga length far too short under present practices because of the impossibility of maintaining the standard tolerance-the same value in a resistor made pursuant to the present invention might comprise a winding having a length of more than an inch. In such a length, a slight misalignment of the terminal tap or sleeve will result in only a very small change of resistance value.
  • An additional object is that of providing a unit of this type which will include relatively few parts each individually simple in design and rugged in construction; such parts being capable of manufacture b quantity production methods and when assembled providing a unit which will have a long effective life.
  • Fig. 1 is a vertical elevation, partly in section, of a resistor constructed pursuant to the present invention
  • Fig. 2 is a sectional plan section taken on lines 2-2 of Fig. 1;
  • Fig. 3 is a partial plan section taken on lines 33 of Fig. 1;
  • Fig. 4 is an exploded perspective of a portion of the resistor core and of the tap terminals used in connection therewith;
  • Fig. 5 represents a typical inultitap resistance specification in the fulfillment of which resistors manufactured pursuant to the present invention are particularly well suited; such view also showing in a somewhat schematic manner one circuit arrangement which may be incorporated in accordance with the present teachings.
  • a cylindrical core II is formed with a plurality of axially extending slots II which have a narrow entrance I2 and enlarged channel or passage I3. Said slots may each therefore conveniently be in the form of an inverted T.
  • the core is of insulation material, and may be circular or polygonal in crosssection. Where the resistor is to have a highwattage rating, the core is most preferably of inorganic material such as molded or extruded ceramic, but other insulation materials appropriate to the characteristics of the ultimate resistor may be utilized.
  • the slots II are intended to receive striplike connection terminals I4, either having integral heads I or heads I6 afiixed thereto. Said heads are to make contact with the resistor winding as later described, and therefore may be substantially cylindrical for crimping about the resistance winding, as shown in Fig. 1.
  • the selection of single or double-banded head depends 'upon the conditions later described.
  • the width of the respective terminal strips I4 is suitable for slidable insertion within the passages I3, and said strips may be flexed or arched (see Fig. 1) for frictional engagement with the facing walls of the passage.
  • the connection heads I5 and I6 are provided with neck portions I! to slidably enter the entrances I2 to permit the strips I4 and their relatively wide heads to he slid along the length of any groove II. The head of any strip may then be brought to any suitable position intermediate the ends of the core.
  • Fig. 5 represents a typical specification for a completed resistor.
  • the first resistance, between the terminals A and B is an independent unit, whereas each of the terminals D, E, F, and G is common to two resistance windings. Therefore the terminals A, B, C, and H, employ the single head I5, whereas the terminals D, E, F, and G advantageously use the branched or double-banded heads I6.
  • the two branches Mia and IE2) are separated by a gap IBc provided for the convenient insertion of a cutting tool to remove the excess length of winding after the respective branches have been crimped thereabout, as later described.
  • the respective resistance elements I8 advantageously comprise resistance wire wound on a flexible core I9, which is preferably a strand of fiberglass or similar inorganic insulation material.
  • a flexible core I9 which is preferably a strand of fiberglass or similar inorganic insulation material.
  • the resistance elements are wound as a continuous length which may be of the order 500 or 750 lineal feet depending upon the footage of the cord reel and the wire reel. It is presumed that the manufacturer will have in stock reels of wire-wound strands, each strand representing a specific resistance value per unit of lineal measurement.
  • a specified resistor When a specified resistor is to be manufactured the engineer will ascertain the required ohmage and wattage between the various taps from the specification and from his knowledge of the resistances in stock and the lineal resistance values thereof, will calculate the length of a selected resistance element necessary to comply with the specification.
  • a specified resistance may be derived, for example, from an inch of one resistance material or a yard of another; the engineer, knowing the outside diameter and length of the core I0 and the spacing between slots, and using a standardized pitch of winding, such as eight turns to the inch, selects his resistance material accordingly.
  • each of the several resistance legs specified in Fig. 5 requires a different weight of resistance wire.
  • the factor which will determine the selection of the appropriate resistance material is, of course, the total length of material required to meet the specifications. I prefer to have each element extend for at least one half of a complete turn about the core I0, because, as has been stated, the tolerance limitations are best met when there is a substantial length of resistance material between the end terminals or connection heads thereof.
  • the first manufacturing step is to insert the terminal head A in a slot II and crimp the head about the end of the resistance material so as to make good electrical contact therewith.
  • the specified length is wound upon the core and th resistance wire clipped within the second terminal head B, which had been previously inserted into the appropriate slot.
  • the excess of resistance material is clipped to complete the independent resistance leg between the terminals A and B.
  • a second resistance winding is begun commencing with the terminal 0, which has been placed in the next appropriate slot.
  • the second resistance leg terminates at one branch of the double-head connector D and is clipped thereat.
  • the third leg commences at the other branch of terminal D, and terminates at the appropriately positioned succeeding terminal head; and the remainder of the core is wound appropriately.
  • a spacer winding 20 of fiberglass cord may be afiixed to the end terminal A and continuously wound to separate each of the convolutions of the resistance elements with a resilient insulation material.
  • the end of said insulation winding may be clipped to the end terminal H or otherwise secured.
  • the thus-wound core may then be operated on to cut the protruding ends of the respective strips I4 to a common length. It has been found expedient to offset the ends of the respective strips with a short right-angled jog 22 so as to prevent accidental movement of a strip I4 within the slot during the later fabrication of the completed device.
  • the respective heads may thus be mounted on strips I4 having a length sufficient only to frictionally grip the walls of a. slot II, and Wires or other leads may be soldered or attached directly to the heads instead of to the base-projecting strips I4 in the Fig. 1 embodiment.
  • Such lead wires as are connected directly to the heads may be brought out through the side wall openings 23 of the ventilated housing or cover 24 within which the wound unit is placed.
  • Fig. 1 illustrates one method of enclosing the wound core in the ventilated housing 24.
  • a plate 25 of suitable insulating material is suitably punched to accommodate the ends of the strips l4.
  • Said plate has ears or extensions '26 to which a cup 21 of metal or other suitable material may be fastened.
  • the cup is concentric with respect to the core and is of substantially larger diameter as shown.
  • the cup telescopingly receives the apertured cylindrical housing 24, which in turn mounts the closure cap 28.
  • a metal strip 30 which extends upwardly through a central opening 3
  • the lower end 33 of strip 30 may be bent or riveted over the bottom of the insulation plate 25.
  • a suitably slotted curved leaf spring 34 is slid over the opposite end of the strip 30 whereupon the cap 28 is placed thereon, and the upper extremity 35 of strip 30 is also turned or riveted over the end of said cap to complete the securement of the respective parts and to maintain the wound core fixedly but resiliently within the housing 24.
  • Any suitable mounting means 36 may be spot welded, riveted, or otherwise secured to the housing 24 to afford means for fixing the complete unit of the chassis or other base plate of the machine or device with which the unit is used.
  • a resistor comprising a bored core of insulation material having axially extending slots spaced circumferentially about its outer wall and extending continuously from end to end of said core, said slots being of inverted T formation; electric terminal members disposed within said slots in frictional engagement with walls thereof, said members projecting from one end of said core; electrical resistance elements wound upon said core and connected with selected terminal members; a plate of insulation material disposed at the end of said core and receiving the terminal members projecting therefrom; cover supporting means carried on said plate; a cover disposed about said core in spaced relationship with the resistance windings thereon; a cap for said cover at the end opposite said plate; a tie member extending through the core bore and said plate and cap to secure said cap and said cover relative to said plate; and spring means disposed between said cap and said core to secure said core within said housing.
  • a resistor comprising a bored core of insulation material having axially extending slots spaced circumferentially about its outer wall and extending continuously from end to end of said core, said slots being of inverted T formation; electric terminal members disposed within said slots in frictional engagement therewith, said members projecting from one end of said core; electrical resistance elements Wound upon said core and connected with selected terminal members; a plate of insulation material disposed at the end of said core and receiving the terminal members projecting therefrom; an enclosure for said core, said enclosure being in spaced relationship with respect to the windings; a cover, means for securing said cover upon said enclosure, said means extending through the core bore, said cover and said plate; and means disposed within said cover intermediate the end thereof and an end of said core to secure said core against movement within said enclosure.
  • An electrical resistor comprising a core member having slots disposed in spaced relationship about the circumference of the core, said slots extending to at least one end of the core and. having a narrow entrance passage communicating with a relatively wide channel; terminal members disposed within said slots, said members each comprising a strip member bowed to frictionally engage a wall of said channel and a connection head extending outwardly therefrom, said head being Wider than the entrance passage of said slot, and having a neck portion of less width than the entrance passage; and resistance elements wound upon said core and connected to selected terminal heads.
  • An electrical resistor comprising a core member having slots disposed in spaced relationship about the circumference of the core, said slots extending to at least one end of the core and having a narrow entrance passage communicating with a relatively wide channel; terminal members disposed within said slots, said members each comprising a strip member bowed to frictionally engage a wall of said channel and a connection head extending outwardly therefrom, said head being Wider than the entrance passage of said slot; and resistance elements wound upon said core and connected to selected terminal heads.
  • connection heads comprise spaced branches respectively for the attachment of end portions of adjacent resistance elements thereto.

Description

Oct. 24, 1950 J, MUCHER MULTITAP RESISTOR AND METHOD OF MAKING SAME Filed May 15, 1948 7%! gr a4 25 2502 mm M M flTTUR/VEYS Patented Get. 24, 1950 MULTITAP RESISTOR AND METHOD OF MAKING SAME George J. Muchcr, Brooklyn, N. Y., assignor to Clarostat Mfg. 00., Inc., Brooklyn, N. Y., a corporation of New York Application May 13, 1948, Serial N 0. 26,764
This invention relates to a functionally and structurally improved multitap resistor.
In the construction of wire wound resistors having a number of tap-s arranged so that several resistance values may be derived from a common unit, it is conventional to afiix the terminal posts to the windings by means of sleeves which are crimped about the Winding. Under present practice a resistance is wound with a continuous length of wire of constant resistance value and resistance legs of various ohmages are derived by suitably spacing the terminal sleeves. Where it is necessary to have a low resistance portion, the terminal sleeves must necessarily be close together. Manufacturers of electrical equipment in which resistorsare used allowa maximum departure from the specified resistance value of only 10 per cent. Where specifications call for a low resistance section, the length of winding between the terminals will be small. Evena slight shift or misplacement of one of the terminals during construction will result in a resistance value which is not within the permitted tolerance, and the unit may be rejected by the purchaser. For that reason manufacturers of multitap wirewound resistors have established minimum spacings between adjacent taps, and at times therefore a customers specification cannot be met be cause of this small spacing.
In a resistor constructed according to the present invention. there is employed instead of a continuous winding of uniform resistance wire, a series of individual wire-wound resistance elements, each element having a wire size which provides a specified resistance between successive terminal taps, while also affording a spacing between the taps of a resistance leg, such that substantially less than the permitted ten per cent variation from the specified resistance will occur.
For example, where in the old construction the resistance value of a section might require only A; of an inch of windinga length far too short under present practices because of the impossibility of maintaining the standard tolerance-the same value in a resistor made pursuant to the present invention might comprise a winding having a length of more than an inch. In such a length, a slight misalignment of the terminal tap or sleeve will result in only a very small change of resistance value.
Other features of the present invention reside in a novel core construction which makes it convenient to bring the terminal leads to a connection block or base at one end of the resistor, or optionally to take the terminal leads radially 5 Claims (01. 20171) 2 from the unit, andmeans whereb 'one or more separate and distinct, resistance legs may be included on a core having a multitap resistance winding without increasing the overall length of the unit to the extent necessary in resistors made pursuant to present practice.
It is another object of the invention to provide a resistance unit whereby a plurality of individual wire-wound resistors are arranged helically about a common core and suitably provided with terminal taps.
It is yet another object of the invention to provide a multitap resistance unit embodying a resistance element wound helicall upon a core, said core having means for supporting a plurality of terminal connection means at any position lengthwise 0f the core, whereb connection may be made with said resistance element at any point along the length thereof.
It is a further object of the invention to provide an improved means of mounting the terminal taps of a multitap resistance.
It is also an object of the invention to provide a multitap resistor having means for mounting the terminal taps for axial, or radial extension relative to the core of the unit.
An additional object is that of providing a unit of this type which will include relatively few parts each individually simple in design and rugged in construction; such parts being capable of manufacture b quantity production methods and when assembled providing a unit which will have a long effective life.
With these and other objects in mind, reference is had to the attached sheet of drawings illustrating one practical embodiment of the invention and in which:
Fig. 1 is a vertical elevation, partly in section, of a resistor constructed pursuant to the present invention;
Fig. 2 is a sectional plan section taken on lines 2-2 of Fig. 1;
Fig. 3 is a partial plan section taken on lines 33 of Fig. 1;
Fig. 4 is an exploded perspective of a portion of the resistor core and of the tap terminals used in connection therewith; and
Fig. 5 represents a typical inultitap resistance specification in the fulfillment of which resistors manufactured pursuant to the present invention are particularly well suited; such view also showing in a somewhat schematic manner one circuit arrangement which may be incorporated in accordance with the present teachings.
Referring initially toFig. 4, a cylindrical core II] is formed with a plurality of axially extending slots II which have a narrow entrance I2 and enlarged channel or passage I3. Said slots may each therefore conveniently be in the form of an inverted T. The core is of insulation material, and may be circular or polygonal in crosssection. Where the resistor is to have a highwattage rating, the core is most preferably of inorganic material such as molded or extruded ceramic, but other insulation materials appropriate to the characteristics of the ultimate resistor may be utilized.
The slots II are intended to receive striplike connection terminals I4, either having integral heads I or heads I6 afiixed thereto. Said heads are to make contact with the resistor winding as later described, and therefore may be substantially cylindrical for crimping about the resistance winding, as shown in Fig. 1. The selection of single or double-banded head depends 'upon the conditions later described. The width of the respective terminal strips I4 is suitable for slidable insertion within the passages I3, and said strips may be flexed or arched (see Fig. 1) for frictional engagement with the facing walls of the passage. The connection heads I5 and I6 are provided with neck portions I! to slidably enter the entrances I2 to permit the strips I4 and their relatively wide heads to he slid along the length of any groove II. The head of any strip may then be brought to any suitable position intermediate the ends of the core.
Fig. 5 represents a typical specification for a completed resistor. It will be noted that the first resistance, between the terminals A and B, is an independent unit, whereas each of the terminals D, E, F, and G is common to two resistance windings. Therefore the terminals A, B, C, and H, employ the single head I5, whereas the terminals D, E, F, and G advantageously use the branched or double-banded heads I6. In the latter heads, the two branches Mia and IE2) are separated by a gap IBc provided for the convenient insertion of a cutting tool to remove the excess length of winding after the respective branches have been crimped thereabout, as later described.
The respective resistance elements I8 advantageously comprise resistance wire wound on a flexible core I9, which is preferably a strand of fiberglass or similar inorganic insulation material. In manufacturing practice the resistance elements are wound as a continuous length which may be of the order 500 or 750 lineal feet depending upon the footage of the cord reel and the wire reel. It is presumed that the manufacturer will have in stock reels of wire-wound strands, each strand representing a specific resistance value per unit of lineal measurement.
When a specified resistor is to be manufactured the engineer will ascertain the required ohmage and wattage between the various taps from the specification and from his knowledge of the resistances in stock and the lineal resistance values thereof, will calculate the length of a selected resistance element necessary to comply with the specification. Obviously, a specified resistance may be derived, for example, from an inch of one resistance material or a yard of another; the engineer, knowing the outside diameter and length of the core I0 and the spacing between slots, and using a standardized pitch of winding, such as eight turns to the inch, selects his resistance material accordingly.
For purpose of illustration, assume that each of the several resistance legs specified in Fig. 5 requires a different weight of resistance wire. The factor which will determine the selection of the appropriate resistance material is, of course, the total length of material required to meet the specifications. I prefer to have each element extend for at least one half of a complete turn about the core I0, because, as has been stated, the tolerance limitations are best met when there is a substantial length of resistance material between the end terminals or connection heads thereof.
After the engineer has selected the necessary resistance components, he will prepare a winding specification for the manufacturing department, said specification noting how many turns or fractions of a turn of each grade of resistance material are to be wound on the core. The first manufacturing step is to insert the terminal head A in a slot II and crimp the head about the end of the resistance material so as to make good electrical contact therewith. The specified length is wound upon the core and th resistance wire clipped within the second terminal head B, which had been previously inserted into the appropriate slot. The excess of resistance material is clipped to complete the independent resistance leg between the terminals A and B. A second resistance winding, according to the specification, is begun commencing with the terminal 0, which has been placed in the next appropriate slot. The second resistance leg terminates at one branch of the double-head connector D and is clipped thereat. The third leg commences at the other branch of terminal D, and terminates at the appropriately positioned succeeding terminal head; and the remainder of the core is wound appropriately.
In order to insure that the successive turns remain in insulated spaced relationship, a spacer winding 20 of fiberglass cord may be afiixed to the end terminal A and continuously wound to separate each of the convolutions of the resistance elements with a resilient insulation material. The end of said insulation winding may be clipped to the end terminal H or otherwise secured.
Obviously other methods of maintaining a spaced relationship, such as forming the outer surface of the core ID with a continuous shallow helical groove at the desired pitch may be employed.
The thus-wound core may then be operated on to cut the protruding ends of the respective strips I4 to a common length. It has been found expedient to offset the ends of the respective strips with a short right-angled jog 22 so as to prevent accidental movement of a strip I4 within the slot during the later fabrication of the completed device.
It will be understood that the eight-slotted core III is illustrative only, and that a specified resistor may not require that all of the slots be utilized. The end-connected unit shown in Fig. 1 is also a specific form which may not always be required.
It may be desired, for example, to have radially extending lead wires connected to the various terminal heads. The respective heads may thus be mounted on strips I4 having a length sufficient only to frictionally grip the walls of a. slot II, and Wires or other leads may be soldered or attached directly to the heads instead of to the base-projecting strips I4 in the Fig. 1 embodiment.
Such lead wires as are connected directly to the heads may be brought out through the side wall openings 23 of the ventilated housing or cover 24 within which the wound unit is placed.
Fig. 1 illustrates one method of enclosing the wound core in the ventilated housing 24. A plate 25 of suitable insulating material is suitably punched to accommodate the ends of the strips l4. Said plate has ears or extensions '26 to which a cup 21 of metal or other suitable material may be fastened. The cup is concentric with respect to the core and is of substantially larger diameter as shown. The cup telescopingly receives the apertured cylindrical housing 24, which in turn mounts the closure cap 28. To maintain the core 19 suitably within the housing 24 there is employed a metal strip 30 which extends upwardly through a central opening 3| of the core I0 and engages with the diametric slots 32 thereof. The lower end 33 of strip 30 may be bent or riveted over the bottom of the insulation plate 25. A suitably slotted curved leaf spring 34 is slid over the opposite end of the strip 30 whereupon the cap 28 is placed thereon, and the upper extremity 35 of strip 30 is also turned or riveted over the end of said cap to complete the securement of the respective parts and to maintain the wound core fixedly but resiliently within the housing 24. Any suitable mounting means 36 may be spot welded, riveted, or otherwise secured to the housing 24 to afford means for fixing the complete unit of the chassis or other base plate of the machine or device with which the unit is used.
Thus, among others, the several objects of the invention as afore noted are achieved. Obviously numerous changes in construction and rearrangement of the parts might be resorted to without departing from the spirit of the invention as defined by the claims.
I claim:
1. A resistor, comprising a bored core of insulation material having axially extending slots spaced circumferentially about its outer wall and extending continuously from end to end of said core, said slots being of inverted T formation; electric terminal members disposed within said slots in frictional engagement with walls thereof, said members projecting from one end of said core; electrical resistance elements wound upon said core and connected with selected terminal members; a plate of insulation material disposed at the end of said core and receiving the terminal members projecting therefrom; cover supporting means carried on said plate; a cover disposed about said core in spaced relationship with the resistance windings thereon; a cap for said cover at the end opposite said plate; a tie member extending through the core bore and said plate and cap to secure said cap and said cover relative to said plate; and spring means disposed between said cap and said core to secure said core within said housing.
2. A resistor, comprising a bored core of insulation material having axially extending slots spaced circumferentially about its outer wall and extending continuously from end to end of said core, said slots being of inverted T formation; electric terminal members disposed within said slots in frictional engagement therewith, said members projecting from one end of said core; electrical resistance elements Wound upon said core and connected with selected terminal members; a plate of insulation material disposed at the end of said core and receiving the terminal members projecting therefrom; an enclosure for said core, said enclosure being in spaced relationship with respect to the windings; a cover, means for securing said cover upon said enclosure, said means extending through the core bore, said cover and said plate; and means disposed within said cover intermediate the end thereof and an end of said core to secure said core against movement within said enclosure.
3. An electrical resistor, comprising a core member having slots disposed in spaced relationship about the circumference of the core, said slots extending to at least one end of the core and. having a narrow entrance passage communicating with a relatively wide channel; terminal members disposed within said slots, said members each comprising a strip member bowed to frictionally engage a wall of said channel and a connection head extending outwardly therefrom, said head being Wider than the entrance passage of said slot, and having a neck portion of less width than the entrance passage; and resistance elements wound upon said core and connected to selected terminal heads.
4. An electrical resistor, comprising a core member having slots disposed in spaced relationship about the circumference of the core, said slots extending to at least one end of the core and having a narrow entrance passage communicating with a relatively wide channel; terminal members disposed within said slots, said members each comprising a strip member bowed to frictionally engage a wall of said channel and a connection head extending outwardly therefrom, said head being Wider than the entrance passage of said slot; and resistance elements wound upon said core and connected to selected terminal heads.
5. An electrical resistor as in claim 4, in which certain of the connection heads comprise spaced branches respectively for the attachment of end portions of adjacent resistance elements thereto.
GEORGE J. MUCHER.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,525,831 Steiner et a1. Feb. 10, 1925 1,809,089 Wiegand June 19, 1931 2,008,288 Malone July 16, 1935 2,035,911 Mucher Mar. 31, 1936 2,332,255 Podolsky Oct. 19, 1943 2,454,986 Beckman Nov. 30, 1948 FOREIGN PATENTS Number Country Date 123,106 Great Britain Feb. 20, 1919
US26764A 1948-05-13 1948-05-13 Multitap resistor and method of making same Expired - Lifetime US2527026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US26764A US2527026A (en) 1948-05-13 1948-05-13 Multitap resistor and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26764A US2527026A (en) 1948-05-13 1948-05-13 Multitap resistor and method of making same

Publications (1)

Publication Number Publication Date
US2527026A true US2527026A (en) 1950-10-24

Family

ID=21833658

Family Applications (1)

Application Number Title Priority Date Filing Date
US26764A Expired - Lifetime US2527026A (en) 1948-05-13 1948-05-13 Multitap resistor and method of making same

Country Status (1)

Country Link
US (1) US2527026A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2879361A (en) * 1956-10-03 1959-03-24 Int Resistance Co Resistor
US3034542A (en) * 1956-03-29 1962-05-15 Daystrom Inc Apparatus for constructing wire-wound resistance elements
US3134956A (en) * 1961-01-17 1964-05-26 Wiegand Co Edwin L Electric resistance heating elements
US3263198A (en) * 1964-03-27 1966-07-26 Square D Co Positioning transformer structure
US3361863A (en) * 1965-04-12 1968-01-02 Karl A. Lang Furnace
US6153856A (en) * 1997-01-21 2000-11-28 Lee; Myoung Jun Low magnetic field emitting electric blanket
US6175098B1 (en) * 1998-10-31 2001-01-16 Solco Biomedical Co., Ltd. Plane heating element without electromagnetic waves and a manufacturing method thereof
US6226450B1 (en) 1997-01-21 2001-05-01 Myoung Jun Lee Electric field shielding apparatus
US6300597B1 (en) 1997-01-21 2001-10-09 Myoung Jun Lee Electromagnetic field shielding electric heating pad
US20070091034A1 (en) * 2005-10-12 2007-04-26 Hitachi Displays, Ltd. Image display device and driver circuit therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB123106A (en) * 1917-07-16 1919-02-20 Abton Albert Buck Improvements in Electric Heaters.
US1525831A (en) * 1923-10-20 1925-02-10 Leonard E Steiner Electrical heating unit
US1809089A (en) * 1928-08-23 1931-06-09 Edwin L Wiegand Method of producing electrical heating elements
US2008288A (en) * 1934-01-31 1935-07-16 Bell Telephone Labor Inc Wire wound electrical device
US2035911A (en) * 1935-01-10 1936-03-31 John J Mucher Flexible electrical resistor and method of manufacturing the same
US2332255A (en) * 1942-03-10 1943-10-19 Sprague Specialties Co Electrical resistor
US2454986A (en) * 1945-10-22 1948-11-30 Nat Technical Lab Variable resistance device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB123106A (en) * 1917-07-16 1919-02-20 Abton Albert Buck Improvements in Electric Heaters.
US1525831A (en) * 1923-10-20 1925-02-10 Leonard E Steiner Electrical heating unit
US1809089A (en) * 1928-08-23 1931-06-09 Edwin L Wiegand Method of producing electrical heating elements
US2008288A (en) * 1934-01-31 1935-07-16 Bell Telephone Labor Inc Wire wound electrical device
US2035911A (en) * 1935-01-10 1936-03-31 John J Mucher Flexible electrical resistor and method of manufacturing the same
US2332255A (en) * 1942-03-10 1943-10-19 Sprague Specialties Co Electrical resistor
US2454986A (en) * 1945-10-22 1948-11-30 Nat Technical Lab Variable resistance device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034542A (en) * 1956-03-29 1962-05-15 Daystrom Inc Apparatus for constructing wire-wound resistance elements
US2879361A (en) * 1956-10-03 1959-03-24 Int Resistance Co Resistor
US3134956A (en) * 1961-01-17 1964-05-26 Wiegand Co Edwin L Electric resistance heating elements
US3263198A (en) * 1964-03-27 1966-07-26 Square D Co Positioning transformer structure
US3361863A (en) * 1965-04-12 1968-01-02 Karl A. Lang Furnace
US6153856A (en) * 1997-01-21 2000-11-28 Lee; Myoung Jun Low magnetic field emitting electric blanket
US6226450B1 (en) 1997-01-21 2001-05-01 Myoung Jun Lee Electric field shielding apparatus
US6300597B1 (en) 1997-01-21 2001-10-09 Myoung Jun Lee Electromagnetic field shielding electric heating pad
US6175098B1 (en) * 1998-10-31 2001-01-16 Solco Biomedical Co., Ltd. Plane heating element without electromagnetic waves and a manufacturing method thereof
US20070091034A1 (en) * 2005-10-12 2007-04-26 Hitachi Displays, Ltd. Image display device and driver circuit therefor
US7932881B2 (en) * 2005-10-12 2011-04-26 Hitacji Displays, Ltd. Image display device and driver circuit therefor

Similar Documents

Publication Publication Date Title
US2527026A (en) Multitap resistor and method of making same
US2667624A (en) Coil forms with ends of inslation having electrical terminals thereon
US1741265A (en) Transformer
US2698372A (en) Electrical resistor and method of making same
US3001106A (en) Compatible components system
US1704151A (en) Spool for electrical instruments and the like
US2879361A (en) Resistor
US2538977A (en) Resistor
US3144572A (en) Terminal construction for electric motors
US2079369A (en) Insulated resistance unit
GB2198588A (en) Electrical coil assembly
US3185948A (en) Electrical regulator
US3355687A (en) Variable inductor with a reinforced coil form
US2035911A (en) Flexible electrical resistor and method of manufacturing the same
US1767716A (en) Electrical resistance and method of making same
US2653992A (en) Terminal construction for electric coil forms
US2055849A (en) Electrical resistor
US2535808A (en) Resistor and method of making the same
US2643316A (en) Resistance unit
US1903142A (en) Resistance strip and method of making same
US2627008A (en) Multiple tap resistance unit and the method of making the same
US2807791A (en) Solder lug collar
US721289A (en) Transformer.
US2993186A (en) Bobbin type electrical resistor
US3153213A (en) Combined coil and coil form with integral conductive legs