US2516643A - Electron discharge device including a hollow resonator - Google Patents

Electron discharge device including a hollow resonator Download PDF

Info

Publication number
US2516643A
US2516643A US713002A US71300246A US2516643A US 2516643 A US2516643 A US 2516643A US 713002 A US713002 A US 713002A US 71300246 A US71300246 A US 71300246A US 2516643 A US2516643 A US 2516643A
Authority
US
United States
Prior art keywords
resonator
sections
apertures
discharge device
resonant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US713002A
Inventor
Albert F Pearce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMI Ltd
Electrical and Musical Industries Ltd
Original Assignee
EMI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMI Ltd filed Critical EMI Ltd
Application granted granted Critical
Publication of US2516643A publication Critical patent/US2516643A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators

Definitions

  • This invention relates to hollow electrical resonators and more particularly toresonators which have elon ated apertures through which a ribbon shaped of electrons may pass in order to excite the resonator cavity.
  • the alternating potential set up in the resonator should be constant at all points along'the length of the apertures in the resonator. It is necessary to close the ends of the resonator in order to prevent the escape or energy from the otherwise open ends and usually the ends of the resonator of the kind referred to are closed by semi-circular portions of the same cross-sectional area as the resonator. It is found, however, with such a construction that if the length of the apertures is less than a wavelength of the operating frequency, the alternating potential is a maximum midway oi the length of the apertures and decreases in amplitude towards the ends of the gap. If, however, the length of the apertures: is equal to or greater than a wavelength of the operating frequency, then a plurality of points; of maximum alternating potential will exist along the apertures with points or" lower alternating potential therebetween.
  • An object of the present invention is to provide an improved resonator having elongated apertures with a view to maintaining the alternating potential more nearly constant along the length of the apertures.
  • Another object of the invention is toprovide an electron discharge device utilizing the improved resonator.
  • An advantage of the invention is that hollow resonators having longitudinal apertures may be made in various forms with a more constant voltage distribution along the aperture.
  • Fig. l is an elevation of a resonator constructed in accordance with one embodiment of the invention
  • FIG. 2 is a cross sectional view taken along the line 2-2 of Fig. 1 and looking in the direction of the arrows;
  • Fig. 3 is a. longitudinal sectional view of Fig. 1 taken along the line 33;
  • Fig. 4 is an elevation of a further embodiment of the invention.
  • Fig. 5 is a cross-sectional view taken along the line 5-5 of Fig. 4;
  • Fig. 6 is a longitudinal sectional View taken along the line 5-45 of Fig. 4;
  • FIG. 7 is an elevation of the end portion-of the resonator shown in Fig. I embodying a. modifica- 60 tion;
  • Fig. 8 is a side elevational view partly in section if an electron discharge device incorporating the improved resonator.
  • Fig. 9 is a cross-sectional view taken along the line of Fig. 8.
  • the resonator coin-prises two elongated hollow resonator sections so disposed parallel to each other the opposed walls oiv which are provided with elongated apertures i l which together define two opposed elongated gaps across which a ribbon-shaped electron beam can pass.
  • the opposite longitudinal edges of each of said apertures are joined by grid wires indicated at 12.
  • the resonant frequency of such a resonator section is determined by its physical dimensions and the capacity at the gap thereof. As stated above, it is round that with a resonator of such form the alternating potential is not constant along the length of the apertures.
  • the ends of the resonator sections ii] are closed by resonator end portions it and it, each of said portions constituting onehalf of a toroidal resonator which is resonant at substantially the same frequency as the resonator sections It.
  • the ends of the opposed walls of the resonator sections it are connected by the semi-circular slotted walls to and it, the end portions t3 and I 4 thus each being one-half of a toroidal resonator having a central circular gap connecting the opposed ends of the apertures H.
  • the end portions l3 and M havesubstantial l-y the same resonant frequency as the resonator sections it, such will usually entail the necessity of making the end portions of larger cross-sectional area that the resonator sections It. This is accomplished in Figs. 1, 2, and 3 of the drawings by making theradial' depth of the portions l3 and it larger than the corresponding depth of the resonator sections it, as shown. 'Alternativel'y, the width; of the end portions i3 and it may be made larger than the width of the resonator sections ld as illustrated in the form of the invention shown in Figs. 4, d, and 6. Further, both the width and the depth of the end portions can be increased, if required.
  • the junction between the end portions and the resonator sections may be inclined as indicated at I! in Fig. 7.
  • Figs. 8 and '9' The use of the resonator shown in Figs. 1, 2, and 3 in an electron discharge device is illustrated in Figs. 8 and '9'.
  • so constructed as to produce a ribbon-shaped beam of electrons having approximately the width and the length of the central space between the resonator sections.
  • an anode 22 On the other side of the resonator and aligned with the cathode 2i and said central space is an anode 22 for collecting the electrons from the cathode after they travel past the grid wires l2 and the apertures H.
  • An output electrode 23 may be provided in the form of a loop entering one end portion through a suitable insulating head 24. Terminals for the various electrodes may be brought out through seals in the envelope 20 as shown.
  • a resonator of the form shown in Figs. 1 to 3 designed for operation at 10,000 megacycles may have a width of 13 mms., a distance between the grids of 2 mms., and a depth of 4.8 mms.
  • the width of the apertures in the resonator may be 6 mms., and the outer diameter of the end portions I3 and I4, 18 mms.
  • the length of the resonator may be as long as desired.
  • a resonator of the cavity type comprising an elongated conducting body enclosing a cavity and resonant at a predetermined frequency, enlarged resonator end portions terminating the ends of said body, each of said portions having conducting walls enclosing an enlarged cavity opening into the cavity of said body, said enlarged portions combined being resonant substantially at said predetermined frequency.
  • a resonator of the cavity type comprising an elongated hollow tubular member enclosing a cavity and resonant at a predetermined frequency, one side of said member having an elongated aperture extending along its entire length, a resonator portion terminating each end of said tubular member and having conducting walls enclosing a space into which said cavity extends, said end portions combined being resonant substantially at said predetermined frequency.
  • a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sectionsforming gaps opening into the cavities of said resonator sections, said resonator sections being adapted to be excited by electrons crossing said gaps, there being developed an alternating potential along the length of said apertures, a resonator end portion closing and connecting said sections at each end thereof, said end portions being parts of a resonator resonant substantially to said predetermined frequency, whereby said potential is maintained more constant along said apertures.
  • a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sections forming gaps opening into the cavities of said resonator sections, said resonator sections being adapted to be excited by electrons crossing said gaps, there being developed an alternating potential along the length of said apertures, an end portion closing and connecting said sections at each end thereof, said portions having a substantially larger cross-sectional area than said sections and being parts of a resonator resonant substantially at said predetermined frequency, whereby said potential difierence is maintained more constant along said aperture.
  • a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sections opening into the cavities of said resonator sections, a semi-circular resonator portion closing and connecting said sections at each end thereof, each of said semi-circular portions having a larger cross-sectional area than said sections and forming one-half of a toroidal resonator resonant substantially at said predetermined frequency.
  • a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to-pass an electron beam, longitudinal apertures in the opposed walls of said sections opening into the cavities of said resonator sections, a resonator portion of rectangular section closing and connecting said sections at each end thereof, each of said portions having a larger cross-sectional area than said sections and forming one-half of a resonator resonant substantially at said predetermined frequency.
  • An electron discharge device including a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a we determined frequency disposed parallel to each other and forming a space therebetween, cathode means for generating an electron beam, anode means for collecting the electrons of said beam, longitudinal apertures in the opposed walls of said sections forming opposed gaps opening into the cavities of said resonator sections where :by said sections may be excited by electrons of said beam crossing said gaps, there being developed an alternating potential along said apertures, a resonator end portion closing and connecting said sections at each end thereof, each end portion having a longitudinal slot in its inner wall forming a continuation of said apertures, said end portions being parts of a resonator resonant substantially at said predetermined frequency, whereby said potential is maintained more constant along the length of said apertures.
  • a resonator according to claim 3 wherein the opposite longitudinal edges of each of said apertures are joined by grid wires.

Description

y 1950 A. F. PEARCE 2,516,643
ELECTRON DISCHARGE DEVICE INCLUDING A HOLLOW RESONATOR Filed Nov. 29, 1946 2 Sheets-Sheet 1 lppppIp-l LE ii m6 E F W y A July 25, 1950 A. F. PEARCE ELECTRON DISCHARGE DEVICE INCLUDING A HOLLOW RESONATOR 2 Sheets-Sheet 2 Filed Nov. 29, 1946 (Ittomeg Patented July 25, 1950 2,516,643 OFFICE I ELECTRON DISCHARGE DEVICE INCLUDING,
A HOLLOW RESONATOR Albert F. Pearce, Middlesex, England, assignor to Electric & Musical industries Limited, Middlesex, England.
Application November 29, 1946, Serial No. 713,002 In Great Britain June 11, 1943 Section 1, Public Law 690, August 8, 1946 Patent expires June 11, 1963 Claims. 1
This invention relates to hollow electrical resonators and more particularly toresonators which have elon ated apertures through which a ribbon shaped of electrons may pass in order to excite the resonator cavity.
In such resonators it is desirable that the alternating potential set up in the resonator should be constant at all points along'the length of the apertures in the resonator. It is necessary to close the ends of the resonator in order to prevent the escape or energy from the otherwise open ends and usually the ends of the resonator of the kind referred to are closed by semi-circular portions of the same cross-sectional area as the resonator. It is found, however, with such a construction that if the length of the apertures is less than a wavelength of the operating frequency, the alternating potential is a maximum midway oi the length of the apertures and decreases in amplitude towards the ends of the gap. If, however, the length of the apertures: is equal to or greater than a wavelength of the operating frequency, then a plurality of points; of maximum alternating potential will exist along the apertures with points or" lower alternating potential therebetween.
An object of the present invention is to provide an improved resonator having elongated apertures with a view to maintaining the alternating potential more nearly constant along the length of the apertures.
Another object of the invention is toprovide an electron discharge device utilizing the improved resonator.
An advantage of the invention is that hollow resonators having longitudinal apertures may be made in various forms with a more constant voltage distribution along the aperture.
Other objects and advantages will be apparent from the following description of the invention, pointed out in particularity in. the appended claims and taken in connection with the: accompanying drawings in which Fig. l is an elevation of a resonator constructed in accordance with one embodiment of the invention;
2 is a cross sectional view taken along the line 2-2 of Fig. 1 and looking in the direction of the arrows;
. Fig. 3 is a. longitudinal sectional view of Fig. 1 taken along the line 33;
Fig. 4 is an elevation of a further embodiment of the invention;
Fig. 5 is a cross-sectional view taken along the line 5-5 of Fig. 4;
Fig. 6 is a longitudinal sectional View taken along the line 5-45 of Fig. 4;
7 is an elevation of the end portion-of the resonator shown in Fig. I embodying a. modifica- 60 tion;
Fig. 8 is a side elevational view partly in section if an electron discharge device incorporating the improved resonator; and
Fig. 9 is a cross-sectional view taken along the line of Fig. 8.
Referring now to Figs. 1, 2, and 3 ol the drawings, the resonator coin-prises two elongated hollow resonator sections so disposed parallel to each other the opposed walls oiv which are provided with elongated apertures i l which together define two opposed elongated gaps across which a ribbon-shaped electron beam can pass. The opposite longitudinal edges of each of said apertures are joined by grid wires indicated at 12. The resonant frequency of such a resonator section is determined by its physical dimensions and the capacity at the gap thereof. As stated above, it is round that with a resonator of such form the alternating potential is not constant along the length of the apertures. In accordance with the invention with a View to maintaining the amplitude of the alternating potential more constant along the length of the apertures the ends of the resonator sections ii]: are closed by resonator end portions it and it, each of said portions constituting onehalf of a toroidal resonator which is resonant at substantially the same frequency as the resonator sections It. The ends of the opposed walls of the resonator sections it are connected by the semi-circular slotted walls to and it, the end portions t3 and I 4 thus each being one-half of a toroidal resonator having a central circular gap connecting the opposed ends of the apertures H. Since the end portions l3 and M havesubstantial l-y the same resonant frequency as the resonator sections it, such will usually entail the necessity of making the end portions of larger cross-sectional area that the resonator sections It. This is accomplished in Figs. 1, 2, and 3 of the drawings by making theradial' depth of the portions l3 and it larger than the corresponding depth of the resonator sections it, as shown. 'Alternativel'y, the width; of the end portions i3 and it may be made larger than the width of the resonator sections ld as illustrated in the form of the invention shown in Figs. 4, d, and 6. Further, both the width and the depth of the end portions can be increased, if required.
It maybe desirable to avoid any abrupt changes in the configuration of the resonator where the end portions it and it join the resonator sections it and in order to avoid such abrupt changes, the junction between the end portions and the resonator sections may be inclined as indicated at I! in Fig. 7.
The use of the resonator shown in Figs. 1, 2, and 3 in an electron discharge device is illustrated in Figs. 8 and '9'. In the evacuated envelope; which maybe glass or metal, there suitably supported on one side of the resonator a cathode 2| so constructed as to produce a ribbon-shaped beam of electrons having approximately the width and the length of the central space between the resonator sections. On the other side of the resonator and aligned with the cathode 2i and said central space is an anode 22 for collecting the electrons from the cathode after they travel past the grid wires l2 and the apertures H. An output electrode 23 may be provided in the form of a loop entering one end portion through a suitable insulating head 24. Terminals for the various electrodes may be brought out through seals in the envelope 20 as shown.
In one example of the invention a resonator of the form shown in Figs. 1 to 3 designed for operation at 10,000 megacycles may have a width of 13 mms., a distance between the grids of 2 mms., and a depth of 4.8 mms. The width of the apertures in the resonator may be 6 mms., and the outer diameter of the end portions I3 and I4, 18 mms. The length of the resonator may be as long as desired.
I claim:
1. A resonator of the cavity type comprising an elongated conducting body enclosing a cavity and resonant at a predetermined frequency, enlarged resonator end portions terminating the ends of said body, each of said portions having conducting walls enclosing an enlarged cavity opening into the cavity of said body, said enlarged portions combined being resonant substantially at said predetermined frequency.
2. A resonator of the cavity type comprising an elongated hollow tubular member enclosing a cavity and resonant at a predetermined frequency, one side of said member having an elongated aperture extending along its entire length, a resonator portion terminating each end of said tubular member and having conducting walls enclosing a space into which said cavity extends, said end portions combined being resonant substantially at said predetermined frequency.
3. A resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sectionsforming gaps opening into the cavities of said resonator sections, said resonator sections being adapted to be excited by electrons crossing said gaps, there being developed an alternating potential along the length of said apertures, a resonator end portion closing and connecting said sections at each end thereof, said end portions being parts of a resonator resonant substantially to said predetermined frequency, whereby said potential is maintained more constant along said apertures.
4. A resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sections forming gaps opening into the cavities of said resonator sections, said resonator sections being adapted to be excited by electrons crossing said gaps, there being developed an alternating potential along the length of said apertures, an end portion closing and connecting said sections at each end thereof, said portions having a substantially larger cross-sectional area than said sections and being parts of a resonator resonant substantially at said predetermined frequency, whereby said potential difierence is maintained more constant along said aperture.
5. A resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to pass an electron beam, longitudinal apertures in the opposed walls of said sections opening into the cavities of said resonator sections, a semi-circular resonator portion closing and connecting said sections at each end thereof, each of said semi-circular portions having a larger cross-sectional area than said sections and forming one-half of a toroidal resonator resonant substantially at said predetermined frequency.
6. A resonator of the cavity type comprising a pair of elongated resonator sections resonant at a predetermined frequency disposed parallel to each other and forming a space therebetween adapted to-pass an electron beam, longitudinal apertures in the opposed walls of said sections opening into the cavities of said resonator sections, a resonator portion of rectangular section closing and connecting said sections at each end thereof, each of said portions having a larger cross-sectional area than said sections and forming one-half of a resonator resonant substantially at said predetermined frequency.
7. An electron discharge device including a resonator of the cavity type comprising a pair of elongated resonator sections resonant at a we determined frequency disposed parallel to each other and forming a space therebetween, cathode means for generating an electron beam, anode means for collecting the electrons of said beam, longitudinal apertures in the opposed walls of said sections forming opposed gaps opening into the cavities of said resonator sections where :by said sections may be excited by electrons of said beam crossing said gaps, there being developed an alternating potential along said apertures, a resonator end portion closing and connecting said sections at each end thereof, each end portion having a longitudinal slot in its inner wall forming a continuation of said apertures, said end portions being parts of a resonator resonant substantially at said predetermined frequency, whereby said potential is maintained more constant along the length of said apertures.
8. An electron discharge device according to claim 7, wherein the cross-sectional area of said resonator end portions is substantially larger than that of said elongated resonator sections.
9. A resonator according to claim 3, wherein the opposite longitudinal edges of each of said apertures are joined by grid wires.
10. An electron discharge device according to claim 7, wherein the opposite longitudinal edges of said apertures are joined by grid wires.
ALBERT F. PEARCE.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 2,320,860 Fremlin June 1, 1943 2,383,343 Ryan Aug. 21, 1945 2,407,274 Hartley et a1. Sept. 10, 1946 2,408,409 Bowen Oct. 1, 1946 2,422,695 McRae June 24, 1947
US713002A 1943-06-11 1946-11-29 Electron discharge device including a hollow resonator Expired - Lifetime US2516643A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2516643X 1943-06-11

Publications (1)

Publication Number Publication Date
US2516643A true US2516643A (en) 1950-07-25

Family

ID=10908906

Family Applications (1)

Application Number Title Priority Date Filing Date
US713002A Expired - Lifetime US2516643A (en) 1943-06-11 1946-11-29 Electron discharge device including a hollow resonator

Country Status (2)

Country Link
US (1) US2516643A (en)
NL (1) NL73350C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746036A (en) * 1952-03-25 1956-05-15 Bell Telephone Labor Inc Device for coupling between free space and an electron stream

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2320860A (en) * 1939-12-22 1943-06-01 Int Standard Electric Corp Electron discharge apparatus
US2383343A (en) * 1940-08-13 1945-08-21 Westinghouse Electric Corp Two-cylinder short-wave resonator apparatus
US2407274A (en) * 1941-04-16 1946-09-10 Bell Telephone Labor Inc Ultra high frequency electronic device
US2408409A (en) * 1941-04-08 1946-10-01 Bell Telephone Labor Inc Ultra high frequency electronic device
US2422695A (en) * 1943-05-07 1947-06-24 Bell Telephone Labor Inc Suppression of parasitic oscillations in high-frequency devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2320860A (en) * 1939-12-22 1943-06-01 Int Standard Electric Corp Electron discharge apparatus
US2383343A (en) * 1940-08-13 1945-08-21 Westinghouse Electric Corp Two-cylinder short-wave resonator apparatus
US2408409A (en) * 1941-04-08 1946-10-01 Bell Telephone Labor Inc Ultra high frequency electronic device
US2407274A (en) * 1941-04-16 1946-09-10 Bell Telephone Labor Inc Ultra high frequency electronic device
US2422695A (en) * 1943-05-07 1947-06-24 Bell Telephone Labor Inc Suppression of parasitic oscillations in high-frequency devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746036A (en) * 1952-03-25 1956-05-15 Bell Telephone Labor Inc Device for coupling between free space and an electron stream

Also Published As

Publication number Publication date
NL73350C (en)

Similar Documents

Publication Publication Date Title
US2683238A (en) Microwave amplifier
US2250698A (en) Magnetron
US2432466A (en) Interdigital magnetron
US2402983A (en) Electronic discharge tube
US2870374A (en) Microwave electron discharge tubes
US3181024A (en) Traveling-wave tube with oscillation prevention means
US2945155A (en) Resonator and velocity modulation device using same
US2306860A (en) Electron discharge device for very high frequencies
US2394008A (en) Beam resonator tube
US2516643A (en) Electron discharge device including a hollow resonator
US2542899A (en) Cavity resonator electron discharge device
US3043984A (en) Travelling wave tubes
US3205398A (en) Long-slot coupled wave propagating circuit
US2855537A (en) Electron beam focusing
GB1042620A (en) High frequency electron discharge devices embodying slow-wave structures
US2489298A (en) Velocity modulation electron discharge device
US2410863A (en) Electron discharge device
US2844756A (en) Electron discharge device with resonator
US2655616A (en) Magnetron
US2404078A (en) Electron discharge device
US2620458A (en) Microwave amplifier
US2552334A (en) Electron discharge device and associated circuit
US3846665A (en) Velocity modulation tube with frequency multiplication for the continuous generation of high power outputs
US2820170A (en) Spatial harmonic traveling wave tube
US2888609A (en) Electronic devices