US2513852A - Method for encapsulating - Google Patents

Method for encapsulating Download PDF

Info

Publication number
US2513852A
US2513852A US718527A US71852746A US2513852A US 2513852 A US2513852 A US 2513852A US 718527 A US718527 A US 718527A US 71852746 A US71852746 A US 71852746A US 2513852 A US2513852 A US 2513852A
Authority
US
United States
Prior art keywords
sheet
sheets
capsules
pockets
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US718527A
Inventor
Alfonso M Donofrio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US718527A priority Critical patent/US2513852A/en
Priority to US126026A priority patent/US2663130A/en
Application granted granted Critical
Publication of US2513852A publication Critical patent/US2513852A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material
    • B65B9/042Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material for fluent material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/07Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of capsules or similar small containers for oral use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/18Thermoforming apparatus
    • B29C51/20Thermoforming apparatus having movable moulds or mould parts
    • B29C51/22Thermoforming apparatus having movable moulds or mould parts rotatable about an axis
    • B29C51/225Thermoforming apparatus having movable moulds or mould parts rotatable about an axis mounted on a vacuum drum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/37Processes and molds for making capsules

Definitions

  • the machines employed in the art of" encapsuliating prior to thisinvention produce spherical and ellipsoidal capsules through the use of coacting substantially hemispherical and semi-ellipsoidal dies.
  • each die is cut in the periphery of a drumor rotating wheel and two such wheels are rotated toward each other with their peripheries contacting and the capsules are formed between the wheels.
  • Forming a capsulein this manner requires that the two wheels be maintained in perfect register so that the sealing action around. the rims of the two, die pockets functions properly and operates to efiectivelyseal the-capsules as they are formed.
  • Figure I is, a schematic illustration of a form of apparatus constituting a. part of the instant invention and on which the encapsulatingmethod of the instant invention can be carried out;
  • Figure II is a fragmentary vertical sectional view in greater detail and on a larger-scale of a portion of apparatus similar-to that illustrated-in Figure, I but embodying a modified die wheel.
  • Figure 111- is a fragmentaryview in elevation on an enlarged scale of several hemispherical die pockets such as might be employed inthe mechanism illustrated in Figure I.
  • Figure IV is a fragmentary verticai sectional view of a hemispherical capsule immediatelyaft er sealing but prior to severance from the-mate;- rial" which forms its walls.
  • Figure V is a vertical sectional view of onetype of ellipsoidal capsule manufactured in accordance with the method of this invention.
  • Figure VI is a plan View of the capsule illustrated' in Figure V.
  • Figure VIII is a plan view of the capsule illustrated in Figure VII;
  • Figure IX is a schematic illustration: of the apparatus disclosed in my earlier co-pending application and illustrates how this apparatus also may be employed in practicing the method offthe instantinvention.
  • Figure X is a simplified vertical sectionaliview of'a flat die plate such asthat known-in the prior art as employed; in manufacturing capsules in ac,-. corclance with the method" of: the; instant invention.
  • Figure XI is a fragmentaryvertical sectional view-0n anenlargedscaleof the capsulating plate shown in Figure X and illustrating one step. in the, method of the instant inventionas practiced on this type of, apparatus.
  • Figure XIII is a view similar to Figures X and XI but illustrating a still later step in the method embodying the instant invention.
  • Figure XIV is a view similar to Figure III but of semi-ellipsoidal pockets which may be employed in accordance with the method of the instant invention for the production of spherical capsules.
  • Figure 'XV is a fragmentary vertical sectional view on an enlarged scale of a semi-ellipsoidal capsule such as would be formed in the semiellipsoidal pockets illustrated in Figure XIV and shown before it is severed from the main'strips of capsulating material which form its walls.
  • Figure XVI is a verticalsectional view of a spherical capsule which is the product resulting from the formation of the semi-ellipsoidal cap sule shown in Figure XV.
  • the apparatus schematically illustrated I in Figure I is designed for practicing the method of the invention in the production of symmetrical ellipsoidal capsules such as that shown in FigureV.
  • the die wheel continues to rotate moving the filled pocket in the gelatinous material beneath a rotating smooth surface sealing drum II around which is fed a second sheet I2 of gelatinous material.
  • the sealing drum II is power driven and mounted onf an adjustable bracket i3 so that the spacing between its periphery and the periphery of the die wheel I can be the practice of the method of the invention can I) I be carried out there is shown in Figure I a single die wheel I which is providedwith a plurality of hemispherical die pockets 2 formed in its periphery.
  • the die wheel 11 rotates at a substantially fixed rate of speed on a central hub 3.
  • each of the hemispherical pockets 2 has a central port 6 leading inwardly to the inner surface of the die wheel 2 adjacent the outer surface of the hub 3.
  • the hub 3 is ported and has a circumferentially extending slot 7 which is connected with a vacuum line.
  • the circumferentiall extending slot l is in line with the inner ends of the ports 6 and extends around the periphery of the hub 3 a sufiicient distance so that suction is maintained on each of the die pockets 2 for a period during the rotation of the die wheel I.
  • the sheet '4 of elastic material contacts the surface of the die wheel i and as each of the pockets 2 over which it extends approaches the location of a filling shoe 8 its port 6 registers with the slot and vacuum is applied to the die pocket 2. This depresses the material overlying the die pocket forming a hemispherical pocket in this material itself. As the die wheel continues to rotate the depressed hemispherical pocket passes beneath the filling shoe 8 which is formed on thelow'er' end of a tube 9 connected to a source of filling substance l0.
  • Each of the die pockets 2 has a lip i l to provide a raised surface against which the two sheets of gelatinous material can be sealed.
  • each of the formed hemispherical capsules is severed from the sheet of material by passing beneath the smooth surface of. a severing drum 15 which is mounted onan adjustable bracket It so thatit can be properly spaced with respect to the die wheel l to pinch off the two sheets 4 and 12 of gelatinous material against the lip I l of each of the die pockets 2.
  • the capsules are hemispherical in shape, as shown in Figure IV, and are really severed from the gelatinous material, being maintained in a web formed from the two sheets 4 and i2 ofgelatinous material simply by the tackine'ss of the gelatin.
  • the die wheel I rotates further each of the ports B-of the die pockets comes in line with a pressure; port I! in the hub 3 which ejects each hemispherical capsule from its die pocket.
  • the final form of the capsules produced in accordance with the methods of the invention can be modified at will by changing the physical condition or characteristics of the two sheets of gelatin or other plastic material which form, respectively, the pocket and..the.. c.losure-iorthfi pocket; If, for example, the sheet of. plastic material which isto be pocketed is stretched in acircumferential direction with respect tothe die wheel, the resulting capsules will be oval, i. e. shaped like an ellipsoid of revolution which is rotated about its longer axis. Such a capsule is illustrated in Figures VII and VIII. In order to produce this capsule by longitudinally stretching one sheet of material, it is necessary only to revolve the two feeding rolls at a constant but slower speed than the die wheel I.
  • the sheet of gelatin or other capsulating mate-rial which is to be pocketed may be thicker than the sheet which is to close the pockets. If this is true, then when the capsules are released by the die wheel the thicker sheet forming the pocket, which has a, tendency to contract, is stronger than the resisting sheet which close-s the pocket. Under these conditions it is possible to produce a capsule the shape of which is somewhere intermediate the two shapes shown in Figures V and VII. Theoretically, under these conditions it would be possible to ro.
  • the resulting shape of the finished capsules can be predetermined and the position of the parting line between the two halves of the capsules can be accurately and positively controlled to fall directly on the center plane of the capsule.
  • this careful and positive control is not fully maintained almost symmetrical capsules still result inasmuch as the sheets of gelatin tend to approach a spherical shape because a spherical shape is the smallest which will contain a given volume of a substance capable of transmitting hydrostatic pressure.
  • Such variations from spherical shape as are desired are accomplished; by controlling the extent to and the directions in which the capsule walls are conditioned to contract.
  • the instant invention contemplates the formation of symmetrical ellipsoidal capsules-from. two. sheets ofgelatin only one of which need bepocke eted or dimpled in contrast. to prior art methods and machines which, in order to form sym-.- metrical ellipsoidal capsules, pocketed or dimpled both sheets of capsulating material.
  • The. terms ellipsoidal and generally ellipsoidal are usedto describe all shapes falling generally within their broadest meanings and includenotonly ellipsoids of revolution on either their shorter or their longer axesbut also oblate spheroids, ovals and spheres. which are but modifications. of. the same general form.
  • die wheel 20 is provided with aplurality of cylindrical openings 2
  • is surrounded by. an annular raised lip 22 identical with the lip M- formed around the hemispherical pockets in the structure shown in FigureI.
  • Each of the openings 21 is connected through a port 23 to the interior of the die wheel 20 adjacent the periphery: of its hub 24.
  • a plug 25 is variably positionable in each of the openings 2L
  • Each of the plugs 251s a short longitudinallybored cylinder which: hasa longitudinally extending rack 26 cut in one side.
  • the rack 26 meshes with an elongated axially extending pinion 21 which is rotatable withinan axially extending: bore 28' in the die wheel 26.
  • the pinion 21 can, therefore, extend throughout the length of the diewheel 20 meshing with racks cut-on plugs in alternate circumferential rows of openings 2i.
  • the pinion 21' and all other pinions like it may extend out one end of the die wheel 20 where they can be individually adjusted or all can be driven in unison by a single gear rotatable with respect to the die wheel 28- or by other suitable means (not shown).
  • Figure II also clearly illustrates the construction of a filling shoe 30 formed on the end of a tube 3! in communication with a supply of substance to be encapsulated.
  • the bottom of the filling shoe 3!] is provided with a beveled flange 32 which has a vertical edge considerably thicker at its forward end than at its rear end and which thus maintains a scraping action over the surface of the sheet of gelatin on which it bears and also maintains a seal around each of the pockets formed in this sheet of gelatin while each pocket is being filled. This is particularly advantageous when the substance to be.
  • Figure III is a fragmentary view in elevation of a portion of the die wheel, showing how each lip l4 surrounds its pocket 2. The wheel moves in the direction of the arrow in this figure.
  • Figure IX illustrates apparatus which was disclosed in my earlier application for the practice of a method of producing multi-compartment spherical capsules.
  • This apparatus is shown operating under the method of the present invention to produce symmetrical ellipsoidal capsules from two sheets of gelatin only one of which is pocketed.
  • two coacting die rolls 36 and 31 are driven in synchronism and under the process of my earlier application would produce two-compartment spherical capsules formed of three sheets of capsulating material 38, 39 and 40 (sheet 40 being shown in broken lines) with the two sheets 39 and 40 forming opposite hemispheres of the sphere and the sheet 38 forming the partition.
  • sheet 40 being shown in broken lines
  • the method of the instant invention can be carried out.
  • the final shape of the capsule depends upon the relative stresses in the sheets 38 and 39. If they are not preliminarily stressed at all, capsules of oblate spheroid shape result or if they are of different thicknesses, are stretched to a different degree, or if the two sheets incorporate a different amount of a Volatile substance, capsules of symmetrical ellipsoidal shapes may be produced. By making only these few changes this machine adapts itself as well to the carrying out of the method embodying the instant invention as do the mechanisms shown in Figures I and II.
  • Figures X, XI, XII and XIII illustrate a Way of carrying out the method of the instant invention employing a single die plate.
  • Figure X there is shown a simplified cross section of a die plate 43 in the upper surface of which are formed a plurality of die pockets 44. Each of the pockets 44 is connected through a duct 45 to an exhaust line 46. Each of the pockets 44 has a raised edge 41.
  • a sheet of gelatinous material 48 may be stretched across the top of the plate 43 (as shown in Figure VIII) and held in place by a clamping frame 49.
  • the first sheet of gelatin may be given a different internal stress or tendency to contract either in one direction (by stretching, for example) or in all directions in the ways explained.
  • suction is applied to the line 46 which depresses the lower sheet 43 into the pockets, as shown in Figure XI.
  • the pockets are then filled with material to be encapsulated and the second sheet of gelatin 5! is laid across the frame 43 (as shown in Figure XI) and clamped in place (as shown in Figure XII) by a clamping frame 5
  • the capsules are then sealed and severed from the web formed by the two sheets 48 and 50 either by rolling a roller over the surface of the upper sheet 50 or by squeezing a flat p1ate down on the upper sheet 50 which seals the two sheets together over the raised edges 41 and severs the hemispherical capsules thus formed from the remaining web of the two sheets 48 and '50 of the plastic capsulating material. During this operation suction is still maintained on the line 46 and the ducts 45. After the capsules have thus been formed they may be ejected from the pockets by admitting pressure to the pockets or otherw1se.
  • Figure XIV illustrates the shape of the pockets in either a die wheel or a die plate which may be employed to produce spherical capsules very easily in accordance with the instant invention.
  • Figure XIV shows a fragment of a die wheel (in which case it rotates in the direction of the arrow) or plate 52 in which are formed a plurality of semi-ellipsoidal pockets 53.
  • a raised edge 54 surrounds each of the pockets 53.
  • Figure XV there is shown in cross section a semi-ellipsoidal capsule formed from a pocketed sheet 55 of capsulating material and a fiat sheet '56 of capsulating material.
  • the pocketed sheet 55 is so treated that there is produced in it greater internal stress than that existing in the sheet 56 and thus, when the semiellipsoidal capsule shown in Figure XV is severed from the web of the sheets of capsulating material, the resulting equalization of the stresses produces the spherical capsule shown in Figure XVI.
  • Elongated ellipsoidal capsules also may be produced in the die pockets shown in Figure XIV by "using "two sheets of "capsulating material neither of which has been preliminarily stressed fo'r treated.
  • the two sheets have the same tendency to contract before the pocket forming sheet is pocketed and the resulting'capsule has a cross section similar to that shown in Figure V and an elevation similar to that shown in Figure VIII.
  • the shape of the finished capsule may be modified by treating the two sheets of capsulating material in different ways as explained above.
  • the method of the invention is directed generally toward encapsulating substances in symmetricalcapsules using only one die member;
  • the relative lengths of the major and minor axes of the ellipsoids and the relative proportions of the finished capsules can be controlled as explained by properly apportioning and directing the stresses which are created in the pocketed sheet of material so that in being equalized against the unstressed sheet of material they will modify and control the resulting shape of the capsule as desired.
  • a method of forming capsules of generally ellipsoidal form that comprises forming a pocket in a longitudinally stretched sheet of resilient capsulating material, filling the pocket thus formed with the substance to be encapsulated, laying a sheet of unstretched resilient capsulating material over the substance, sealing the two sheets of capsulating material around the edge of the pocket and cutting the capsule thus formed from the two sheets of capsulating material, whereby as the difierence in internal stress in the two sheets of capsulating material is equalized the capsule changes in shape to a symmetrical shape formed from matching and equal pockets in the two sheets of capsulating material.
  • a method of forming ellipsoidal capsules that comprises forming hemispherical pockets in a sheet of elastic material that is under a certain internal stress, filling the pockets with the substance to be encapsulated, laying a sheet of elastic pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substanceinto a symmetrical shape aroundthe substance.
  • A-method of forming spherical capsules that comprises forming semi-ellipsoidal pockets in a sheet of elastic material that is under a certain internal stress, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less internal stress over the substance, sealing the two sheets of elastic material together around the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substance into a symmetrical. shape around the substance.
  • a method of forming ellipsoidal capsules that comprises forming hemispherical pockets in a sheet of elastic material that is under tension in a direction transverse to the longer axis of the desired ellipsoidal capsules, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less tension over the substance, sealing the two sheets of elastic material together areund the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the difierent stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substance into a symmetrical shape around the substance.
  • a method of forming spherical capsules that comprises forming semi-ellipsoidal pockets in a sheet of elastic material that is under tension in a direction parallel to the longer axis of the semiellipsoidal pockets formed therein, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less internal stress over the substance, sealing the two sheets of elastic material together around the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic ma 7* terial pulls the two sheets of elastic material sealed around the substance into a symmetrical shape around the substance.
  • a method of forming symmetrical capsules that comprises forming a pocket in a sheet of elastic material that has been preliminarily stretched in one direction, filling the pocket with the substance to be encapsulated in a form that is capable of transmitting hydrostatic force, covering the substance with a sheet of elastic material that is under considerably less stress than the pocketed sheet of material, and sealing the two sheets of material together around the substance along the edge of the pocket, whereby the greater stressed pocketed material upon contracting bulges the less stressed covering material as the stresses in the two sheets of material tend to equalize.
  • a method of forming capsules of generally ellipsoidal form that comprises forming a pocket in a sheet of resilient capsulating material having a certain amount of longitudinal internal stress, filling the pocket with the substance to be encapsulated, covering the filled pocket with another sheet of resilient capsulating material having substantially less longitudinal stress than said first sheet of resilient capsulating material after being pocketed, sealing the edges of the two sheets of capsulating material around the substance and cutting the capsule thus formed from the sheets of capsulating material, the two sheets of capsulating material reacting physically one upon the other whereby the resulting capsule is substantially symmetrical in shape.
  • a method of forming capsules of generally ellipsoidal form that comprises stretching a sheet of resilient capsulating material in a longitudinal direction, forming a pocket in said longitudinally stretched sheet of capsulating material, filling the pocket with the substance to be encapsulated,

Description

ly 4, 1950 A. M. DONOFRIO 2,513,852
METHOD FOR ENCAPSULATING Filed Dec. 26, 1945 s Sheets-Sheet 2 FlgIX INVENTOR.
ALFONSO M. DONOFRIO July 4, 1950 A. M. DONOFRIO 2,513,852
' METHOD FOR ENCAFSULATING Filed Dec. 26, 1946 3 Sheets-Sheet 5 INVENTOR. ALFONSO M. DONOFR IO Patented July 4, 1950 UNITED STATES PATENT OFFICE;
METHOD FQR ENCAPSULATING- Alfonso M. Donofrio, Toledo, Ohio ApplicationDeeember 26, 1946;, SQrialNo. 718,527
8 Claims.
only onecapsule need. be taken to adminster two different. medicinal substances. The instant application is a further development of the method illustrated, in my above-mentioned co-pending application and may. make use of a portion of the mechanism disclosed therein.
While the earlier filed application disclosed a method of producing multi compartnient capsules, the instant application is directed towards a method of producing a single compartment symmetrical; capsule employing-only a portion of the mechanism disclosed in the earlier application.
The machines employed in the art of" encapsuliating prior to thisinvention produce spherical and ellipsoidal capsules through the use of coacting substantially hemispherical and semi-ellipsoidal dies. Insome prior art machines each die is cut in the periphery of a drumor rotating wheel and two such wheels are rotated toward each other with their peripheries contacting and the capsules are formed between the wheels. Forming a capsulein this manner requires that the two wheels be maintained in perfect register so that the sealing action around. the rims of the two, die pockets functions properly and operates to efiectivelyseal the-capsules as they are formed. In other, machinerythepockets are formed in 00- actin-g flat die plates and, again, the two pockets forming each capsule must carefully bemaintained in registration. This same requirement also is true of athird form of prior art device in which individual capsules are formed from the end of a filled tube of capsulating material by being pinched on the end of the tube. In order to maintain the two pockets of'all of these prior art machines in proper registration complex. gearing and timing mechanismsorguides and. slides must be employed.
It is an object of this invention to provide a method of encapsulating in which: symmetrical spherical and ellipsoidal capsulescan be produced from two sheetsof elastic material, only one of which needs be pocketed;
It is. another object of this. invention topmvide a method. of, producing asymmetrical spherical or ellipsoidalcapsulev using only one. pocket formed in a single die member, for example, a in ta in i wheele a single die p ate.
I: accomp sh the. ab ve objects. by th pratt ce of the method, which will b disclosed either on pecial. app ratus illu trated. n. the drawings... or on. other. apparatus. which is well kn w n. the prior art and, illustrated here merely in COJQIIQCP tion with he xplanation t method f." th invention- In the dra gs:
Figure I is, a schematic illustration ofa form of apparatus constituting a. part of the instant invention and on which the encapsulatingmethod of the instant invention can be carried out;
Figure II is a fragmentary vertical sectional view in greater detail and on a larger-scale of a portion of apparatus similar-to that illustrated-in Figure, I but embodying a modified die wheel.
Figure 111- is a fragmentaryview in elevation on an enlarged scale of several hemispherical die pockets such as might be employed inthe mechanism illustrated in Figure I.
Figure IV is a fragmentary verticai sectional view of a hemispherical capsule immediatelyaft er sealing but prior to severance from the-mate;- rial" which forms its walls.
Figure V is a vertical sectional view of onetype of ellipsoidal capsule manufactured in accordance with the method of this invention.
Figure VI is a plan View of the capsule illustrated' in Figure V.
Figure VII- is a vertical sectional viewof an;- other type of ellipsoidal capsulemanufactured in accordance with the method of the=invention.
Figure VIII is a plan view of the capsule illustrated in Figure VII;
Figure IX is a schematic illustration: of the apparatus disclosed in my earlier co-pending application and illustrates how this apparatus also may be employed in practicing the method offthe instantinvention.
Figure X is a simplified vertical sectionaliview of'a flat die plate such asthat known-in the prior art as employed; in manufacturing capsules in ac,-. corclance with the method" of: the; instant invention.
Figure XI is a fragmentaryvertical sectional view-0n anenlargedscaleof the capsulating plate shown in Figure X and illustrating one step. in the, method of the instant inventionas practiced on this type of, apparatus.
Figure XIII is a view similar to Figures X and XI but illustrating a still later step in the method embodying the instant invention.
Figure XIV is a view similar to Figure III but of semi-ellipsoidal pockets which may be employed in accordance with the method of the instant invention for the production of spherical capsules.
Figure 'XV is a fragmentary vertical sectional view on an enlarged scale of a semi-ellipsoidal capsule such as would be formed in the semiellipsoidal pockets illustrated in Figure XIV and shown before it is severed from the main'strips of capsulating material which form its walls.
Figure XVI is a verticalsectional view of a spherical capsule which is the product resulting from the formation of the semi-ellipsoidal cap sule shown in Figure XV.
The apparatus schematically illustrated I in Figure I is designed for practicing the method of the invention in the production of symmetrical ellipsoidal capsules such as that shown in FigureV.
As explained above, in order to produce a symmetrical ellipsoidal capsule it has been neces- [sary in the past to employ two co-acting die members. In accordance with the instant invention I am able to eliminate one of these two co-acting die members and, therefore to elimihate the necessity for maintaining any of the parts of the machinery on which the method constituting the invention is carried out in perfect alignment or registration with other parts of the machinery. Furthermore, the elimination of one of the die members simplifies the mametering means a charge of the substance to be encapsulated is 'deposited in the pocket beneath the filling shoe 8.
The die wheel continues to rotate moving the filled pocket in the gelatinous material beneath a rotating smooth surface sealing drum II around which is fed a second sheet I2 of gelatinous material. The sealing drum II is power driven and mounted onf an adjustable bracket i3 so that the spacing between its periphery and the periphery of the die wheel I can be the practice of the method of the invention can I) I be carried out there is shown in Figure I a single die wheel I which is providedwith a plurality of hemispherical die pockets 2 formed in its periphery. The die wheel 11 rotates at a substantially fixed rate of speed on a central hub 3.
stance which is soluble in the stomach or intestinal fluids. The sheet passes over one or more feedin rolls 5 and thence up and over the peripheral surface of the die wheel I. It will be observed that each of the hemispherical pockets 2 has a central port 6 leading inwardly to the inner surface of the die wheel 2 adjacent the outer surface of the hub 3. The hub 3 is ported and has a circumferentially extending slot 7 which is connected with a vacuum line. The circumferentiall extending slot l is in line with the inner ends of the ports 6 and extends around the periphery of the hub 3 a sufiicient distance so that suction is maintained on each of the die pockets 2 for a period during the rotation of the die wheel I. The sheet '4 of elastic material contacts the surface of the die wheel i and as each of the pockets 2 over which it extends approaches the location of a filling shoe 8 its port 6 registers with the slot and vacuum is applied to the die pocket 2. This depresses the material overlying the die pocket forming a hemispherical pocket in this material itself. As the die wheel continues to rotate the depressed hemispherical pocket passes beneath the filling shoe 8 which is formed on thelow'er' end of a tube 9 connected to a source of filling substance l0. By a--pump-=or--other adjusted to provide sufiicient space between the wheel and drum to permit the two sheets l and 52 of gelatinous material to pass between the two surfaces but to seal them firmly around the edge of each of the die pockets 2. Each of the die pockets 2 has a lip i l to provide a raised surface against which the two sheets of gelatinous material can be sealed.
As the die wheel I continues to rotate the ports 6 of each of the die ockets 2 pass beyond the limits of the slot l and suction no longer is applied to the pockets 2. Shortly thereafter each of the formed hemispherical capsules is severed from the sheet of material by passing beneath the smooth surface of. a severing drum 15 which is mounted onan adjustable bracket It so thatit can be properly spaced with respect to the die wheel l to pinch off the two sheets 4 and 12 of gelatinous material against the lip I l of each of the die pockets 2.
At this point in the proces the capsules are hemispherical in shape, as shown in Figure IV, and are really severed from the gelatinous material, being maintained in a web formed from the two sheets 4 and i2 ofgelatinous material simply by the tackine'ss of the gelatin. As the die wheel I rotates further each of the ports B-of the die pockets comes in line with a pressure; port I! in the hub 3 which ejects each hemispherical capsule from its die pocket.
The operation of the mechanism shown, in FigureI which has been described illustrates the method of the invention for the production of ellipsoidal capsules from two sheets of gelatin or other elastic material which are identical insofar as their elastic and internal physical characteristics are concerned. If the two sheets 4 and I2 are fed into the die wheel I as explained and the only stress created in either of the sheets -When the suction on the pocket in the die wheel is released the substance in the formed capsule transmits the hydrostatic pressure created by the stretched sheet 4 to the unstretched sheet l2 and,
if the sheets are substantially identical, the resulting deformation of the sheet I2 will be substantially symmetrical with the deformation of the sheet 4. Figure V shows a transverse sectional view of the resulting capsule and Figure VI shows a plan view of this same capsule.
The final form of the capsules produced in accordance with the methods of the invention can be modified at will by changing the physical condition or characteristics of the two sheets of gelatin or other plastic material which form, respectively, the pocket and..the.. c.losure-iorthfi pocket; If, for example, the sheet of. plastic material which isto be pocketed is stretched in acircumferential direction with respect tothe die wheel, the resulting capsules will be oval, i. e. shaped like an ellipsoid of revolution which is rotated about its longer axis. Such a capsule is illustrated in Figures VII and VIII. In order to produce this capsule by longitudinally stretching one sheet of material, it is necessary only to revolve the two feeding rolls at a constant but slower speed than the die wheel I. This results in stretching the web of material between the feedingrolls 5' and the die wheel I so that when it is pocketed greater stress exists in a circumferential direction than exists in an axial direction (both with respect to the die wheel i). Thus, when the capsule is ejected from the die pocket and severed from the connecting web of material it contracts. to a greater degree in one direction than it does in the other, thus forming an oval capsule. The preliminary stretching plus the stretching that occurs during pocketing conditions the pocketed section for greater total contraction and the resulting greater hydrostatic pressure transmitted by the contents bulges the unstressed sheet I2 to a greater degree transversely to the plane of sealing of the two sheets than if neither of the sheets of gelatin has been preliminarily stretched.
Other ways of providing a higher degree of stress in the sheet of material to be pocketed may be employed. For example, the sheet of gelatin or other capsulating mate-rial which is to be pocketed may be thicker than the sheet which is to close the pockets. If this is true, then when the capsules are released by the die wheel the thicker sheet forming the pocket, which has a, tendency to contract, is stronger than the resisting sheet which close-s the pocket. Under these conditions it is possible to produce a capsule the shape of which is somewhere intermediate the two shapes shown in Figures V and VII. Theoretically, under these conditions it would be possible to ro. duce a spherical capsule from the hemispherical capsule shown in Figure IV but, as later will be explained, the method of the invention can be used to produce spherical capsules very simply and without requiring the great differential in stress in the two sheets of gelatin.
If the two sheets of gelatin or other capsulating.
material have different percentages of drying agent, or of solvent, or of moisture, one sheet will tend to dry and shrink more rapidly than the other sheet. This sheet with the greater tendency to shrink and dry is pocketed, and when the capsule is sealed and released the shrinking of the pocketed sheet distends the closing sheet until equilibrium is reached between the forces exerted on the substance in the capsule.
By controlling the relative tendency to contract of the two sheets of capsulating material the resulting shape of the finished capsules can be predetermined and the position of the parting line between the two halves of the capsules can be accurately and positively controlled to fall directly on the center plane of the capsule. However, even if this careful and positive control is not fully maintained almost symmetrical capsules still result inasmuch as the sheets of gelatin tend to approach a spherical shape because a spherical shape is the smallest which will contain a given volume of a substance capable of transmitting hydrostatic pressure. Such variations from spherical shape as are desired are accomplished; by controlling the extent to and the directions in which the capsule walls are conditioned to contract. I v
The instant invention contemplates the formation of symmetrical ellipsoidal capsules-from. two. sheets ofgelatin only one of which need bepocke eted or dimpled in contrast. to prior art methods and machines which, in order to form sym-.- metrical ellipsoidal capsules, pocketed or dimpled both sheets of capsulating material. The. terms ellipsoidal and generally ellipsoidal are usedto describe all shapes falling generally within their broadest meanings and includenotonly ellipsoids of revolution on either their shorter or their longer axesbut also oblate spheroids, ovals and spheres. which are but modifications. of. the same general form.
The-subsequent action of the apparatus shown in Figure I is very simple consisting only of passing the web of severed but still retained capsules around apair of stripping rolls. [8. which cause the now ellipsoidal capsules to. be pushed, out of the web and; carry the pierced. web. away to be returned to,v the gelatin forming machine. The capsules drop-into a pan. 19. for cooling and hardening, and arethen washed. to remove any. objectionable film.
In Figure II a more detailed view is. shown of a modified form. of die wheel. which is. designed to permit thevolumetrical content of thecapsules to be varied at will. In this structure a, die wheel 20 is provided with aplurality of cylindrical openings 2| extending radially through its outer surface. Each of theopenings 2| is surrounded by. an annular raised lip 22 identical with the lip M- formed around the hemispherical pockets in the structure shown in FigureI. Each of the openings 21 is connected through a port 23 to the interior of the die wheel 20 adjacent the periphery: of its hub 24.
A plug 25 is variably positionable in each of the openings 2L Each of the plugs 251s a short longitudinallybored cylinder which: hasa longitudinally extending rack 26 cut in one side. The rack 26 meshes with an elongated axially extending pinion 21 which is rotatable withinan axially extending: bore 28' in the die wheel 26. The pinion 21 can, therefore, extend throughout the length of the diewheel 20 meshing with racks cut-on plugs in alternate circumferential rows of openings 2i. The pinion 21' and all other pinions like it may extend out one end of the die wheel 20 where they can be individually adjusted or all can be driven in unison by a single gear rotatable with respect to the die wheel 28- or by other suitable means (not shown). By. thus controlling the radial position of the plugs 25 the depth towhich a sheet 29 of gelatin isdrawn into the openings 2| and the internal volume of the. capsules to be formedv can be controlled.
The operation of. the apparatus shown in Figure II is identical with the operation of the apparatus shown in Figure I with the exception already mentioned that the volume of the capsules produced thereby can be varied at will. Figure II also clearly illustrates the construction of a filling shoe 30 formed on the end of a tube 3! in communication with a supply of substance to be encapsulated. The bottom of the filling shoe 3!] is provided with a beveled flange 32 which has a vertical edge considerably thicker at its forward end than at its rear end and which thus maintains a scraping action over the surface of the sheet of gelatin on which it bears and also maintains a seal around each of the pockets formed in this sheet of gelatin while each pocket is being filled. This is particularly advantageous when the substance to be. encapsulated is granular or pasty which, if permitted to remain on the portions of the sheet 29 of geltain overlying the circular lips 22, might prevent the effective sealing of the sheet 29 of geltain to a second sheet 33 of gelatin which converges with the sheet 29-beneath a sealing drum 34. This illustrates another advantage accruing from the elimination of the second die wheel of the prior art because only one sheet of gelatin need be so carefully cleaned to prevent failures in sealingwhile two cleaning controls are required when both sheets of gelatin are pocketed and filled.
= Also it can be more clearly seen in Figure II how theraised lips 22 around each of the openings 2l-provide a relieved space 35 beneath the two sheets of gelatin 29 and 33 between adjacent openings 2|. When the capsules are out or severed from the sheet of gelatin the remaining web portion of the sheets of gelatin is squeezed into these relieved spaces 35 to permit the severing action to take place against the lips 22.
Figure III is a fragmentary view in elevation of a portion of the die wheel, showing how each lip l4 surrounds its pocket 2. The wheel moves in the direction of the arrow in this figure.
Figure IX illustrates apparatus which was disclosed in my earlier application for the practice of a method of producing multi-compartment spherical capsules. This apparatus is shown operating under the method of the present invention to produce symmetrical ellipsoidal capsules from two sheets of gelatin only one of which is pocketed. In this machine two coacting die rolls 36 and 31 are driven in synchronism and under the process of my earlier application would produce two-compartment spherical capsules formed of three sheets of capsulating material 38, 39 and 40 (sheet 40 being shown in broken lines) with the two sheets 39 and 40 forming opposite hemispheres of the sphere and the sheet 38 forming the partition. Through the use of this same machine and employing only two sheets of capsulating material, for example, No. 38 and 39 the method of the instant invention can be carried out. As in the employment of the machine shown in Figure I, the final shape of the capsule depends upon the relative stresses in the sheets 38 and 39. If they are not preliminarily stressed at all, capsules of oblate spheroid shape result or if they are of different thicknesses, are stretched to a different degree, or if the two sheets incorporate a different amount of a Volatile substance, capsules of symmetrical ellipsoidal shapes may be produced. By making only these few changes this machine adapts itself as well to the carrying out of the method embodying the instant invention as do the mechanisms shown in Figures I and II. In the mechanism illustrated in Figure IX, in addition to the co-acting die wheels 36 and 31, there also are provided a pair of dimpling rollers 4| and 42 which force the pocket forming sheets of gelatinous material into the pockets in the die wheels. This may be advantageous when very thin gelatin is employed since thethin gelatin might not withstand the suction without rupturing.
' Thus, by the use of the one apparatus shown in Figure IX both the method of the prior application and the method of the present application can be performed to produce either multi.
8v compartment spherical capsules or single compartment, symmetrical substantially ellipsoidal capsules.
Figures X, XI, XII and XIII illustrate a Way of carrying out the method of the instant invention employing a single die plate. In Figure X there is shown a simplified cross section of a die plate 43 in the upper surface of which are formed a plurality of die pockets 44. Each of the pockets 44 is connected through a duct 45 to an exhaust line 46. Each of the pockets 44 has a raised edge 41. To produce symmetrical ellipsoidal capsules in accordance with the practice of the instant invention a sheet of gelatinous material 48 may be stretched across the top of the plate 43 (as shown in Figure VIII) and held in place by a clamping frame 49.
Depending upon the shape of the finished capsules that is desired, the first sheet of gelatin, or other material, may be given a different internal stress or tendency to contract either in one direction (by stretching, for example) or in all directions in the ways explained. After the sheet 43 of gelatin is clamped suction is applied to the line 46 which depresses the lower sheet 43 into the pockets, as shown in Figure XI. The pockets are then filled with material to be encapsulated and the second sheet of gelatin 5!) is laid across the frame 43 (as shown in Figure XI) and clamped in place (as shown in Figure XII) by a clamping frame 5|.
The capsules are then sealed and severed from the web formed by the two sheets 48 and 50 either by rolling a roller over the surface of the upper sheet 50 or by squeezing a flat p1ate down on the upper sheet 50 which seals the two sheets together over the raised edges 41 and severs the hemispherical capsules thus formed from the remaining web of the two sheets 48 and '50 of the plastic capsulating material. During this operation suction is still maintained on the line 46 and the ducts 45. After the capsules have thus been formed they may be ejected from the pockets by admitting pressure to the pockets or otherw1se.
Upon ejection the differential stresses existing in the two sheets of capsulating material 48 and 50 equalize and deform the fiat sides of the hemispherical capsules to produce symmetrical substantially ellipsoidal capsules, of a shape depending upon the relative tendency to contract of the two sheets.
Figure XIV illustrates the shape of the pockets in either a die wheel or a die plate which may be employed to produce spherical capsules very easily in accordance with the instant invention. Figure XIV shows a fragment of a die wheel (in which case it rotates in the direction of the arrow) or plate 52 in which are formed a plurality of semi-ellipsoidal pockets 53. A raised edge 54 surrounds each of the pockets 53. In Figure XV there is shown in cross section a semi-ellipsoidal capsule formed from a pocketed sheet 55 of capsulating material and a fiat sheet '56 of capsulating material. In accordance with the invention the pocketed sheet 55 is so treated that there is produced in it greater internal stress than that existing in the sheet 56 and thus, when the semiellipsoidal capsule shown in Figure XV is severed from the web of the sheets of capsulating material, the resulting equalization of the stresses produces the spherical capsule shown in Figure XVI.
Elongated ellipsoidal capsules also may be produced in the die pockets shown in Figure XIV by "using "two sheets of "capsulating material neither of which has been preliminarily stressed fo'r treated. In this case, the two sheets have the same tendency to contract before the pocket forming sheet is pocketed and the resulting'capsule has a cross section similar to that shown in Figure V and an elevation similar to that shown in Figure VIII. Again, the shape of the finished capsule may be modified by treating the two sheets of capsulating material in different ways as explained above.
The method of the invention is directed generally toward encapsulating substances in symmetricalcapsules using only one die member; As
"has been explained the shape of the resulting symmetrical capsules can be modified from that of 'a thin oblate spheroid to an almost perfect sphere by the manner in which the sheet of material to be pocketed is treated. Fundamentally, the only necessity to produce a symmetrical capsule from a single pocketed sheet of gelatin or other capsulating material and a flat sheet of a similar material is to fill the pocket or dimple with the substance to be encapsulated, to seal the two sheets of material together tightly around the edges of the pocket and to release the semi or half capsule thus formed from all restraint. The subsequent equalization of the stresses in the two sheets of plastic material produces the symmetrical ellipsoidal form. The relative lengths of the major and minor axes of the ellipsoids and the relative proportions of the finished capsules can be controlled as explained by properly apportioning and directing the stresses which are created in the pocketed sheet of material so that in being equalized against the unstressed sheet of material they will modify and control the resulting shape of the capsule as desired.
By the practice of this invention highly attractive commercially acceptable capsules can be manufactured with considerably more rapidity and facility and considerably less expense than by the processes and apparatus disclosed in the prior art.
The method of the instant invention can be practiced not only on the several forms of apparatus illustrated in the drawings but also on many other forms of apparatus which are known in the art or which might be devised and old apparatus as well as the new apparatus herein disclosed may be modified in various ways to produce resulting modifications in the appearance and content of the capsules produced in accordance with this invention.
Having described the invention, I claim:
1. A method of forming capsules of generally ellipsoidal form that comprises forming a pocket in a longitudinally stretched sheet of resilient capsulating material, filling the pocket thus formed with the substance to be encapsulated, laying a sheet of unstretched resilient capsulating material over the substance, sealing the two sheets of capsulating material around the edge of the pocket and cutting the capsule thus formed from the two sheets of capsulating material, whereby as the difierence in internal stress in the two sheets of capsulating material is equalized the capsule changes in shape to a symmetrical shape formed from matching and equal pockets in the two sheets of capsulating material.
2. A method of forming ellipsoidal capsules that comprises forming hemispherical pockets in a sheet of elastic material that is under a certain internal stress, filling the pockets with the substance to be encapsulated, laying a sheet of elastic pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substanceinto a symmetrical shape aroundthe substance.
=3. A-method of forming spherical capsules that comprises forming semi-ellipsoidal pockets in a sheet of elastic material that is under a certain internal stress, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less internal stress over the substance, sealing the two sheets of elastic material together around the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substance into a symmetrical. shape around the substance.
4. A method of forming ellipsoidal capsules that comprises forming hemispherical pockets in a sheet of elastic material that is under tension in a direction transverse to the longer axis of the desired ellipsoidal capsules, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less tension over the substance, sealing the two sheets of elastic material together areund the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the difierent stresses existing in the two sheets of elastic material pulls the two sheets of elastic material sealed around the substance into a symmetrical shape around the substance.
5. A method of forming spherical capsules that comprises forming semi-ellipsoidal pockets in a sheet of elastic material that is under tension in a direction parallel to the longer axis of the semiellipsoidal pockets formed therein, filling the pockets with the substance to be encapsulated, laying a sheet of elastic material that is under much less internal stress over the substance, sealing the two sheets of elastic material together around the edges of the pockets and cutting the capsules thus formed from the sheets of elastic material whereby the equalization of the different stresses existing in the two sheets of elastic ma 7* terial pulls the two sheets of elastic material sealed around the substance into a symmetrical shape around the substance.
6. A method of forming symmetrical capsules that comprises forming a pocket in a sheet of elastic material that has been preliminarily stretched in one direction, filling the pocket with the substance to be encapsulated in a form that is capable of transmitting hydrostatic force, covering the substance with a sheet of elastic material that is under considerably less stress than the pocketed sheet of material, and sealing the two sheets of material together around the substance along the edge of the pocket, whereby the greater stressed pocketed material upon contracting bulges the less stressed covering material as the stresses in the two sheets of material tend to equalize.
7. A method of forming capsules of generally ellipsoidal form that comprises forming a pocket in a sheet of resilient capsulating material having a certain amount of longitudinal internal stress, filling the pocket with the substance to be encapsulated, covering the filled pocket with another sheet of resilient capsulating material having substantially less longitudinal stress than said first sheet of resilient capsulating material after being pocketed, sealing the edges of the two sheets of capsulating material around the substance and cutting the capsule thus formed from the sheets of capsulating material, the two sheets of capsulating material reacting physically one upon the other whereby the resulting capsule is substantially symmetrical in shape.
'8. A method of forming capsules of generally ellipsoidal form that comprises stretching a sheet of resilient capsulating material in a longitudinal direction, forming a pocket in said longitudinally stretched sheet of capsulating material, filling the pocket with the substance to be encapsulated,
covering the filled pocket with an unstretched REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 564,340 Reed July 21, 1896 1,151,063 Sweet Aug. 24, 1915 1,531,504 Roberts Mar. 31, 1925 1,610,974 Sarna Dec. 14,1926 2,152,101 Scherer Mar. 28, 1939 2,219,578 Pittenger Oct. 29, 1940 2,296,294 Scherer Sept. 22, 1942 2,323,581 Weckesser July 6, 1943
US718527A 1946-12-26 1946-12-26 Method for encapsulating Expired - Lifetime US2513852A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US718527A US2513852A (en) 1946-12-26 1946-12-26 Method for encapsulating
US126026A US2663130A (en) 1946-12-26 1949-11-07 Apparatus for producing symmetrical generally ellipsoidal capsules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US718527A US2513852A (en) 1946-12-26 1946-12-26 Method for encapsulating

Publications (1)

Publication Number Publication Date
US2513852A true US2513852A (en) 1950-07-04

Family

ID=24886405

Family Applications (1)

Application Number Title Priority Date Filing Date
US718527A Expired - Lifetime US2513852A (en) 1946-12-26 1946-12-26 Method for encapsulating

Country Status (1)

Country Link
US (1) US2513852A (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2624164A (en) * 1950-11-16 1953-01-06 American Cyanamid Co Method of and apparatus for encapsulating liquid and semiliquid substances and the like
US2674073A (en) * 1950-12-05 1954-04-06 American Cyanamid Co Relieved nonskid seal roll and method of use
US2690038A (en) * 1950-07-19 1954-09-28 American Cyanamid Co Liquid-filled capsule forming method and apparatus
US2736656A (en) * 1952-02-11 1956-02-28 Kraft Foods Co Method of packaging
US2738606A (en) * 1953-04-03 1956-03-20 Palmer Pann Corp Artists' palette
US2775080A (en) * 1950-05-26 1956-12-25 American Cyanamid Co Method of forming powder-and-liquid filled capsules
US2775081A (en) * 1953-06-19 1956-12-25 American Cyanamid Co High density encapsulation
US2775084A (en) * 1948-11-26 1956-12-25 American Cyanamid Co Apparatus for filling powder in capsules
DE958187C (en) * 1950-07-19 1957-02-14 American Cyanamid Co Method and device for producing filled plastic capsules
US2799048A (en) * 1954-12-13 1957-07-16 American Cyanamid Co Die roll for encapsulating machine
US2809392A (en) * 1954-06-15 1957-10-15 Toscony Fabrics Inc Apparatus for embossing thermoplastic film
US2830396A (en) * 1953-03-19 1958-04-15 Gowland & Gowland Integral paint apparatus
DE1034094B (en) * 1950-04-05 1958-07-10 Dorothy Frances Pickering Process and machine for the production of flexible, filled and hermetically sealed containers from thermally deformable materials
US2902718A (en) * 1956-02-21 1959-09-08 Martelli Guido Rotary machine for the automatic vacuum forming of continuous thermoplastic bands
US2956710A (en) * 1956-12-17 1960-10-18 Morton Salt Co Disposable shaker packet
US3075330A (en) * 1959-11-20 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
US3075329A (en) * 1959-11-16 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
DE976462C (en) * 1953-03-13 1963-09-19 Hoechst Ag Method and device for the continuous production of a large number of individual packs made of plastic films and filled with liquid to pasty substances
US3235638A (en) * 1961-09-07 1966-02-15 Hedwin Corp Method for forming plastic containers
US3851571A (en) * 1972-08-28 1974-12-03 Nichols Prod Inc Apparatus and method for encapsulating eggs
FR2303716A1 (en) * 1975-03-10 1976-10-08 Leer Koninklijke Emballage METHOD AND DEVICE FOR PACKAGING AND DISTRIBUTION OF MEDICINES
US4375146A (en) * 1979-06-11 1983-03-01 International Automated Machinery, Inc. Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US4404787A (en) * 1980-03-11 1983-09-20 Baker Perkins Holdings Limited Density control system for tea packaging apparatus
US4447373A (en) * 1982-02-16 1984-05-08 The Procter & Gamble Company Process for making filled articles from polymeric material
US5146730A (en) * 1989-09-20 1992-09-15 Banner Gelatin Products Corp. Film-enrobed unitary-core medicament and the like
US5488816A (en) * 1994-07-21 1996-02-06 Boehringer Mannheim Corporation Method and apparatus for manufacturing a coagulation assay device in a continuous manner
WO1996019963A1 (en) * 1994-12-23 1996-07-04 Basf Aktiengesellschaft Method of producing coated tablets
US5542234A (en) * 1988-09-01 1996-08-06 Sara Lee Corporation Improved method of providing resealable containers and matching lockable lids
US5682733A (en) * 1996-05-09 1997-11-04 Perrone; Aldo Apparatus for enrobing tablets
US6167684B1 (en) 1999-01-29 2001-01-02 Aldo Perrone Feeding mechanism for machine for enrobing tablets
US6209296B1 (en) 1998-04-13 2001-04-03 Aldo Perrone Machine for enrobing tablets with gelatin and die blocks for use therein
US6482516B1 (en) * 1993-07-20 2002-11-19 Banner Pharmacaps, Inc. Enrobed tablet
US20040137040A1 (en) * 2001-04-24 2004-07-15 Nogami Ei Ji Orally administered agent and an orally administered agent/supporting substrate complex
EP1504994A2 (en) * 2000-11-27 2005-02-09 The Procter & Gamble Company Process for making a water-soluble pouch
US20050034428A1 (en) * 2003-07-29 2005-02-17 Glenn Davis Tablet encapsulating machine
US20070009645A1 (en) * 2005-07-05 2007-01-11 Holzer Botho K M Eggspooner
US20070141152A1 (en) * 2004-03-31 2007-06-21 Lintec Corporation Orally administered pharmaceutical composition
US20070218127A1 (en) * 2004-06-04 2007-09-20 Bio Progress Technology Limited Capsules Derived From Asymmetrical Production
US20100112015A1 (en) * 2001-04-24 2010-05-06 Lintec Corporation Orally administered agent and an orally administered agent/supporting substrate complex
US20110174435A1 (en) * 2008-10-02 2011-07-21 Bruce Malcolm Peterson Microwell Sampling Tape Sealing Apparatus and Methods
US8357647B2 (en) 2000-11-27 2013-01-22 The Procter & Gamble Company Dishwashing method
WO2014116911A1 (en) * 2013-01-24 2014-07-31 The Procter & Gamble Company Process for making personal care articles
US20150336692A1 (en) * 2014-05-21 2015-11-26 The Procter & Gamble Company Methods and systems for dispensing a composition
US20150336691A1 (en) * 2012-06-23 2015-11-26 Rideau Machinery Inc. Apparatus and method for continuous motion rotatable forming of soluble pouches
WO2017062411A3 (en) * 2015-10-07 2017-06-22 Cloud Packaging Solutions, LLC Apparatus and method for forming a pouch
CN112549625A (en) * 2020-12-22 2021-03-26 新乡市常乐制药有限责任公司 Full-automatic shaping pelleter of sildenafil citrate piece production usefulness
US10974412B2 (en) 2016-11-15 2021-04-13 Cloud Packaging Solutions Llc Machine for cutting pouches with shaped perimeter edge, method and pouch
US11401055B2 (en) * 2018-06-22 2022-08-02 Church & Dwight Co., Inc. System and method for filling a chambered package
US11440692B2 (en) 2020-02-20 2022-09-13 Mespack Cloud, Llc Patterned cut pouch forming machine, and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US564340A (en) * 1896-07-21 Capsule-forming device
US1151063A (en) * 1914-05-09 1915-08-24 Interlocking Safety Block Machine Company Molding-machine.
US1531504A (en) * 1921-07-11 1925-03-31 Paramount Rubber Cons Inc Process of making articles of celluloid and similar material
US1610974A (en) * 1925-08-24 1926-12-14 Sarna John Tile mold
US2152101A (en) * 1935-10-28 1939-03-28 Robert P Scherer Method and apparatus for making capsules by submerged filling action
US2219578A (en) * 1936-12-19 1940-10-29 Sharp & Dohme Inc Manufacture of medicinal capsules
US2296294A (en) * 1935-10-08 1942-09-22 Robert P Scherer Capsule stripping apparatus
US2323581A (en) * 1940-08-12 1943-07-06 C E Jamieson & Company Method and apparatus for capsulating liquids

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US564340A (en) * 1896-07-21 Capsule-forming device
US1151063A (en) * 1914-05-09 1915-08-24 Interlocking Safety Block Machine Company Molding-machine.
US1531504A (en) * 1921-07-11 1925-03-31 Paramount Rubber Cons Inc Process of making articles of celluloid and similar material
US1610974A (en) * 1925-08-24 1926-12-14 Sarna John Tile mold
US2296294A (en) * 1935-10-08 1942-09-22 Robert P Scherer Capsule stripping apparatus
US2152101A (en) * 1935-10-28 1939-03-28 Robert P Scherer Method and apparatus for making capsules by submerged filling action
US2219578A (en) * 1936-12-19 1940-10-29 Sharp & Dohme Inc Manufacture of medicinal capsules
US2323581A (en) * 1940-08-12 1943-07-06 C E Jamieson & Company Method and apparatus for capsulating liquids

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775084A (en) * 1948-11-26 1956-12-25 American Cyanamid Co Apparatus for filling powder in capsules
DE1034094B (en) * 1950-04-05 1958-07-10 Dorothy Frances Pickering Process and machine for the production of flexible, filled and hermetically sealed containers from thermally deformable materials
US2775080A (en) * 1950-05-26 1956-12-25 American Cyanamid Co Method of forming powder-and-liquid filled capsules
US2690038A (en) * 1950-07-19 1954-09-28 American Cyanamid Co Liquid-filled capsule forming method and apparatus
DE958187C (en) * 1950-07-19 1957-02-14 American Cyanamid Co Method and device for producing filled plastic capsules
US2624164A (en) * 1950-11-16 1953-01-06 American Cyanamid Co Method of and apparatus for encapsulating liquid and semiliquid substances and the like
US2674073A (en) * 1950-12-05 1954-04-06 American Cyanamid Co Relieved nonskid seal roll and method of use
US2736656A (en) * 1952-02-11 1956-02-28 Kraft Foods Co Method of packaging
DE976462C (en) * 1953-03-13 1963-09-19 Hoechst Ag Method and device for the continuous production of a large number of individual packs made of plastic films and filled with liquid to pasty substances
US2830396A (en) * 1953-03-19 1958-04-15 Gowland & Gowland Integral paint apparatus
US2738606A (en) * 1953-04-03 1956-03-20 Palmer Pann Corp Artists' palette
US2775081A (en) * 1953-06-19 1956-12-25 American Cyanamid Co High density encapsulation
US2809392A (en) * 1954-06-15 1957-10-15 Toscony Fabrics Inc Apparatus for embossing thermoplastic film
US2799048A (en) * 1954-12-13 1957-07-16 American Cyanamid Co Die roll for encapsulating machine
US2902718A (en) * 1956-02-21 1959-09-08 Martelli Guido Rotary machine for the automatic vacuum forming of continuous thermoplastic bands
US2956710A (en) * 1956-12-17 1960-10-18 Morton Salt Co Disposable shaker packet
US3075329A (en) * 1959-11-16 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
US3075330A (en) * 1959-11-20 1963-01-29 Union Bag Camp Paper Corp Apparatus for packaging articles
US3235638A (en) * 1961-09-07 1966-02-15 Hedwin Corp Method for forming plastic containers
US3851571A (en) * 1972-08-28 1974-12-03 Nichols Prod Inc Apparatus and method for encapsulating eggs
FR2303716A1 (en) * 1975-03-10 1976-10-08 Leer Koninklijke Emballage METHOD AND DEVICE FOR PACKAGING AND DISTRIBUTION OF MEDICINES
US4375146A (en) * 1979-06-11 1983-03-01 International Automated Machinery, Inc. Continuous rotary machine and method for forming, filling, and sealing package of laminated sheet material
US4404787A (en) * 1980-03-11 1983-09-20 Baker Perkins Holdings Limited Density control system for tea packaging apparatus
US4447373A (en) * 1982-02-16 1984-05-08 The Procter & Gamble Company Process for making filled articles from polymeric material
US5542234A (en) * 1988-09-01 1996-08-06 Sara Lee Corporation Improved method of providing resealable containers and matching lockable lids
US5146730A (en) * 1989-09-20 1992-09-15 Banner Gelatin Products Corp. Film-enrobed unitary-core medicament and the like
US6482516B1 (en) * 1993-07-20 2002-11-19 Banner Pharmacaps, Inc. Enrobed tablet
US5488816A (en) * 1994-07-21 1996-02-06 Boehringer Mannheim Corporation Method and apparatus for manufacturing a coagulation assay device in a continuous manner
WO1996003318A1 (en) * 1994-07-21 1996-02-08 Boehringer Mannheim Corporation Apparatus and continuous process for making coagulation assay device
WO1996019963A1 (en) * 1994-12-23 1996-07-04 Basf Aktiengesellschaft Method of producing coated tablets
US5897910A (en) * 1994-12-23 1999-04-27 Basf Aktiengesellschaft Production of covered tablets
CN1113638C (en) * 1994-12-23 2003-07-09 巴斯福股份公司 Method for producing coated tablets
AU696878B2 (en) * 1994-12-23 1998-09-17 Basf Aktiengesellschaft The production of covered tablets
US5682733A (en) * 1996-05-09 1997-11-04 Perrone; Aldo Apparatus for enrobing tablets
US6209296B1 (en) 1998-04-13 2001-04-03 Aldo Perrone Machine for enrobing tablets with gelatin and die blocks for use therein
US6167684B1 (en) 1999-01-29 2001-01-02 Aldo Perrone Feeding mechanism for machine for enrobing tablets
EP1504994A3 (en) * 2000-11-27 2005-06-08 The Procter & Gamble Company Process for making a water-soluble pouch
US8357647B2 (en) 2000-11-27 2013-01-22 The Procter & Gamble Company Dishwashing method
EP1504994A2 (en) * 2000-11-27 2005-02-09 The Procter & Gamble Company Process for making a water-soluble pouch
US20080254102A9 (en) * 2001-04-24 2008-10-16 Eiji Nogami Orally administered agent and an orally administered agent/supporting substrate complex
US20100112015A1 (en) * 2001-04-24 2010-05-06 Lintec Corporation Orally administered agent and an orally administered agent/supporting substrate complex
US20040137040A1 (en) * 2001-04-24 2004-07-15 Nogami Ei Ji Orally administered agent and an orally administered agent/supporting substrate complex
US8268333B2 (en) 2001-04-24 2012-09-18 Lintec Corporation Orally administered agent and an orally administered agent/supporting substrate complex
US20050034428A1 (en) * 2003-07-29 2005-02-17 Glenn Davis Tablet encapsulating machine
US7228676B2 (en) 2003-07-29 2007-06-12 L. Perrigo Company Tablet encapsulating machine
AU2005230752B2 (en) * 2004-03-31 2010-08-19 Lintec Corporation Preparation for oral administration
US20070141152A1 (en) * 2004-03-31 2007-06-21 Lintec Corporation Orally administered pharmaceutical composition
US20070218127A1 (en) * 2004-06-04 2007-09-20 Bio Progress Technology Limited Capsules Derived From Asymmetrical Production
US20070009645A1 (en) * 2005-07-05 2007-01-11 Holzer Botho K M Eggspooner
US20110174435A1 (en) * 2008-10-02 2011-07-21 Bruce Malcolm Peterson Microwell Sampling Tape Sealing Apparatus and Methods
US20150336691A1 (en) * 2012-06-23 2015-11-26 Rideau Machinery Inc. Apparatus and method for continuous motion rotatable forming of soluble pouches
CN104955733A (en) * 2013-01-24 2015-09-30 宝洁公司 Process for making personal care articles
WO2014116911A1 (en) * 2013-01-24 2014-07-31 The Procter & Gamble Company Process for making personal care articles
US20150336692A1 (en) * 2014-05-21 2015-11-26 The Procter & Gamble Company Methods and systems for dispensing a composition
WO2017062411A3 (en) * 2015-10-07 2017-06-22 Cloud Packaging Solutions, LLC Apparatus and method for forming a pouch
US10974412B2 (en) 2016-11-15 2021-04-13 Cloud Packaging Solutions Llc Machine for cutting pouches with shaped perimeter edge, method and pouch
US11401055B2 (en) * 2018-06-22 2022-08-02 Church & Dwight Co., Inc. System and method for filling a chambered package
US11440692B2 (en) 2020-02-20 2022-09-13 Mespack Cloud, Llc Patterned cut pouch forming machine, and method
CN112549625A (en) * 2020-12-22 2021-03-26 新乡市常乐制药有限责任公司 Full-automatic shaping pelleter of sildenafil citrate piece production usefulness

Similar Documents

Publication Publication Date Title
US2513852A (en) Method for encapsulating
US2497212A (en) Method of manufacturing capsules
US2663130A (en) Apparatus for producing symmetrical generally ellipsoidal capsules
US2318718A (en) Method and apparatus of fabricating filled capsules
US2219578A (en) Manufacture of medicinal capsules
US2468517A (en) Method and machine for packaging or wrapping of articles
US2152101A (en) Method and apparatus for making capsules by submerged filling action
US2490781A (en) Method and apparatus for preparing and utilizing sheet material for packaging purposes
US2486759A (en) Packaging method and apparatus
US2155445A (en) Manufacture of hexylresorcinol capsules
US2624164A (en) Method of and apparatus for encapsulating liquid and semiliquid substances and the like
EP0211079A4 (en) Soft multi-chamber capsule and method of and apparatus for manufacturing same.
US3353329A (en) Method of and apparatus for packaging elongated articles such as nipples
US2663128A (en) Method and machine for making capsules
CA975284A (en) Method and apparatus for forming, filling and sealing packages
US2279505A (en) Capsule making machine
US2199210A (en) Method and apparatus for making capsules by needle injection
CA2008535A1 (en) Textured softgels and method and apparatus for the manufacture thereof
CA969901A (en) Process and apparatus for filling, sealing and dispensing bags
US3200556A (en) Capsule sealing method and apparatus
US2597986A (en) Method for making containers
US2390337A (en) Method and machine for making capsules, particularly gelatin capsules
AU5561873A (en) A process for producing cationic carbamoyl polymer
US2774988A (en) Capsule forming gelatin film stripping
US2663129A (en) Machine for fabricating capsules from elastic films