US2503745A - Circuit arrangement for generating a saw-tooth current in a coil - Google Patents

Circuit arrangement for generating a saw-tooth current in a coil Download PDF

Info

Publication number
US2503745A
US2503745A US794031A US79403147A US2503745A US 2503745 A US2503745 A US 2503745A US 794031 A US794031 A US 794031A US 79403147 A US79403147 A US 79403147A US 2503745 A US2503745 A US 2503745A
Authority
US
United States
Prior art keywords
coil
current
saw
circuit
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US794031A
Other languages
English (en)
Inventor
Kerkhof Frederik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hartford National Bank and Trust Co
Original Assignee
Hartford National Bank and Trust Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hartford National Bank and Trust Co filed Critical Hartford National Bank and Trust Co
Application granted granted Critical
Publication of US2503745A publication Critical patent/US2503745A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • H03K4/08Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape
    • H03K4/10Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements vacuum tubes only
    • H03K4/26Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements vacuum tubes only in which a sawtooth current is produced through an inductor
    • H03K4/28Generating pulses having essentially a finite slope or stepped portions having triangular shape having sawtooth shape using as active elements vacuum tubes only in which a sawtooth current is produced through an inductor using a tube operating as a switching device

Definitions

  • the invention relates to a circuit-arrangement for generating a saw-tooth current in a coil having a self-induction L and a resistance R, which current is derived from the voltage set up across an inductance coil at least part of which is included in the anode circuit of a discharge tube, whilst a diode is included in a circuit which is connected in parallel to at least part of this anode circuit in such manner that during the sweep of the saw-tooth current the diode is conductive.
  • a specific object of the invention is to provide an inductive type saw-tooth current generator of the above referred to type in which nonlinearities of the generated sweep current are corrected.
  • Figs. 1 and 2 are schematic diagrams of sawtooth current generators of the type to which the invention applies.
  • Fig. 3 is a schematic diagram of the equivalent circuit of the generator of Fig. 1,
  • Fig. 4 is a schematic diagram of a saw-tooth current generator according to the invention.
  • the primary winding I of a transformer 2 has a portion thereof included in the anode circuit of a discharge tube 3 and the remainder thereof forms part of a circuit comprising a diode 4.
  • Impulses are supplied to a control grid of tube 3 by means of a saw-tooth generator of conventional form.
  • a coil 6 which in practice constitutes the defiec tion coil of a cathode ray tube, is connected to the secondary winding of the transformer 2.
  • the voltage across the total Winding i is limited by the diode to a value substantially equal to the voltage E of the battery '1, whereas with the circuit-arrangement according to Fig. 2, the voltage across the whole of the winding l is similarly limited to a value substantially equal to the voltage across the portion p of the battery I.
  • the effect of the coil 6 may be referred to the primary side of the transformer 2, in which event during the sweep of the saw-tooth current the equivalent circuit according to Fig. 3 obtains, wherein L1 represents the transposed self-induction L of the coil 6 and r is the resistance of the diode increased by the transposed resistance R of the coil 6 and by the resistance of the winding I.
  • circuit-arrangement according to Fig. 4 obviates the above noted disadvantages and exhibits the feature that the coil 6 has connected in series with it a second coil 8, the self-induction of which decreases, upon increase of the intensity of the saw-tooth current traversing this coil, in such manner that during the sweep this current increases linearly or substantially linearly with time.
  • the inductance coil 8 has a self-induction value (Lo being a constant value, 1- being the transformed resistance of the coil 6, which is required to be corrected, and
  • the coil comprising a core 9 which with the aid of the battery 7 is premagnetized via a variable resistance it and a choke coil l I in such manner that upon increase of the current flowing in the'circuit which includes the coil 6, the self-induction of the coil 8 decreases.
  • a premagnetisation may be brought about up to a 'value at which the sweep of the saw-tooth current takes place in that region of the magnetisation curve of the core material in which the self-induction varies linearly with the current intensity.
  • the core material may be utilized, for example, a sintered magnetic ferrite. Even at small values of themagnetisationcurrent, the differential 'of the magnetisationcurve of this material has a substantially linear course. It has now been found to be possible to obtain the desired course by a suitable choice of the core material, adapted to the self-induction variation desired.
  • the choke coil it serves to prevent the impedance of the coil 3 from being'influenced by the premagnetisation circuit.
  • the choke coil use may alternatively-be made for this purpose of .a'discharge tube having a high internal resistance.
  • correction coil 8 may alternatively be included in the primary circuit of the transformer 2, for example, between the primary winding 1 and the battery 7.
  • An electrical circuit arrangement for generating a saw-tooth sweep current in a coil comprising a discharge tube having a cathode, a control grid and an anode, means to apply a sawtooth voltage to said control grid, an inductance element interposed between said anode and cathode, means to couple said coil to said inductance element, a diode element shunting said inductance element. and being poled to be conductive during the current now through said inductance element and through said discharge tube, and a second inductance element connected in series with said coil, said second inductance element having an inductance which decreases in value with increases in the current therethrough.
  • An electrical'circuit arrangement for generating a saw-tooth sweep current'in a coil comprising a discharge tube having acathodaa control grid and ananodaineans'to apply a sawtooth voltage to said control grid, an inductance element interposed between said anode and cathode, means to "couple said coil to said inductance'elem'enu'a diode element shunting said inductanceelement and being poled to be conductive during the current flow through said inductance element and through said discharge tube, and a second inductance element connected in series with said coil, saidsecondlinduotance element comprising a'corexof ferromagnetiomaterial and a magnetizing winding on said-core and having an inductance which decreases .in value with increases in the current therethrough.
  • An electrical circuitarrangement for generating a saw-tooth sweep current in a coil comprising a dischargentube having a cathode, a control grid and an anode, means to apply a saw-tooth voltage to said control grid, an inductance element comprising a primary winding interposed between saidanode and cathode and to said secondary winding, a diode element shunting said primary winding and being poled to be conductive during the current flow through said primary winding-and through said discharge tube, and a second inductance element connected in series with saidcoil and said secondary winding, said second inductance element having an inductance which decreases in value with increases in the current therethrough.
  • An electrical circuit arrangement for generating a saw-tooth sweep current in a coil comprising a discharge tube having a cathode, a control grid and an anode, means to apply a sawtooth voltage to said-control grid, an inductance element interposed between said anode and cathode, means to couple said coil to said inductance element, a diode-element shunting said inductance element and being poled to be conductive during the current flow through said inductance element :and through said discharge tube, and a second inductance element connected in series with said coil, said second inductance element comprising a core'of a sintered magnetic ferrite and a magnetizing winding on said core and having an inductance which decreases in value with increases in thecurrent therethrough.
  • An electrical circuit arrangement for generating a saw-tooth sweep current in a coil comprising a discharge tube having a cathode, a control grid and an anode, means to apply a saw-tooth voltage to said control grid, an inductance element comprising a primary winding interposed between :said anode and cathode and a secondary winding, means to couple said coil to said secondary *winding, a diode element shunting said primary winding and being poled to be conductive during the current flow through said primary winding'and through said discharge tube, a second inductance element comprising a core of ferromagnetic material, a'first winding arranged on saidcore and connected in series with said coil and said secondary winding, and a second winding arranged onsaid core, and means to apply a direct current to said second winding to premagnetize said coreand impart to said first winding an inductance'which decreases in value with increases in the current therethrough.
  • An electrical circuit arrangement for generating a saw-tooth sweep current ina coil comprising a discharge tube having a cathode, a control grid and an anode, means to apply a sawtooth voltage :to said control grid, an inductance element comprisinga primary winding havinga tapping, and a-secondary winding, means to connect said tapping to saidanode, means to couple said coil to said secondary winding, a diode elementshunting said primary winding and being poled to be conductive during the current flow through said primary winding and through said discharge tube, and-a second inductance element comprising a core of ferromagnetic material, a first winding arrangedon said core and connected in series with said coil and said secondary vwinding, and a second winding arranged on said core, a source of a direct current connected to said second winding to premagnetize said core and impart to said first winding an inductance which decreases in value with increases in the current therethroughand a choke coil interposed between saidsecond winding

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
US794031A 1947-01-14 1947-12-26 Circuit arrangement for generating a saw-tooth current in a coil Expired - Lifetime US2503745A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2503745X 1947-01-14

Publications (1)

Publication Number Publication Date
US2503745A true US2503745A (en) 1950-04-11

Family

ID=19874476

Family Applications (1)

Application Number Title Priority Date Filing Date
US794031A Expired - Lifetime US2503745A (en) 1947-01-14 1947-12-26 Circuit arrangement for generating a saw-tooth current in a coil

Country Status (3)

Country Link
US (1) US2503745A (de)
BE (1) BE479538A (de)
FR (1) FR959555A (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654050A (en) * 1950-06-25 1953-09-29 Int Standard Electric Corp Saw-tooth wave generator
US2805384A (en) * 1951-12-19 1957-09-03 Philips Corp Circuit-arrangement comprising means for the periodic interruption of a current supplied to an inductance coil
US2838662A (en) * 1952-08-26 1958-06-10 Philips Corp Circuit-arrangement producing sawtooth currents
US5287043A (en) * 1988-03-31 1994-02-15 Brag Johan O Apparatus for automatically generating a correct CRT display regardless of timing signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654050A (en) * 1950-06-25 1953-09-29 Int Standard Electric Corp Saw-tooth wave generator
US2805384A (en) * 1951-12-19 1957-09-03 Philips Corp Circuit-arrangement comprising means for the periodic interruption of a current supplied to an inductance coil
US2838662A (en) * 1952-08-26 1958-06-10 Philips Corp Circuit-arrangement producing sawtooth currents
US5287043A (en) * 1988-03-31 1994-02-15 Brag Johan O Apparatus for automatically generating a correct CRT display regardless of timing signals

Also Published As

Publication number Publication date
FR959555A (de) 1950-03-31
BE479538A (de)

Similar Documents

Publication Publication Date Title
US2284378A (en) Deflecting circuit
US2482150A (en) Sawtooth current linearizing system
US2284101A (en) Impulse generator
US2232076A (en) Electrical circuits for integrating electrical variations
US2662198A (en) Saw-tooth wave circuits
US2320551A (en) Relaxation oscillator
US2503745A (en) Circuit arrangement for generating a saw-tooth current in a coil
US2712616A (en) Cathode ray beam deflection circuits
GB666900A (en) Improvements in and relating to line scanning circuits for television and like apparatus
US2957145A (en) Transistor pulse generator
US2447804A (en) Electron beam focusing circuit
US2713651A (en) Amplifier circuit
US2507226A (en) Circuit arrangement for charging or discharging condensers
US2147559A (en) Transformation of relaxation oscillations
US2602896A (en) Saw-tooth wave generator
US3054962A (en) Arrangement for the pulse modulation of a beam of charged particles accelerated by high potentials
US2250686A (en) Saw-tooth wave oscillator
US2460601A (en) Cathode-ray tube deflecting system
US3195009A (en) Time-base circuit for cathode-ray tube
US2645746A (en) High-frequency transformer for the transmission of electric impulses
US2419227A (en) Pulse generator
US2603750A (en) Electrical circuit arrangement for the generation of oscillations
US2664523A (en) Electromagnetic deflection generator
US1985069A (en) Electric timing circuit
US2557209A (en) Circuit arrangement for generating direct voltages