US2490815A - Loop antenna - Google Patents
Loop antenna Download PDFInfo
- Publication number
- US2490815A US2490815A US574878A US57487845A US2490815A US 2490815 A US2490815 A US 2490815A US 574878 A US574878 A US 574878A US 57487845 A US57487845 A US 57487845A US 2490815 A US2490815 A US 2490815A
- Authority
- US
- United States
- Prior art keywords
- loop
- conductor
- antenna
- coaxial
- members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 description 34
- 230000001131 transforming effect Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 241001235534 Graphis <ascomycete fungus> Species 0.000 description 1
- 241000282485 Vulpes vulpes Species 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/20—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
- H01Q21/205—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/14—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
- H02P9/20—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field due to variation of continuously-variable ohmic resistance
- H02P9/22—Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field due to variation of continuously-variable ohmic resistance comprising carbon pile resistance
Definitions
- balanc'ed line which is ordinarilymoreexpensive to manufactureand is less readily available thanethe simple coaxial line.
- I provide a suitable number of tubular circumferentially arranged magnetic dipolety-pe radiators which 'are fed inp'arallel from an axiallylocated junction point supplied by a common type coaxial transe mission line.
- Each 'of 'the radiators is vconmecfted t the C'a-Xil lille by means- OfY-an individua-1 coaxial vconducting' arm; all er which are eena nected in parallel with: respect 'to the. coaxial power supply feed line.
- vthe .radiators aswell as 'the supply arms ⁇ form part of the coaxial feeding system aswell as the; mechanical structure.V
- Fig. 1 is a perspective; view ofv the mechanical construction of, ai four element loop antenna in; accordance with my invention
- Fig. 2 is a schematic representation of a loon ⁇ antenna off' my; invention comprised of asingle;
- Fig. 5 is ay graphi showing 'therelation between the standing wavearatio-andoperating frequency.' for a loop antenna in accordance with my-inven@ tion;
- Fig; 6 is a: schematicshowingv of an antenna arrayl employing a stack-i of fourv vertically are ranged loops.
- vthe loop antennav of Fig. 1 is shown 'to -oomprisefour hollow tubular radiators I, 2, Sande, arranged in a quadrilaterali form.
- radiators which are preferably each a 1/2y wavelength long atfthe mid-.frequency of the operating band are fed coaxially and in Vparalleli: from a ⁇ common coaxialllfeeder line comprisedv of an inner'conduct'o'r 5 anda shield 6. Tlhe coaxial; line 5', 6 is coupled intov a junction box 1 into which arecoupledlfour coaxial conducting arms 8', 9, Il! and'll'l.' 1
- These conducting arms are similarly each comprised of an outer 'shield as well'V as. an inner: conductor I'2, #3.14, and I5 which are connectedA in parallel. tov the centrali conductor 5 of' thecc ⁇ axial feed line within thejunction box 1.
- the shields of' these arms are conductively coupled tov the shield ofthe coaxial line through the outside shield of the junction' ⁇ box 1'.
- the inner conV ductors I2; I3, i4 and Hi ⁇ continue toward the. center of'therespective radiating elements.
- the circumference-of the single-member loop is preferably inthe neighborhood of 1/2 wave- ⁇ length or less, the'multiplef imember'loops beingmadeup of substantially 1A; wavelengthv radiators.: Nol-imitations otherthan practical existiiorrthe number of members making up a loop.
- a loop antenna of any diameter may be constructed and the old limitation of a diameter less than l/2 wavelength need not be observed in this case.
- the antenna all portions of the antenna. are metallic and form a mechanical supporting structure and that the radiators themselves form part ofthe coaxial feeding system. If the size of the unit is such that its own structure is not sufficient to carry the mechanical load, the antenna lends itself easily to the addition of suitable bracing members which may form part of the electrical system without affecting its characteristics.
- the four connecting arms 8, 9, ID and II here function as impedance transformers between the feeder line of the radiators and are preferably made A or an odd multiple oi 1A wave long, their impedance being held low by choosing a large diameter axial conductor for at least the first 41 Wavelength thereof as at I2, I3, I4 and I5 in relation to the conducting portions I6, I'I', I8 and I9 within the radiators.
- These conducting arms may be connected to the tubular bodies of the radiating members by any known sheet metal fab' rication at a point of low or null voltage thereon so that the shield of the entire system may be put at ground potential and serve as a return conductor, thus obviating the requirements for insulators.
- These arms may also, when desired, be connected to the radiators on the inside thereof as indicated at 25, in Fig. 3.
- the arm in this case, passed through an opening on the inside radius of the radiators and is attached by any desired means to the inside of the tubular conductor.
- the choice of these methods of connection is largely determined by the most favorable low voltage point on the radiator.
- connection of the transmission line to the radiators at the connecting plates 2li-23 constitutes an actual short circuit between the inner and outer conductors of the coaxial conducting system.
- the impedance at the gap between radiators is normally quite high when the radiators are made substantially M2 wavelength and low when the radiators are substantially 1,/11 wavelength.
- 'Ihe feeder within the radiator and also that within the supporting arm is made to have such a surge impedance as to match the centrally located main coaxial feeder.
- the vertical pattern of a loop whose diameter is any value d is given approximately by where K is a constant, I is a loop current, J1 is a Bessel function of the first order, A is the wavelength and B is a vertical angle, zero at the horizon.
- Highly directive patterns in the vertical plane may be obtained with this type of loop while retaining the omni-directional pattern in the horizontal plane. This may be done by vertical stacking of any desired number of loops. An example of this arrangement is shown in Fig.
- 26 is a transmitter; 21 a commercial type coaxial line; 28 a junction box and matching means; 29 is a 1A; Wave impedance transforming line; 30 and 3l are suitable portions of a coaxial feed line; and 32 are four vertically stacked loop antennas of the type hereinabove described.
- Fig. 5 the operating characteristic of a typical loop antenna constructed in accordance with my invention and operating over a useful range of frequencies as between 530 and 570 me., is shown as expressed in the relation between the standing wave ratio and operating frequency, the
- An antenna comprised of a given number of discrete tubular members arranged in a loop and acting in cooperation to produce translation of radiant energy, and an energy feeding line for said loop comprised of a first and a second conductor, said rst conductor lbeing connected to each of the said tubular members intermediate the end thereof and said second conductor being connected to a corresponding end of each of said members.
- each of said members is substantially 1/a a wavelength long at the operating frequency.
- An antenna comprised of a given number 0i hollow tubular members arranged in a loop and acting in cooperation to produce translation of radiant energy, each of said members having two ends and being substantially 1/2 a wavelength long, a coaxial energy feeding line for said loop having an outer shield and an inner axial conductor and coaxial impedance transforming means coupling each of said members at points intermediate their ends and said line, said means having an outer conducting shield connected to said first named shield and to said tubular members intermediate the ends thereof and an inner conductor connected to said axial conductor and an additional conductor connected between said inner conductor and a corresponding end of each of said members.
- An antenna comprising a plurality of discrete hollow tubular radiating members iarranged in a loop, a coaxial energy feeding line for said loop having an outer shield and an inner axial conductor, and coaxial impedance transforming arms coupling each of said members lat :points intermediate the ends thereof and said line, each of said impedance transforming arms having an outer shield and an inner axial conductor, said last named shield being connected to rst named shield and the corresponding member intermediate the ends of said member, and said last named axial conductor being connected to said first named axial conductor and an additional conductor connected -between said axial conductor and one en-d of a member adjacent to the member to which the corresponding shield is connected.
- An antenna comprising a plurality of substantially horizontal radiant acting members each member having two interconnected elements, said members being arranged with their ends adjacent one another to deiine a substantially closed periphery, branch coaxial lines extending from the connection points of said elements to a common feeder point substantially symmetrically arranged within said periphery, the outer conductors of said branch lines being connected respectively to said members at the connection points of said elements, and a conductor arranged within one element of each member and connected 'at one end to the central conductor of its respective line and at the other end to the next adjacent member, a coaxial feeder line for supplying energy to and supporting the said antenna, and means for connecting the inner conductor of said coaxial line with the inner cond-uctors of said branch lines and the Outer conductor 0f said coaxial line ⁇ with the outer conductors of said branch lines at said feeder point.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE463047D BE463047A (en(2012)) | 1945-01-27 | ||
NL69932D NL69932C (en(2012)) | 1945-01-27 | ||
BE463048D BE463048A (en(2012)) | 1945-01-27 | ||
US574878A US2490815A (en) | 1945-01-27 | 1945-01-27 | Loop antenna |
ES0172153A ES172153A1 (es) | 1945-01-27 | 1946-01-14 | Mejoras en antenas de cuadro |
FR920588D FR920588A (fr) | 1945-01-27 | 1946-01-22 | Perfectionnements aux cadres radiateurs |
CH269001D CH269001A (de) | 1945-01-27 | 1946-01-25 | Ultrakurzwellen-Antenne. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US574878A US2490815A (en) | 1945-01-27 | 1945-01-27 | Loop antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
US2490815A true US2490815A (en) | 1949-12-13 |
Family
ID=24298017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US574878A Expired - Lifetime US2490815A (en) | 1945-01-27 | 1945-01-27 | Loop antenna |
Country Status (6)
Country | Link |
---|---|
US (1) | US2490815A (en(2012)) |
BE (2) | BE463048A (en(2012)) |
CH (1) | CH269001A (en(2012)) |
ES (1) | ES172153A1 (en(2012)) |
FR (1) | FR920588A (en(2012)) |
NL (1) | NL69932C (en(2012)) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2631238A (en) * | 1949-02-16 | 1953-03-10 | Belmont Radio Corp | Antenna array |
US4012742A (en) * | 1975-12-29 | 1977-03-15 | International Telephone And Telegraph Corporation | Multimode loop antenna |
US4746927A (en) * | 1984-11-08 | 1988-05-24 | U.S. Philips Corporation | VOR antenna design |
US6515632B1 (en) * | 2001-06-06 | 2003-02-04 | Tdk Rf Solutions | Multiply-fed loop antenna |
US20030174098A1 (en) * | 2002-01-29 | 2003-09-18 | Mitsmi Electric Co., Ltd. | Four-point feeding loop antenna capable of easily obtaining an impednace match |
EP1617515A1 (en) * | 2004-07-13 | 2006-01-18 | TDK Corporation | PxM antenna for high-power, broadband applications |
WO2013119410A1 (en) * | 2012-02-02 | 2013-08-15 | Harris Corporation | Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods |
EP3462540A1 (en) | 2017-09-29 | 2019-04-03 | PC-Tel, Inc. | Broadband kandoian loop antenna |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE388072C (de) * | 1923-02-02 | 1924-01-09 | Siemens & Halske Akt Ges | Ringfoermige Antenne |
US2127088A (en) * | 1934-02-15 | 1938-08-16 | Emi Ltd | Feeder and the like for electric currents of high frequency |
US2167709A (en) * | 1936-03-17 | 1939-08-01 | Emi Ltd | Wireless aerial system |
US2187014A (en) * | 1937-03-13 | 1940-01-16 | Telefunken Gmbh | Antenna transformer |
US2201807A (en) * | 1935-11-09 | 1940-05-21 | Telefunken Gmbh | Direction finder loop |
US2289856A (en) * | 1940-09-25 | 1942-07-14 | Internat Telephone & Eadio Mfg | Broadcasting antenna system |
US2293136A (en) * | 1941-07-12 | 1942-08-18 | Fed Telegraph Co | High frequency loop type antenna |
US2383490A (en) * | 1942-10-07 | 1945-08-28 | Standard Telephones Cables Ltd | Loop antenna |
US2391026A (en) * | 1943-11-15 | 1945-12-18 | Standard Telephones Cables Ltd | Shielded loop antenna |
US2393981A (en) * | 1943-11-06 | 1946-02-05 | Standard Telephones Cables Ltd | Shielded loop antenna |
-
0
- BE BE463047D patent/BE463047A/xx unknown
- BE BE463048D patent/BE463048A/xx unknown
- NL NL69932D patent/NL69932C/xx active
-
1945
- 1945-01-27 US US574878A patent/US2490815A/en not_active Expired - Lifetime
-
1946
- 1946-01-14 ES ES0172153A patent/ES172153A1/es not_active Expired
- 1946-01-22 FR FR920588D patent/FR920588A/fr not_active Expired
- 1946-01-25 CH CH269001D patent/CH269001A/de unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE388072C (de) * | 1923-02-02 | 1924-01-09 | Siemens & Halske Akt Ges | Ringfoermige Antenne |
US2127088A (en) * | 1934-02-15 | 1938-08-16 | Emi Ltd | Feeder and the like for electric currents of high frequency |
US2201807A (en) * | 1935-11-09 | 1940-05-21 | Telefunken Gmbh | Direction finder loop |
US2167709A (en) * | 1936-03-17 | 1939-08-01 | Emi Ltd | Wireless aerial system |
US2187014A (en) * | 1937-03-13 | 1940-01-16 | Telefunken Gmbh | Antenna transformer |
US2289856A (en) * | 1940-09-25 | 1942-07-14 | Internat Telephone & Eadio Mfg | Broadcasting antenna system |
US2293136A (en) * | 1941-07-12 | 1942-08-18 | Fed Telegraph Co | High frequency loop type antenna |
US2383490A (en) * | 1942-10-07 | 1945-08-28 | Standard Telephones Cables Ltd | Loop antenna |
US2393981A (en) * | 1943-11-06 | 1946-02-05 | Standard Telephones Cables Ltd | Shielded loop antenna |
US2391026A (en) * | 1943-11-15 | 1945-12-18 | Standard Telephones Cables Ltd | Shielded loop antenna |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2631238A (en) * | 1949-02-16 | 1953-03-10 | Belmont Radio Corp | Antenna array |
US4012742A (en) * | 1975-12-29 | 1977-03-15 | International Telephone And Telegraph Corporation | Multimode loop antenna |
US4746927A (en) * | 1984-11-08 | 1988-05-24 | U.S. Philips Corporation | VOR antenna design |
US6515632B1 (en) * | 2001-06-06 | 2003-02-04 | Tdk Rf Solutions | Multiply-fed loop antenna |
US20030174098A1 (en) * | 2002-01-29 | 2003-09-18 | Mitsmi Electric Co., Ltd. | Four-point feeding loop antenna capable of easily obtaining an impednace match |
US6816122B2 (en) * | 2002-01-29 | 2004-11-09 | Mitsumi Electric Co., Ltd. | Four-point feeding loop antenna capable of easily obtaining an impedance match |
EP1617515A1 (en) * | 2004-07-13 | 2006-01-18 | TDK Corporation | PxM antenna for high-power, broadband applications |
US20060012535A1 (en) * | 2004-07-13 | 2006-01-19 | Mclean James S | PxM antenna for high-power, broadband applications |
US7215292B2 (en) | 2004-07-13 | 2007-05-08 | Tdk Corporation | PxM antenna for high-power, broadband applications |
KR101142065B1 (ko) * | 2004-07-13 | 2012-07-02 | 티디케이 코퍼레이션 | 고출력 광역대 제품을 위한 PxM 안테나 |
WO2013119410A1 (en) * | 2012-02-02 | 2013-08-15 | Harris Corporation | Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods |
EP3462540A1 (en) | 2017-09-29 | 2019-04-03 | PC-Tel, Inc. | Broadband kandoian loop antenna |
US10811773B2 (en) | 2017-09-29 | 2020-10-20 | Pc-Tel, Inc. | Broadband kandoian loop antenna |
Also Published As
Publication number | Publication date |
---|---|
BE463047A (en(2012)) | |
ES172153A1 (es) | 1946-02-16 |
BE463048A (en(2012)) | |
FR920588A (fr) | 1947-04-11 |
CH269001A (de) | 1950-06-15 |
NL69932C (en(2012)) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4162499A (en) | Flush-mounted piggyback microstrip antenna | |
US2165961A (en) | High frequency signaling system | |
US2283914A (en) | Antenna | |
US3633210A (en) | Unbalanced conical spiral antenna | |
US2283897A (en) | Antenna system | |
US2455403A (en) | Antenna | |
GB556093A (en) | Improvements in radio antennae | |
US2490815A (en) | Loop antenna | |
US3899787A (en) | Triplex antenna | |
GB660669A (en) | Antenna arrangement for radiating circularly or elliptically polarized waves | |
CA1214545A (en) | Broadband diamond-shaped antenna | |
US2479337A (en) | Antenna system | |
US2465379A (en) | Antenna unit | |
US2726388A (en) | Antenna system combinations and arrays | |
US2496242A (en) | Antenna system | |
US2903695A (en) | Impedance matching feeder for an antenna array | |
US2293136A (en) | High frequency loop type antenna | |
CN209571543U (zh) | 三频天线 | |
GB600663A (en) | Antenna structure | |
US2650984A (en) | Wireless aerial | |
US2393981A (en) | Shielded loop antenna | |
GB654935A (en) | Improvements in and relating to high frequency antennae | |
US2283620A (en) | High frequency energy distribution system | |
US2934761A (en) | Aircraft antenna system | |
US3375524A (en) | Antenna distributor circuit for four dipoles with adjacent dipoles in phase quadrature |