US2485861A - Lubricating oil - Google Patents
Lubricating oil Download PDFInfo
- Publication number
- US2485861A US2485861A US619695A US61969545A US2485861A US 2485861 A US2485861 A US 2485861A US 619695 A US619695 A US 619695A US 61969545 A US61969545 A US 61969545A US 2485861 A US2485861 A US 2485861A
- Authority
- US
- United States
- Prior art keywords
- oil
- alkali
- acid
- barium
- alkaline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010687 lubricating oil Substances 0.000 title description 12
- 239000003921 oil Substances 0.000 description 103
- 239000002253 acid Substances 0.000 description 21
- 239000003513 alkali Substances 0.000 description 21
- 150000001875 compounds Chemical class 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000000344 soap Substances 0.000 description 15
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 14
- 229910001863 barium hydroxide Inorganic materials 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 239000001117 sulphuric acid Substances 0.000 description 11
- 235000011149 sulphuric acid Nutrition 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 229910052788 barium Inorganic materials 0.000 description 7
- 239000002270 dispersing agent Substances 0.000 description 7
- 239000006185 dispersion Substances 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000004922 lacquer Substances 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 241000158728 Meliaceae Species 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000005864 Sulphur Substances 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 159000000009 barium salts Chemical class 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- -1 free sulphuric acid Chemical class 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical class OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000004291 sulphur dioxide Substances 0.000 description 1
- 235000010269 sulphur dioxide Nutrition 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M159/00—Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
- C10M159/12—Reaction products
- C10M159/20—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
- C10M159/24—Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
Definitions
- This invention has to do with improved oils for the lubrication of internal combustion engines characterized by their ability to minimize or prevent the adherence or formation of lacquers and carbonaceous deposits on pistons and rings to a degree such that even after extended and severe use of the oil in an engine the pistons, rings and other parts will remain remarkably clean and free of deposits from the fuel and lubricant, thereby permitting longer and more cilicient operation of the engine.
- the degree or potential of alkalinity may vary in diflerent oils depending upon their type and intended usage.
- a heavy duty oil may have substantially greater present or poten- 5 Claims. (Cl. 252 -33) tial alkalinity than an oil intended for less severe service.
- the particular alkaline compound or compounds may be varied to best suit the properties and requirements of a lubricant compounded for a particular purpose or service.
- the contemplated general class of compounds for imparting alkalinity to the oil are the alkaline earth metal compounds or salts reactive with acidic compounds that may form in the oil.
- Typical alkaline compounds are the hydroxides and carbonates of the alkali earth metals.
- the alkaline compounds (e. g. hydroxide) of barium are preferred for various reasons, including advantages from standpoints of the far cility with which predetermined or accurately controllable amounts may be incorporated in the oil, and the degree (as the examples below will show) to which they prevent undesirable lacquer or other carbonaceous deposits from forming.
- the alkaline additive in proper and permanent distribution in the oil, apparently as a true colloidal dispersion, is effected by the presence of a dispersing or peptizing agent, preferably a water insoluble alkali earth metal salt or soap of sulphonated hydrocarbons.
- a dispersing or peptizing agent preferably a water insoluble alkali earth metal salt or soap of sulphonated hydrocarbons.
- the dispersing agent will consist of salts formed by reacting with oil soluble sulphonic acid compounds (preferably formed in the oil by prior sulphonation), an alkaline compound (e. g. hydroxide or carbonate) of the alkali earth metal to be incorporated in the oil to furnish the described alkalinity.
- oil soluble sulphonates acts as a deterrent to the formation of lacquer-like or carbonaceous deposits, as well as to impart detergent characteristics maintaining dispersion in the oil of such compounds when formed, thereby preventing their adherence to pistons and other engine parts.
- barium sulphonates also act and are employed as P ptizing agents to accomplish the dispersion of the desired free alkalinity in colloidal form in the oil and to so maintain it.
- oil soluble is meant that'a substantial quantity can be dissolved in the oil. It is understood that the amount of soap in the oil may be varied to give greater or lesser degree of detergency and varied also to permit colloidal dispersion of greater or lesser amounts of free alkali as demanded by the use of the oil.
- the quality and lacquerforming tendencies of internal combustion engine lubricating oils have been materially improved by accuser virtue of the presence oi the soap itself. with or without other additives such as anti-foam agents and oxidation inhibitors.
- the alkali earth metal soaps serve as emcient dispersing agents preventing deposition of deleterious carbonaceous compounds out of the oil of gummy and resin-forming constituents.
- a suitable oxidation inhibitor such as catechol or any of the phenolic derivatives heretofore used as oxidation inhibitors.
- the invention particularly contemplates the use of acidic inhibitors. such as the phenolic derivatives. together with the described alkaline additive. It appears that one result oi incorporating both the alkali and acidic inhibitor in the oil is the formation of a reaction product oi the alkali and additive (for example an alkali earth metal phenate) which however retains the characteristic function of the alkali alone, in that its metal radical is displaceable out of the compound by reaction with acidic compounds when formed in the oil. The residual inhibitor remains eiiective with respect to oxidation tendencies.
- a lubricating distillate was treated with 25 lb./bbl. of 98% sulphuric acid to reduce the content of unsaturated hydrocarbons, centrifuged for the removal of sludge, then neutralized with caustic soda solution, and the naphtha diluent used to lower the viscosity in the treating operation separated by distillation with steam.
- the resulting alkaline oil was redistilled under vacuum to separate the stock into various grades of well refined lubricating oil, relatively free of unsaturated constituents.
- a selected grade is treated for the production of sulphonic acids by efliciently contacting the oil with a sulphonating agent such as concentrated sulphuric acid, fuming sulphuric acid, or even S03. This operation is conducted at a proper temperature which may be around 110 F. in the initial contacting step.
- the action of concentrated sulphuric acid or 4 After contacting the stock with the sulphcnating agent, the mixture oi oil. free acid and sludge is centrifuged for the separation of the sludge.
- the I centrifuged acid oil will usually have an acidity ranging from 1.5 to 2.0 mg./KOH/gm., when the oil has been contacted with 18 lb./bbl. oi fuming sulphuric acid. containing 15% 80:. This acidity is due to mineral acidic compounds such as free sulphuric acid, dissolved sulphur dioxide and the phonic acids.
- the barium lwdroxide By contacting this acid oil with a desired amount of barium hydroxide (and preferably at elevated temperature to increase reactivity, decrease viscosity, and facilitate removal of water), the barium lwdroxide is caused to unite with the mineral acidic material such as free sulphuric acid, to form insoluble barium sulphate. some of the barium hydroxide unites with the sulphonated organic material to form the barium salts or soaps of these oil soluble acidic compounds. After removal of water this mixture is then subjected to filtration, as, for example, through an inert bed of filtering medium such as Super-Gel or finely divided diatomaceous earth or its equivalent.
- the mineral acidic material such as free sulphuric acid
- This operation is conducted 'at elevated temperature and accomplishes the separation of the insoluble barium sulphate and other contaminating elements from the desired oil soluble barium salts of the organic acidic comexcess of the alkali is employed, so that the filtered oil is alkaline and contains a desired amount of the oil soluble barium salts we .wish to leave in the oil, in addition to an amount of free barium salt.
- the barium or other oil soluble alkali salts of the sulphoned hydrocarbons have the property of peptizing so that a considerable amount of free Flkali can be dispersed in the oil in colloidal
- the following gives certain specific examples of base stocks, finished internal combustion engine lubricating oils and the general procedure followed in their preparation.
- Example 1 (1) Stock was S.-A. E. 30 oil which had been previously treated with 25 lb./bbl. of 98% sillphuric acid and neutralized with caustic soda solution. The properties of this oil were as iollows:
- This-oil was run in an engine for 150 hours and produced a very clean iston, with rings all free and with hardly any accumulation of deposits or lacquer,
- Another way of producing the desired salts consists of extracting the centrifuged acid oil with an oil insoluble and water soluble solvent such as a mixture in equal proportions of methyl alcohol and water.
- the centrifuged acid oil and alcohol mixture was heated to 150 F. while stirring and then allowed to settle until there was a sharp line between the extracted oil and the alcohol extract.
- the alcohol extract was then drawn ofi and measured and titrated for total acidity. From this total acidity the acidity of the centrifuged acid oil was figured and from this acidity was calculated the theoretical amount of barium hydroxide to use to just neutralize it. The theoretical amount of barium hydroxide in just enough boiling water to substantially dissolve it was then added to the alcohol extract and stirred mechanically while heating to 150 F. This produced thick soaps containing alcohol and water. Some of this alcohol and water could then be poured from the soaps. To these soaps was then added extracted oil from the same treat.
- the amount 6 of extracted oil which was added was 35% of the amount of alcohol extract used at the start of the treat. To this was added enough more barium hydroxide mixed with water to make the total amount 2 times the theoretical amount to neutralize the centrifuged acid oil. This mixture was then brought to 275 F. to flash 011 the water and then immediately filtered through a bed of "Super-Gel, which produced a bright filtrate. 4.51% of this bright filtrate was then added to an S. A. E. 30 oil to produce an alkali neutralization number of approximately 3.0 and an ash content of approximately 1.5%. To this was added 0.05% Resorcinol as an anti-oxidant. This was the finished engine oil, the properties of which were as follows:
- Example 3 For producing the extracted soaps, an S. A. E. 10-W oil was used. This oil had been previously treated with 25 lb./bbl. of 98% sulphuric acid and neutralized with caustic soda solution. The properties of this treated oil were as follows:
- the quantity of free alkali to be dispersed in the oil may vary in accordance with the type of the oil and its expected service.
- the free alkali content of compositions within a preferred scope may be identified in terms of the alkali neut. no., which may range between substantially 0.50 and 3.0, and an ash content of from about 0.30 to 1.50.
- alkali neutralization number is understood to mean the alkali equivalent in terms of KOH, and herein is used to designate the inorganic alkali present in the oil in terms of KOH equivalency, i. e. milligrams of KOH per gram of oil.
- An internal combustion engine compounded Gil lubricating oil consisting essentially oi a iubri-- cating grade hydrocarbon oil containing a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, andan oil soluble mahogany sulionate in suiiicient quantity to serve as a dispersing agent for said compound.
- said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
- An internal combustion engine compounded lubricating oil consisting essentially of a lubricating grade hydrocarbon oil containing a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, and an voil soluble mahogany sulfonate of said metal in sufiicient quantity to serve as a dispersing agent for said alkaline compound, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
- An internal combustion engine compounded lubricating oil consisting essentially oi a lubricating grade hydrocarbon oil to which has been added a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, and an oil soluble mahogany sulfonate of said metal derived by sulfonation of part of said oil and in sufilcient quantity to serve as a dispersing agent for said alkaline compound, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
- An internal combustion engine compounded lubricating oil consisting essentially of a lubricating grade hydrocarbon oil containing a permanent dispersion of a small quantity sumcient to all remain in suspension in the oil of barium hydroxide, and barium oil-soluble mahogany sulfonate in sumcient quantity to serve as dispersing.
- said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
- An internal combustion engine compounded lubricating oil consisting essentially of a lubrieating grade hydrocarbon oil containing a permanent dispersion of a small quantity suflicient to all remain in suspension in the oil of barium carbonate, and barium oil-soluble mahogany sulfonate in sufficient quantity to serve as dispersing agents for the barium hydroxide, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
Patented Oct. 25, 1949 mas er LUBRICATING OIL Sumner E. Campbell and 110 S. Dellinger, Long Beach, Calif.
No Drawing. Application October 1 1945, Serial No. 619,695
This invention has to do with improved oils for the lubrication of internal combustion engines characterized by their ability to minimize or prevent the adherence or formation of lacquers and carbonaceous deposits on pistons and rings to a degree such that even after extended and severe use of the oil in an engine the pistons, rings and other parts will remain remarkably clean and free of deposits from the fuel and lubricant, thereby permitting longer and more cilicient operation of the engine.
At the outset we emphasize the distinction between fluid lubricants with which the invention is concerned and solid or substantially non-fluid greases. Since it is by virtue of the use of the present compositions for the lubrication of internal combustion engines that advantage is taken of their improved and novel properties.
It is known that the common tendency of internal combustion engine lubricating oils, particularly under conditions of extended and severe use in an engine, cause or permit the formation on the pistons and in the cylinder of lacquer-like deposits resulting in such conditions as stuck rings. Various oil additives have been used in attempts to prevent or inhibit the formation of such deposits, and with varying degrees of success. As typical, the so-called oxidation inhibitors have been put into the oil to minimize or inhibit the formation of oxidation products responsible for objectionable deposits. Other additives have been used to secure detergency, depression of pour point, film strength, increase of viscosity index, etc.
In the development of the present invention, the problem of preventing or inhibiting the formation of deposits in the cylinder has been approached from standpoints differing fundamentally from past expedients of which we are aware. One major consideration, based on the fact that under conditions of use components of the oil are converted to acidic lacquer-forming compounds by oxidation, is the incorporation in the oil of agents tending to inhibit formation of such compounds and to neutralize them to unobjectionable compounds as they form. This object, generally speaking, is accomplished by providing for effective or active alkalinity in the oil, the quantum of alkalinity being sufiiciently great to neutralize whatever acidic compounds that may, form in the oil under at least normal life and use. The degree or potential of alkalinity may vary in diflerent oils depending upon their type and intended usage. For example, a heavy duty oil may have substantially greater present or poten- 5 Claims. (Cl. 252 -33) tial alkalinity than an oil intended for less severe service. Also the particular alkaline compound or compounds may be varied to best suit the properties and requirements of a lubricant compounded for a particular purpose or service.
The contemplated general class of compounds for imparting alkalinity to the oil are the alkaline earth metal compounds or salts reactive with acidic compounds that may form in the oil. Typical alkaline compounds are the hydroxides and carbonates of the alkali earth metals. Among these, the alkaline compounds (e. g. hydroxide) of barium are preferred for various reasons, including advantages from standpoints of the far cility with which predetermined or accurately controllable amounts may be incorporated in the oil, and the degree (as the examples below will show) to which they prevent undesirable lacquer or other carbonaceous deposits from forming.
Maintenance of the alkaline additive in proper and permanent distribution in the oil, apparently as a true colloidal dispersion, is effected by the presence of a dispersing or peptizing agent, preferably a water insoluble alkali earth metal salt or soap of sulphonated hydrocarbons. Most desirably the dispersing agent will consist of salts formed by reacting with oil soluble sulphonic acid compounds (preferably formed in the oil by prior sulphonation), an alkaline compound (e. g. hydroxide or carbonate) of the alkali earth metal to be incorporated in the oil to furnish the described alkalinity. Thus the presence of oil soluble sulphonates acts as a deterrent to the formation of lacquer-like or carbonaceous deposits, as well as to impart detergent characteristics maintaining dispersion in the oil of such compounds when formed, thereby preventing their adherence to pistons and other engine parts. These barium sulphonates also act and are employed as P ptizing agents to accomplish the dispersion of the desired free alkalinity in colloidal form in the oil and to so maintain it. Also by oil soluble is meant that'a substantial quantity can be dissolved in the oil. It is understood that the amount of soap in the oil may be varied to give greater or lesser degree of detergency and varied also to permit colloidal dispersion of greater or lesser amounts of free alkali as demanded by the use of the oil.
Although byfar the best results are obtained by incorporating in the oil the described type of alkaline compound together with alkali earth metal sulphonate soap, the quality and lacquerforming tendencies of internal combustion engine lubricating oils have been materially improved by accuser virtue of the presence oi the soap itself. with or without other additives such as anti-foam agents and oxidation inhibitors. A probable explanation is that the alkali earth metal soaps serve as emcient dispersing agents preventing deposition of deleterious carbonaceous compounds out of the oil of gummy and resin-forming constituents.
For many purposes it is also desirable to include in the lubricant a suitable oxidation inhibitor such as catechol or any of the phenolic derivatives heretofore used as oxidation inhibitors. In this connection the invention particularly contemplates the use of acidic inhibitors. such as the phenolic derivatives. together with the described alkaline additive. It appears that one result oi incorporating both the alkali and acidic inhibitor in the oil is the formation of a reaction product oi the alkali and additive (for example an alkali earth metal phenate) which however retains the characteristic function of the alkali alone, in that its metal radical is displaceable out of the compound by reaction with acidic compounds when formed in the oil. The residual inhibitor remains eiiective with respect to oxidation tendencies.
The superiority of the present lubricants has been established by engine tests under severe conditions and over extended periods of time. Using as a base stock well refined straight mineral oils obtained from crude petroleum, and in which were incorporated the free alkali, disparsing and oxidizing agents as in the examples hereinbelow given, it was found that after continuous runs as long as 200 hours with engine jacket temperatures around 345 F. and crankcase oil temperatures of about 205 F., the piston rings were entirely free, there were no carbon deposits in the slots of the oil ring and substantially no lacquer formation on the pistons or elsewhere in the cylinders. The bearings showed no evidence of corrosion or excessive wear.
In the following, a typical procedure is described for the treatment of lubricating distillates and the incorporation of the free alkali, peptizing or dispersing agent, and such further additives as anti-oxidant and anti-foaming agents, if desired. As illustrative, barium hydroxide is selected as the alkaline additive and barium sulphonates as the dispersing medium, all however with the understanding that other alkaline compounds of alkali earth metals may be similarly employed to advantage.
A lubricating distillate was treated with 25 lb./bbl. of 98% sulphuric acid to reduce the content of unsaturated hydrocarbons, centrifuged for the removal of sludge, then neutralized with caustic soda solution, and the naphtha diluent used to lower the viscosity in the treating operation separated by distillation with steam. The resulting alkaline oil was redistilled under vacuum to separate the stock into various grades of well refined lubricating oil, relatively free of unsaturated constituents. A selected grade is treated for the production of sulphonic acids by efliciently contacting the oil with a sulphonating agent such as concentrated sulphuric acid, fuming sulphuric acid, or even S03. This operation is conducted at a proper temperature which may be around 110 F. in the initial contacting step.
The action of concentrated sulphuric acid or 4 After contacting the stock with the sulphcnating agent, the mixture oi oil. free acid and sludge is centrifuged for the separation of the sludge. The I centrifuged acid oil will usually have an acidity ranging from 1.5 to 2.0 mg./KOH/gm., when the oil has been contacted with 18 lb./bbl. oi fuming sulphuric acid. containing 15% 80:. This acidity is due to mineral acidic compounds such as free sulphuric acid, dissolved sulphur dioxide and the phonic acids.
By contacting this acid oil with a desired amount of barium hydroxide (and preferably at elevated temperature to increase reactivity, decrease viscosity, and facilitate removal of water), the barium lwdroxide is caused to unite with the mineral acidic material such as free sulphuric acid, to form insoluble barium sulphate. some of the barium hydroxide unites with the sulphonated organic material to form the barium salts or soaps of these oil soluble acidic compounds. After removal of water this mixture is then subjected to filtration, as, for example, through an inert bed of filtering medium such as Super-Gel or finely divided diatomaceous earth or its equivalent. This operation is conducted 'at elevated temperature and accomplishes the separation of the insoluble barium sulphate and other contaminating elements from the desired oil soluble barium salts of the organic acidic comexcess of the alkali is employed, so that the filtered oil is alkaline and contains a desired amount of the oil soluble barium salts we .wish to leave in the oil, in addition to an amount of free barium salt. As previously indicated, the barium or other oil soluble alkali salts of the sulphoned hydrocarbons have the property of peptizing so that a considerable amount of free Flkali can be dispersed in the oil in colloidal The following gives certain specific examples of base stocks, finished internal combustion engine lubricating oils and the general procedure followed in their preparation.
Example 1 (1) Stock was S.-A. E. 30 oil which had been previously treated with 25 lb./bbl. of 98% sillphuric acid and neutralized with caustic soda solution. The properties of this oil were as iollows:
Grav. (A. P. I.) Flash (Cl. 0. C.) ..F 445 Fire (Cl. 0. C.) F 515 Color (U. C.) L 2 Via/100 F. (S. U.) 6231) Vi.s./ 130 F. (S. U.) 251.0 Vis./210 F. (S. U.) 81.3 60 v.1--- as Corrosion Negative Ash Nil Sulphur per cent 2.21
(2) This oil was treated with 18 1b./bbl. of 15% fuming sulphuric acid, the oil being first heated to 110 F. before adding the acid. The mixture was then agitated by a mechanical stirrer for 10 minutes and the acid oil then centrifuged and 70 the sludge separated. c
(3) The centrifuged acid oil was then treated with 25 grams per liter of barium hydroxide mixed with water, stirring to 275 F. to drive oil water used in dissolving the barium hydroxide.
(4) Filtered immediately through a bed of like, and organic material of the nature of sulpounds. In conducting this neutralizing step an "Super-Gel about one-inch thick, obtaining a bright filtrate free of turbidity.
To this bright filtrate was added 0.5% catechol as an anti-oxidant.
The properties of this finished engine oil were as follows:-
This-oil was run in an engine for 150 hours and produced a very clean iston, with rings all free and with hardly any accumulation of deposits or lacquer,
There are several Ways of obtaining the desired material, of which the above described procedure is probably the simplest but perhaps not always the most desirable because of the necessity of filtering the total amount of oil employed. Another way of producing the desired salts consists of extracting the centrifuged acid oil with an oil insoluble and water soluble solvent such as a mixture in equal proportions of methyl alcohol and water.
Example 2 Grav. (A. P. I.) 20.0 Flash (Cl. 0. C.) F.. 320 Fire (Cl. 0. C.) F 390 Color (U. C.) 2 Vis./100 F. (S. U.) 124.2 Vis./l30 F. (S. U.) 73.2 Via/210 F. (S. U.) 39.2 V. I 34 Ash Nil Sulphur per cent..-
2.35 Corrosion Negative (1) This oil was treated with 100 lb./bbl. of 15% fuming sulphuric acid in two 50 lb. stages. After the first 50 lb. portion the oil and acid were stirred with a mechanical mixer at 110 F. for ten minutes and the mixture was then centrifuged. The centrifuged acid oil from the first 50 lb. treat was then treated with another 50 lb. of acid following the same procedure.
(2) The centrifuged acid oil was then extracted with 4% by volume of a mixture of 50% methyl alcohol and 50% water in the following manner:
The centrifuged acid oil and alcohol mixture was heated to 150 F. while stirring and then allowed to settle until there was a sharp line between the extracted oil and the alcohol extract. The alcohol extract was then drawn ofi and measured and titrated for total acidity. From this total acidity the acidity of the centrifuged acid oil was figured and from this acidity was calculated the theoretical amount of barium hydroxide to use to just neutralize it. The theoretical amount of barium hydroxide in just enough boiling water to substantially dissolve it was then added to the alcohol extract and stirred mechanically while heating to 150 F. This produced thick soaps containing alcohol and water. Some of this alcohol and water could then be poured from the soaps. To these soaps was then added extracted oil from the same treat. The amount 6 of extracted oil which was added was 35% of the amount of alcohol extract used at the start of the treat. To this was added enough more barium hydroxide mixed with water to make the total amount 2 times the theoretical amount to neutralize the centrifuged acid oil. This mixture was then brought to 275 F. to flash 011 the water and then immediately filtered through a bed of "Super-Gel, which produced a bright filtrate. 4.51% of this bright filtrate was then added to an S. A. E. 30 oil to produce an alkali neutralization number of approximately 3.0 and an ash content of approximately 1.5%. To this was added 0.05% Resorcinol as an anti-oxidant. This was the finished engine oil, the properties of which were as follows:
Grav. (A. P. I.) 18.6 Flash (Cl. 0. C.) F. 450 Fire (Cl. 0. C.) F 505 Color (U. C.) 4- Vis./ F. (S. U.) 562 Via/ F. (S. U.) 232 Via/210 F. (S. U.) 59.5 V. I 58 Reaction Alkaline Sulphur --per cent 2.06 Ash do- 1.09 Alkali Neut. No 2.80 Corrosion Negative This oil was run in an engine for 150 hours and showed very litle carbonaceous deposit back of the piston rings, none in the slots of the oil ring and substantially no lacquer either on the piston wall or underneath.
Example 3 For producing the extracted soaps, an S. A. E. 10-W oil was used. This oil had been previously treated with 25 lb./bbl. of 98% sulphuric acid and neutralized with caustic soda solution. The properties of this treated oil were as follows:
Grav. (A. P. I.) 20.0 ,Flash (Cl. 0. C.) F 320 Fire (C1. 0. C.) F 390 Color (U. s.) 2 /2+ Vis./100 F. (SI U.) 124:2 Vis./l30 F. (S. U.) 73.2 Vis./210 F. (S. U.) 39.2 V. I 34 Ash Nil Sulphur --per cent 2.35 Corrosion Negative 1) This oil was treated with 100 lb./bbl. of 15% fuming sulphuric acid in two 50 lb. portions. After the first 50 lb. portion the oil and acid mixture was stirred with a mechanical mixer at 110 F. for ten minutes and then centrifuged. The centrifuged acid 011 from the first 50 lb. treat was then treated with another 50 lb. of acid following the same procedure.
(2) The centrifuged acid oil was then neutralized with 15% by volume of a mixture of 50% methyl alcohol and 50% water, plus 1 times the theoretical amount of barium hydroxide necessary to just neutralize it. The alcohol and water mixture and the barium hydroxide were all mixed together. This mixture was stirred to F. and allowed to settle for one hour. This separated in three layers, the alcohol and water; the extracted oil; and the soaps (containing some of the extracted oil). The soaps were drawn from the bottom of the receptacle and enough additional barium hydroxide was added so that the total ensues:
amount in the soaps would be 2 /2 times theoretical amount to neutralize it. Extracted oil was also added to this mixture to insure easy filtering. The amount of extracted oil was approximately 66%% of the amount of soaps. This mixture was brought to a temperature oi-275 F. to flash ofl the water left in the soaps and then' filtered through a bed of Super-Cel" producing a bright filtrate. 6.32% of this bright filtrate was added to an S. A. E. 30 oil,'plus 0.05% Resorcinol as an antioxidant. This was the finished oil, the
. properties of which were as follows:
This oil was run in an engine for 150 hours and the piston showed very little carbonaceous deposit back of the top ring, none back of the second ring or oil ring. Oil ring slots were clean and there was no lacquer on piston walls or underneath,
We have previously indicated that for the preparation of a lubricant according to the described procedures, the quantity of free alkali to be dispersed in the oil may vary in accordance with the type of the oil and its expected service. In general, the free alkali content of compositions within a preferred scope may be identified in terms of the alkali neut. no., which may range between substantially 0.50 and 3.0, and an ash content of from about 0.30 to 1.50. As commonly used in the industry, (see A. S. T. M. Designation: D663-46'I) the expression alkali neut. no. or alkali neutralization number," is understood to mean the alkali equivalent in terms of KOH, and herein is used to designate the inorganic alkali present in the oil in terms of KOH equivalency, i. e. milligrams of KOH per gram of oil.
Comparative tests made in the same engines under the same conditions using the same lubricating ofl but containing no additive produced pistons heavily coated with lacquer, voluminous carbonaceous deposits in the oil slots and stuck compression rings, and after only 48 hours run- .ning.
Where the claims define the lubricating oil as consisting essentially of" the defined compositions, it is to be understood that such terminology does not preclude the presence of any of various substances such as anti-oxidation agents, anticorrosion agents, pour control agents, or other additives, so long as the defined components retain essentially their identities and described functions.
We claim:
i. An internal combustion engine compounded Gil lubricating oil consisting essentially oi a iubri-- cating grade hydrocarbon oil containing a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, andan oil soluble mahogany sulionate in suiiicient quantity to serve as a dispersing agent for said compound. said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
2. 4 An internal combustion engine compounded lubricating oil consisting essentially of a lubricating grade hydrocarbon oil containing a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, and an voil soluble mahogany sulfonate of said metal in sufiicient quantity to serve as a dispersing agent for said alkaline compound, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
3. An internal combustion engine compounded lubricating oil consisting essentially oi a lubricating grade hydrocarbon oil to which has been added a permanent dispersion of an alkaline inorganic compound of the group consisting of the hydroxides and carbonates of an alkali earth metal, and an oil soluble mahogany sulfonate of said metal derived by sulfonation of part of said oil and in sufilcient quantity to serve as a dispersing agent for said alkaline compound, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
4. An internal combustion engine compounded lubricating oil consisting essentially of a lubricating grade hydrocarbon oil containing a permanent dispersion of a small quantity sumcient to all remain in suspension in the oil of barium hydroxide, and barium oil-soluble mahogany sulfonate in sumcient quantity to serve as dispersing.
agents for the barium hydroxide, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
5. An internal combustion engine compounded lubricating oil consisting essentially of a lubrieating grade hydrocarbon oil containing a permanent dispersion of a small quantity suflicient to all remain in suspension in the oil of barium carbonate, and barium oil-soluble mahogany sulfonate in sufficient quantity to serve as dispersing agents for the barium hydroxide, said compounded oil having an alkali neutralization number as herein defined between 0.50 and 3.0.
- SUMNER E. CAMPBELL.
S. DELL-INGER.
REFERENCES mean The following references are of record in the file of this patent:
UNITED STATES PATENTS Certificate of Correction Patent No. 2,485,861 October 25, 1949 SUMNER E. CAMPBELL ET AL.
It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction as follows:
Column 4, line 38, for sulphoned read sulphonated;
and that the said Letters Patent should be read with this correction therein that the same may conform to the record of the case in the Patent Office.
Signed and sealed this 25th day of April, A. D. 1950.
THOMAS F. MURPHY,
Assistant oommissioner of Patea'ta.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US619695A US2485861A (en) | 1945-10-01 | 1945-10-01 | Lubricating oil |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US619695A US2485861A (en) | 1945-10-01 | 1945-10-01 | Lubricating oil |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2485861A true US2485861A (en) | 1949-10-25 |
Family
ID=24482918
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US619695A Expired - Lifetime US2485861A (en) | 1945-10-01 | 1945-10-01 | Lubricating oil |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2485861A (en) |
Cited By (47)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2585520A (en) * | 1948-12-03 | 1952-02-12 | Shell Dev | Lubricating compositions containing highly basic metal sulfonates |
| US2623016A (en) * | 1949-01-17 | 1952-12-23 | Union Oil Co | Lubricating oil composition |
| US2659695A (en) * | 1951-01-06 | 1953-11-17 | Sonneborn Sons Inc L | Lubricating greases |
| US2671758A (en) * | 1949-09-27 | 1954-03-09 | Shell Dev | Colloidal compositions and derivatives thereof |
| US2676925A (en) * | 1950-12-30 | 1954-04-27 | California Research Corp | Method of dispersing metal oxides and hydroxides in lubricating oils |
| US2678301A (en) * | 1951-06-08 | 1954-05-11 | Tide Water Associated Oil Comp | Method of preparing an alkaline concentrate of mahogany sulfonates |
| US2716087A (en) * | 1951-03-29 | 1955-08-23 | California Research Corp | Method of filtering dispersions of metal oxides and hydroxides in lubricating oils |
| US2719826A (en) * | 1952-01-24 | 1955-10-04 | California Research Corp | Aluminum soap grease compositions |
| US2742427A (en) * | 1953-06-08 | 1956-04-17 | Socony Mobil Oil Co Inc | Lubricating oil containing dispersed magnesium |
| US2754266A (en) * | 1953-10-29 | 1956-07-10 | Union Oil Co | Corrosion resistant electrically conductive thread compound |
| US2758085A (en) * | 1953-06-08 | 1956-08-07 | Socony Mobil Oil Co Inc | Method for incorporating oil-insoluble, solid addition agents in mineral oils |
| US2861951A (en) * | 1955-04-27 | 1958-11-25 | Continental Oil Co | Method of dispersing barium carbonate in a non-volatile carrier |
| US2913411A (en) * | 1957-06-07 | 1959-11-17 | Shell Dev | Metal working lubricant |
| US2935476A (en) * | 1957-09-30 | 1960-05-03 | Sun Oil Co | Carbon deposit reduction |
| US2988506A (en) * | 1954-06-29 | 1961-06-13 | Exxon Research Engineering Co | Oxidation inhibition of oleaginous materials |
| US3021280A (en) * | 1956-12-17 | 1962-02-13 | Continental Oil Co | Method of dispersing barium hydroxide in a non-volatile carrier |
| US3067018A (en) * | 1957-10-29 | 1962-12-04 | Bray Oil Co | Colloidal additives for fuel oils |
| US3095374A (en) * | 1957-04-25 | 1963-06-25 | Gulf Oil Corp | Lubricating composition |
| US3250710A (en) * | 1963-06-03 | 1966-05-10 | Continental Oil Co | Preparation of over-based sulfonate composition |
| US3455824A (en) * | 1966-03-25 | 1969-07-15 | Kendall Refining Co | Organic suspending medium and composition |
| US3455829A (en) * | 1966-03-25 | 1969-07-15 | Kendall Refining Co | Organic suspending medium and composition |
| US3639275A (en) * | 1968-06-10 | 1972-02-01 | Chevron Res | Stable dielectric fluid for electrical discharge machining comprising a mineral oil, a metal sulfonate and a phenolic antioxidant |
| US4179383A (en) * | 1977-10-07 | 1979-12-18 | Petrolite Corporation | Preparation of magnesium-containing dispersions from magnesium carboxylates |
| US4229309A (en) * | 1977-07-18 | 1980-10-21 | Petrolite Corporation | Magnesium-containing dispersions |
| US20050250656A1 (en) * | 2004-05-04 | 2005-11-10 | Masahiro Ishikawa | Continuously variable transmission fluid |
| US20080015130A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant compositions |
| US20080051304A1 (en) * | 2006-08-28 | 2008-02-28 | Devlin Mark T | Lubricant compositions |
| US7737094B2 (en) | 2007-10-25 | 2010-06-15 | Afton Chemical Corporation | Engine wear protection in engines operated using ethanol-based fuel |
| WO2010147993A1 (en) | 2009-06-16 | 2010-12-23 | Chevron Phillips Chemical Company Lp | Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends |
| WO2011102835A1 (en) | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
| WO2011102836A1 (en) | 2010-02-19 | 2011-08-25 | Infineum International Limited | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
| US20110237476A1 (en) * | 2010-03-25 | 2011-09-29 | Afton Chemical Corporation | Lubricant compositions for improved engine performance |
| US9034808B2 (en) | 2005-01-18 | 2015-05-19 | Bestline International Research, Inc. | Universal synthetic lubricant additive with micro lubrication technology to be used with synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam |
| US9273265B2 (en) | 2011-10-31 | 2016-03-01 | Nch Corporation | Calcium carbonate based sulfonate grease compositions and method of manufacture |
| US9284507B2 (en) | 2005-01-18 | 2016-03-15 | Bestline International Research, Inc. | Universal synthetic diesel fuel additive product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels |
| US9309482B2 (en) | 2005-01-18 | 2016-04-12 | Bestline International Research, Inc. | Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process |
| US9458406B2 (en) | 2011-10-31 | 2016-10-04 | Nch Corporation | Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture |
| US9976101B2 (en) | 2011-10-31 | 2018-05-22 | Nch Corporation | Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents |
| US10087387B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US10087391B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent |
| US10087388B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid |
| US10392577B2 (en) | 2016-05-18 | 2019-08-27 | Nch Corporation | Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease |
| US10400192B2 (en) | 2017-05-17 | 2019-09-03 | Bestline International Research, Inc. | Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems |
| US10519393B2 (en) | 2016-05-18 | 2019-12-31 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US11377616B2 (en) | 2015-01-29 | 2022-07-05 | Bestline International Research Inc. | Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel |
| US11661563B2 (en) | 2020-02-11 | 2023-05-30 | Nch Corporation | Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases |
| US12331261B2 (en) | 2018-11-20 | 2025-06-17 | Nch Corporation | Composition and method of manufacturing sulfonate-based greases using a glycerol derivative |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2033148A (en) * | 1932-05-17 | 1936-03-10 | Union Oil Co | Barium grease |
| US2270577A (en) * | 1940-05-31 | 1942-01-20 | Shell Dev | Compounded lubricating oil |
| US2285752A (en) * | 1940-11-18 | 1942-06-09 | Shell Dev | Anticorrosive |
| US2366191A (en) * | 1941-10-18 | 1945-01-02 | Union Oil Co | Diesel engine lubricating oil |
| US2378820A (en) * | 1942-02-14 | 1945-06-19 | Union Oil Co | Lubricating oil |
-
1945
- 1945-10-01 US US619695A patent/US2485861A/en not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2033148A (en) * | 1932-05-17 | 1936-03-10 | Union Oil Co | Barium grease |
| US2270577A (en) * | 1940-05-31 | 1942-01-20 | Shell Dev | Compounded lubricating oil |
| US2285752A (en) * | 1940-11-18 | 1942-06-09 | Shell Dev | Anticorrosive |
| US2366191A (en) * | 1941-10-18 | 1945-01-02 | Union Oil Co | Diesel engine lubricating oil |
| US2378820A (en) * | 1942-02-14 | 1945-06-19 | Union Oil Co | Lubricating oil |
Cited By (61)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2585520A (en) * | 1948-12-03 | 1952-02-12 | Shell Dev | Lubricating compositions containing highly basic metal sulfonates |
| US2623016A (en) * | 1949-01-17 | 1952-12-23 | Union Oil Co | Lubricating oil composition |
| US2671758A (en) * | 1949-09-27 | 1954-03-09 | Shell Dev | Colloidal compositions and derivatives thereof |
| US2676925A (en) * | 1950-12-30 | 1954-04-27 | California Research Corp | Method of dispersing metal oxides and hydroxides in lubricating oils |
| US2659695A (en) * | 1951-01-06 | 1953-11-17 | Sonneborn Sons Inc L | Lubricating greases |
| US2716087A (en) * | 1951-03-29 | 1955-08-23 | California Research Corp | Method of filtering dispersions of metal oxides and hydroxides in lubricating oils |
| US2678301A (en) * | 1951-06-08 | 1954-05-11 | Tide Water Associated Oil Comp | Method of preparing an alkaline concentrate of mahogany sulfonates |
| US2719826A (en) * | 1952-01-24 | 1955-10-04 | California Research Corp | Aluminum soap grease compositions |
| US2742427A (en) * | 1953-06-08 | 1956-04-17 | Socony Mobil Oil Co Inc | Lubricating oil containing dispersed magnesium |
| US2758085A (en) * | 1953-06-08 | 1956-08-07 | Socony Mobil Oil Co Inc | Method for incorporating oil-insoluble, solid addition agents in mineral oils |
| US2754266A (en) * | 1953-10-29 | 1956-07-10 | Union Oil Co | Corrosion resistant electrically conductive thread compound |
| US2988506A (en) * | 1954-06-29 | 1961-06-13 | Exxon Research Engineering Co | Oxidation inhibition of oleaginous materials |
| US2861951A (en) * | 1955-04-27 | 1958-11-25 | Continental Oil Co | Method of dispersing barium carbonate in a non-volatile carrier |
| US3021280A (en) * | 1956-12-17 | 1962-02-13 | Continental Oil Co | Method of dispersing barium hydroxide in a non-volatile carrier |
| US3095374A (en) * | 1957-04-25 | 1963-06-25 | Gulf Oil Corp | Lubricating composition |
| US2913411A (en) * | 1957-06-07 | 1959-11-17 | Shell Dev | Metal working lubricant |
| US2935476A (en) * | 1957-09-30 | 1960-05-03 | Sun Oil Co | Carbon deposit reduction |
| US3067018A (en) * | 1957-10-29 | 1962-12-04 | Bray Oil Co | Colloidal additives for fuel oils |
| US3250710A (en) * | 1963-06-03 | 1966-05-10 | Continental Oil Co | Preparation of over-based sulfonate composition |
| US3455824A (en) * | 1966-03-25 | 1969-07-15 | Kendall Refining Co | Organic suspending medium and composition |
| US3455829A (en) * | 1966-03-25 | 1969-07-15 | Kendall Refining Co | Organic suspending medium and composition |
| US3639275A (en) * | 1968-06-10 | 1972-02-01 | Chevron Res | Stable dielectric fluid for electrical discharge machining comprising a mineral oil, a metal sulfonate and a phenolic antioxidant |
| US4229309A (en) * | 1977-07-18 | 1980-10-21 | Petrolite Corporation | Magnesium-containing dispersions |
| US4179383A (en) * | 1977-10-07 | 1979-12-18 | Petrolite Corporation | Preparation of magnesium-containing dispersions from magnesium carboxylates |
| US20050250656A1 (en) * | 2004-05-04 | 2005-11-10 | Masahiro Ishikawa | Continuously variable transmission fluid |
| US9034808B2 (en) | 2005-01-18 | 2015-05-19 | Bestline International Research, Inc. | Universal synthetic lubricant additive with micro lubrication technology to be used with synthetic or miner host lubricants from automotive, trucking, marine, heavy industry to turbines including, gas, jet and steam |
| US9284507B2 (en) | 2005-01-18 | 2016-03-15 | Bestline International Research, Inc. | Universal synthetic diesel fuel additive product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels |
| US9309482B2 (en) | 2005-01-18 | 2016-04-12 | Bestline International Research, Inc. | Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process |
| US7906465B2 (en) | 2006-07-14 | 2011-03-15 | Afton Chemical Corp. | Lubricant compositions |
| US20080015130A1 (en) * | 2006-07-14 | 2008-01-17 | Devlin Mark T | Lubricant compositions |
| US7833952B2 (en) | 2006-08-28 | 2010-11-16 | Afton Chemical Corporation | Lubricant compositions |
| US20080051304A1 (en) * | 2006-08-28 | 2008-02-28 | Devlin Mark T | Lubricant compositions |
| US7737094B2 (en) | 2007-10-25 | 2010-06-15 | Afton Chemical Corporation | Engine wear protection in engines operated using ethanol-based fuel |
| US9834735B2 (en) | 2007-12-19 | 2017-12-05 | Bestline International Research, Inc. | Universal synthetic lubricant, method and product-by-process to replace the lost sulfur lubrication when using low-sulfur diesel fuels |
| WO2010147993A1 (en) | 2009-06-16 | 2010-12-23 | Chevron Phillips Chemical Company Lp | Oligomerization of alpha olefins using metallocene-ssa catalyst systems and use of the resultant polyalphaolefins to prepare lubricant blends |
| EP3587458A1 (en) | 2009-06-16 | 2020-01-01 | Chevron Phillips Chemical Company LP | Compositions comprising polyalphaolefins |
| WO2011102836A1 (en) | 2010-02-19 | 2011-08-25 | Infineum International Limited | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
| US9365794B2 (en) | 2010-02-19 | 2016-06-14 | Infineum International Limited | Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
| WO2011102835A1 (en) | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
| US20110237476A1 (en) * | 2010-03-25 | 2011-09-29 | Afton Chemical Corporation | Lubricant compositions for improved engine performance |
| EP2371935A1 (en) | 2010-03-25 | 2011-10-05 | Afton Chemical Corporation | Lubricant compositions for improved engine performance |
| US9725673B2 (en) | 2010-03-25 | 2017-08-08 | Afton Chemical Corporation | Lubricant compositions for improved engine performance |
| US11473031B2 (en) | 2010-09-22 | 2022-10-18 | Bestline International Research, Inc. | Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel |
| US9932538B2 (en) | 2010-09-22 | 2018-04-03 | Bestline International Research, Inc. | Universal synthetic water displacement multi-purpose penetrating lubricant, method and product-by-process |
| US11072756B2 (en) | 2011-10-31 | 2021-07-27 | Nch Corporation | Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture |
| US9976101B2 (en) | 2011-10-31 | 2018-05-22 | Nch Corporation | Method of manufacturing calcium sulfonate greases using delayed addition of non-aqueous converting agents |
| US9273265B2 (en) | 2011-10-31 | 2016-03-01 | Nch Corporation | Calcium carbonate based sulfonate grease compositions and method of manufacture |
| US10316266B2 (en) | 2011-10-31 | 2019-06-11 | Nch Corporation | Calcium hydroxyapatite based calcium sulfonate grease compositions and method of manufacture |
| US9458406B2 (en) | 2011-10-31 | 2016-10-04 | Nch Corporation | Calcium hydroxyapatite based sulfonate grease compositions and method of manufacture |
| US11377616B2 (en) | 2015-01-29 | 2022-07-05 | Bestline International Research Inc. | Motor oil blend and method for reducing wear on steel and eliminating ZDDP in motor oils by modifying the plastic response of steel |
| US10392577B2 (en) | 2016-05-18 | 2019-08-27 | Nch Corporation | Composition and method of manufacturing overbased sulfonate modified lithium carboxylate grease |
| US10519393B2 (en) | 2016-05-18 | 2019-12-31 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US10087387B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US11168277B2 (en) | 2016-05-18 | 2021-11-09 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US10087388B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium sulfonate and calcium magnesium sulfonate greases using a delay after addition of facilitating acid |
| US10087391B2 (en) | 2016-05-18 | 2018-10-02 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases without a conventional non-aqueous converting agent |
| US12031100B2 (en) | 2016-05-18 | 2024-07-09 | Nch Corporation | Composition and method of manufacturing calcium magnesium sulfonate greases |
| US10400192B2 (en) | 2017-05-17 | 2019-09-03 | Bestline International Research, Inc. | Synthetic lubricant, cleaner and preservative composition, method and product-by-process for weapons and weapon systems |
| US12331261B2 (en) | 2018-11-20 | 2025-06-17 | Nch Corporation | Composition and method of manufacturing sulfonate-based greases using a glycerol derivative |
| US11661563B2 (en) | 2020-02-11 | 2023-05-30 | Nch Corporation | Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases |
| US12146114B2 (en) | 2020-02-11 | 2024-11-19 | Nch Corporation | Composition and method of manufacturing and using extremely rheopectic sulfonate-based greases |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2485861A (en) | Lubricating oil | |
| US2585520A (en) | Lubricating compositions containing highly basic metal sulfonates | |
| US2671758A (en) | Colloidal compositions and derivatives thereof | |
| US2418894A (en) | Compounded lubricating oil | |
| US2501732A (en) | Modified lubricating oil | |
| US2361804A (en) | Lubricating composition | |
| US2467176A (en) | Lubricant addition agents | |
| US2406564A (en) | Compounded lubricating oil | |
| US2250188A (en) | Lubricating oil | |
| US3655558A (en) | Mineral lubricating oil compositions containing alkaline earth metal sulfonates and phosphites and process producing same | |
| US2736701A (en) | Lubricating oil composition | |
| DE1035299B (en) | Lubricating oil for internal combustion engines with a high compression ratio | |
| US2658062A (en) | Mineral oil additive | |
| US2969324A (en) | Phosphosulfurized detergent-inhibitor additive | |
| US3140997A (en) | Colloidal molybdenum complexes prepared by ketone extraction | |
| US2367470A (en) | Compounded oil | |
| US2472503A (en) | Lubricating oil compositions | |
| US2623855A (en) | Lubricating compositions | |
| US3021280A (en) | Method of dispersing barium hydroxide in a non-volatile carrier | |
| US2467118A (en) | Complex from a polyvalent metal petroleum sulfonate, a process of making it, and a lubricating oil containing it | |
| US2409726A (en) | Lubricant composition | |
| US3127348A (en) | Table i | |
| US3321399A (en) | Preparation of oil dispersions of metal carbonates | |
| US2863834A (en) | High v. i. detergent lubricating oils | |
| US2476813A (en) | Lubricating composition |