US2483397A - Cathodic protection system - Google Patents
Cathodic protection system Download PDFInfo
- Publication number
- US2483397A US2483397A US610643A US61064345A US2483397A US 2483397 A US2483397 A US 2483397A US 610643 A US610643 A US 610643A US 61064345 A US61064345 A US 61064345A US 2483397 A US2483397 A US 2483397A
- Authority
- US
- United States
- Prior art keywords
- circuit
- underground
- rectifier
- current
- track
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004210 cathodic protection Methods 0.000 title description 3
- 238000004804 winding Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 16
- 238000005260 corrosion Methods 0.000 description 16
- 239000002689 soil Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/04—Controlling or regulating desired parameters
Definitions
- the present invention relates to a system for protecting underground metallic structures against electrolytic corrosion and more particularly to the so-called cathodic system of electrolytic corrosion prevention in which the potential of the buried structure is depressed below that of the surrounding earth.
- Electrolytic corrosion of underground metallic structures is occasioned by the presence in such structures of electric currents. These arise in some cases from a galvanic action between the metallic structure and the surrounding soil in which it is embedded, due to the chemical nature of the soil and the fact that the surrounding earth, particularly when moist, is a conductor of electricity.
- the currents within the underground metallic structure also commonly are caused by stray currents from such sources as electric railway tracks which are employed as one of the conductors for the supply of energy to the railway rolling equipment.
- the tendency of underground metallic structures to undergo electrolytic corrosion can be overcome by the cathodic system of protection.
- This system is based on creating and maintaining a difference of potential between the underground metallic structure and the immediately surrounding earth such that the metal structure is at a lower potential than the earth, wherefore current flow from the metal structure to the earth is substantially prevented.
- Such systems commonly provide the desired difference of potential between the underground metallic structure and the surrounding earth by connecting the negative side of a rectified alternating current circuit to the buried structure.
- the positive side may be connected to a suitable electrode buried in the earth nearby, or in the case when the principal cause of the electrolysis is a nearby electric railway, to the railway track. In some instances the positive connection is made to the negative bus bar at the generating station.
- the current required varies with soil conditions, but, ordinarily, currents of the order of amperes have proven adequate in practice.
- the current flow may fluctuate due to various changes in the conditions such as changes in the conductivity of the soil due to rainfall and to changes in the potential of the track work of the railway.
- Rise of the current above values which are adequate to substantially prevent electrolytic action represents'an expenditure of energy which does not produce a corresponding beneficial result. Also, such large currents cause unnecessary heating and other undesired effects in the rectifiers.
- a further object is to provide an electrolytic corrosion control circuit which is automatically responsive to rise of current above a predetermined value to limit the current flow.
- the electrolytic corrosion control system includes a circuit connected to the underground structure which includes means for producing a difference of potential to depress the potential of the structure and means responsive to the value of the current in the circuit connected to the structure to render inoperative the means for producing the difference of potential.
- the system of the present invention includes a circuit connecting the underground metallic structure with the earth adjacent the structure, with the rails of an electric railway in the vicinity of the underground metallic structure or with the negative bus bar at the generating station.
- An electromotive force is impressed on this circuit in a direction to tend to cause current flow from the underground structure to the earth, the track, or the bus bar, as the case may be.
- the current supply in practice is an alternating source which is connected to the circuit by means of a transformer whose secondary winding is in series with the circuit, in which case a suitable rectifier is provided in series with the transformer secondary winding.
- a shunt circuit is arranged across the rectifier and the transformer secondary winding.
- the shunt circuit contains a set of normally open relay contacts which are adapted to be closed by a relay operating winding, connected in series with the transformer secondary winding and the rectifier, when the current in the circuit exceeds a predetermined value.
- the relay may be provided with a second set of contacts arranged to open the supply circuit to the transformer primary winding simultaneously with the short cir- 3 cuiting of the rectifier and the transformer secondary winding.
- the underground pipe which is to be protected is illustrated at I.
- a rail of an adjacent electric railway track is illustrated at 2.
- the pipe I would be gradually eroded by the action of stray currents from the track 2 which would flow into the pipe at points at which the pipe is of lower potential than the adjacent earth and would then leave the pipe at points where the potential of the adjacent earth is less than the potential of the pipe.
- a negative potential with respect to the earth is impressed on the pipe from a suitable source of alternating electromotive force 3.
- Alternating current from the source 3 is supplied to the primary winding 4 of a transformer 5 whose secondary winding 6 is connected between the pipe I and the track 2 by a circuit 8.
- a rectifier i is included in the circuit 8 in series with the secondary winding 6 of the transformer 5.
- the rectifier is so arranged as to permit current now in the direction from the pipe i to the track 2.
- the rectifier illustrated symbolically at I may be of any suitable type and may be a single rectifier or a set of rectifiers connected in the well-known Wheatstone bridge arrangement.
- a shunt circuit 9 is provided, connected in parallel with the rectifier I and the secondary winding 6 of the transformer.
- a relay in has its operating winding ll connected in the circuit 6, in series with the transformer secondary winding 6 and the rectifier 1, to be responsive to the current in this circuit.
- Relay III is provided with a set of normally-open contacts I! connected in the shunt circuit 9 which are adapted to be closed upon operation of the relay to close the shunt circuit 9. This operation will occur when the current flowing in circuit 8, and consequently through the operating winding H of relay I0, exceeds a preselected value which is determined by the characteristics of the relay l0.
- the alternating current source and the rectifier are for all practical purposes rendered inoperative and the connection between the pipe and the track is a direct grounding connection through the shunt circuit 9.
- the relay it opens the shunt circuit 9.
- a cathodic protective system for protecting underground structures against electrolytic corrosion including, in combination, an underground structure, an electric railway track in the vicinity of the structure, a circuit connecting the track and the underground structure, means for impressing an electromotive force on said circuit, and means for rendering said first-named means inoperative upon rise of current in said circuit above a predetermined value, and operative when said potential difierence falls below said value.
- a cathodic protective system for protecting underground structures from electrolytic corrosion including, in combination, an underground structure, a grounding circuit connected to said structure, a source of electromotive force connected in series in said circuit, and means for short circuiting said source of electromotive force upon rise of current in said circuit above a predetermined value.
- a cathodic protective system for protecting underground metallic structures from electrolytic corrosion including, in combination, an underground metallic structure, an electric railway track in the vicinity of the structure, a circuit connecting the track and the underground structure, a rectifier and a source of alternating electromotive force connected in series in said circuit and means for short circuiting said rectifier and source of electromotive force upon rise of current in said circuit above a predetermined value.
- a cathodic protective system for protecting underground metallic structures from electrolytic corrosion including, in combination, an underground metallic structure, an electric railway track in the vicinity of the underground structure, a circuit connecting the track and the underground structure, a rectifier connected in said circuit, a source of electromotive force, a transformer having a primary winding connected to said source and a secondary winding connected in said circuit in series with said rectifier, a relay having an operating winding connected in said circuit in series with the rectifier and the transformer winding, a pair of normally-open contacts connected to said circuit in shunt with said rectifier and transformer secondary winding, and a set of normally-closed contacts connected in the supply circuit to said transformer primary winding, whereby said relay operates upon rise of current in said circuit above a predetermined value to short circuit the rectifier and transformer secondary winding and to disconnect said source of electromotive force from the transformer primary winding.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Prevention Of Electric Corrosion (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL65387D NL65387C (enrdf_load_stackoverflow) | 1945-08-13 | ||
US610643A US2483397A (en) | 1945-08-13 | 1945-08-13 | Cathodic protection system |
FR939377D FR939377A (fr) | 1945-08-13 | 1946-10-11 | Perfectionnements à la protection de structures métalliques souterraines |
CH275450D CH275450A (fr) | 1945-08-13 | 1947-06-06 | Installation de protection d'une structure métallique souterraine. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US610643A US2483397A (en) | 1945-08-13 | 1945-08-13 | Cathodic protection system |
Publications (1)
Publication Number | Publication Date |
---|---|
US2483397A true US2483397A (en) | 1949-10-04 |
Family
ID=24445861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US610643A Expired - Lifetime US2483397A (en) | 1945-08-13 | 1945-08-13 | Cathodic protection system |
Country Status (4)
Country | Link |
---|---|
US (1) | US2483397A (enrdf_load_stackoverflow) |
CH (1) | CH275450A (enrdf_load_stackoverflow) |
FR (1) | FR939377A (enrdf_load_stackoverflow) |
NL (1) | NL65387C (enrdf_load_stackoverflow) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3055813A (en) * | 1958-11-17 | 1962-09-25 | Pure Oil Co | Current controller for use in cathodic protection of steel structures |
US3098026A (en) * | 1958-10-08 | 1963-07-16 | Engelhard Ind Inc | Cathodic protection system |
US3182007A (en) * | 1958-12-01 | 1965-05-04 | Continental Oil Co | Electrode assembly for the anodic passivation of metals |
US3208925A (en) * | 1960-01-07 | 1965-09-28 | Continental Oil Co | Anodic protection against corrosion |
US5321318A (en) * | 1992-02-05 | 1994-06-14 | Michel Montreuil | Stray current neutralizing method and device |
US5541459A (en) * | 1992-03-05 | 1996-07-30 | Stri Ab | Device for compensation of an alternating voltage which occurs between a medium and a metallic pipeline disposed in the medium |
US5825170A (en) * | 1997-01-24 | 1998-10-20 | Filtre-Expert | Magnetically coupled alternating stray current neutralizing method and system |
US7064459B1 (en) * | 2001-08-20 | 2006-06-20 | Brunswick Corporation | Method of inhibiting corrosion of a component of a marine vessel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1962696A (en) * | 1934-03-01 | 1934-06-12 | George I Rhodes | Method of and means for protecting pipe lines and other buried metallic structures from corrosion |
US1971146A (en) * | 1933-02-20 | 1934-08-21 | Western Union Telegraph Co | Electrical protective device |
US2053214A (en) * | 1934-04-21 | 1936-09-01 | Union Carbide & Carbon Corp | Electrode resistant to anodic attack |
US2395833A (en) * | 1943-01-09 | 1946-03-05 | Int Standard Electric Corp | Electrolysis switch |
-
0
- NL NL65387D patent/NL65387C/xx active
-
1945
- 1945-08-13 US US610643A patent/US2483397A/en not_active Expired - Lifetime
-
1946
- 1946-10-11 FR FR939377D patent/FR939377A/fr not_active Expired
-
1947
- 1947-06-06 CH CH275450D patent/CH275450A/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1971146A (en) * | 1933-02-20 | 1934-08-21 | Western Union Telegraph Co | Electrical protective device |
US1962696A (en) * | 1934-03-01 | 1934-06-12 | George I Rhodes | Method of and means for protecting pipe lines and other buried metallic structures from corrosion |
US2053214A (en) * | 1934-04-21 | 1936-09-01 | Union Carbide & Carbon Corp | Electrode resistant to anodic attack |
US2395833A (en) * | 1943-01-09 | 1946-03-05 | Int Standard Electric Corp | Electrolysis switch |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3098026A (en) * | 1958-10-08 | 1963-07-16 | Engelhard Ind Inc | Cathodic protection system |
US3055813A (en) * | 1958-11-17 | 1962-09-25 | Pure Oil Co | Current controller for use in cathodic protection of steel structures |
US3182007A (en) * | 1958-12-01 | 1965-05-04 | Continental Oil Co | Electrode assembly for the anodic passivation of metals |
US3208925A (en) * | 1960-01-07 | 1965-09-28 | Continental Oil Co | Anodic protection against corrosion |
US5321318A (en) * | 1992-02-05 | 1994-06-14 | Michel Montreuil | Stray current neutralizing method and device |
US5541459A (en) * | 1992-03-05 | 1996-07-30 | Stri Ab | Device for compensation of an alternating voltage which occurs between a medium and a metallic pipeline disposed in the medium |
US5825170A (en) * | 1997-01-24 | 1998-10-20 | Filtre-Expert | Magnetically coupled alternating stray current neutralizing method and system |
US7064459B1 (en) * | 2001-08-20 | 2006-06-20 | Brunswick Corporation | Method of inhibiting corrosion of a component of a marine vessel |
Also Published As
Publication number | Publication date |
---|---|
FR939377A (fr) | 1948-11-12 |
NL65387C (enrdf_load_stackoverflow) | |
CH275450A (fr) | 1951-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB1060643A (en) | Electrical fault detection arrangement | |
US2483397A (en) | Cathodic protection system | |
Gong et al. | Advanced analysis of HVDC electrodes interference on neighboring pipelines | |
Frantzeskakis et al. | Loss of neutral in low voltage eletrical installations with connected DG units-consequences and solutions | |
US3852641A (en) | Protective system for mobile electric power apparatus | |
US3055813A (en) | Current controller for use in cathodic protection of steel structures | |
EP2924145A1 (en) | Corrosion protection station using pulse current | |
US2880377A (en) | Safety system for ground conductor of trailing cable | |
RU2642141C1 (ru) | Способ защиты участков трубопроводов от геомагнитно-индуцированных блуждающих токов и устройство для его осуществления | |
US4152228A (en) | Method for reducing electrolytic interference with metal structures | |
Carlton | Electrical grounding and resulting corrosion | |
US1481289A (en) | Electrolysis mitigation | |
US1010907A (en) | Method of preventing alternating-current electrolysis. | |
US12381389B2 (en) | Method for controlling stray currents in a marine electrical supply system and a marine vessel comprising a marine electrical supply system | |
US1807903A (en) | Preserving underground piping | |
CN211771564U (zh) | 一种恒电位仪的排流抗干扰模块及油气管道保护系统 | |
CN210215552U (zh) | 一种杂散电流智能排流系统 | |
US2556705A (en) | Electrolysis switch | |
GB1224381A (en) | Device for protection of man against electrical shock from electric locomotive contact network, especially in pits and mines | |
GB848444A (en) | Improvements in and relating to electrical protective apparatus for rectifier installations | |
Bennett | Earth currents | |
US4184938A (en) | Apparatus for reducing electrolytic interference with metal structures | |
Baeckmann | Cathodic Protection of Underground Pipelines With Special Reference to Urban Areas | |
US1454895A (en) | Electrolysis mitigation | |
US2428583A (en) | Electrical motor control system |