US2463680A - Process of making a dust-free alkaline detergent product - Google Patents

Process of making a dust-free alkaline detergent product Download PDF

Info

Publication number
US2463680A
US2463680A US585916A US58591645A US2463680A US 2463680 A US2463680 A US 2463680A US 585916 A US585916 A US 585916A US 58591645 A US58591645 A US 58591645A US 2463680 A US2463680 A US 2463680A
Authority
US
United States
Prior art keywords
mixture
dust
product
making
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US585916A
Inventor
Thomas E Corrigan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyandotte Chemicals Corp
Original Assignee
Wyandotte Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyandotte Chemicals Corp filed Critical Wyandotte Chemicals Corp
Priority to US585916A priority Critical patent/US2463680A/en
Application granted granted Critical
Publication of US2463680A publication Critical patent/US2463680A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S29/00Metal working
    • Y10S29/031Pressing powder with other step

Definitions

  • My present invention which overcomes the foregoing difiiculties, consists of rolling or compressing of the alkali compound mixtures into a sheet-like form so that the individual particles of the alkali mixture product are in the form of individual sheet particles or flakes, each one of which is itself a mixture of the alkali compound ingredients.
  • the method of making the product of my invention involves the breaking-up of the original compressed or rolled sheet into smaller size sheets or fiakes, so that the entire mixture may be screened or classified. This permits a flexible and convenient determination of desired particle size in the final product without being dependent on the particle size of the originally admixed ingredients.
  • the product of my invention therefore, the advantages of being non-segregating. dust-free and of uniform particle size.
  • FIG. 1 is a flow sheet illustrating the process of my invention.
  • Figs. 2 to 5 are photomicrographs of sheet-like or fiake particles of various alkali compound mixtures made according to such process and illustrating the form of the: product of my invention. I r
  • alkali compounds such as those which are customarily formulated into alkali detergent mixtures
  • the individual particles of the chemical compounds forming the constituents thereof can be visually identified and separated one from the other.
  • picking apart of the individual granules of the caustic soda and soda ash has constituted one simple method by those skilled in the art for eiiecting a rough analysis of an alkali detergent mixture.
  • these simple alkali compound mixtures are subjected to pressure, such as being rolled out into a thin sheet, the individual particles become bound together into thin fiakes, each one of which is indistinguishable from the other and is of itself an admixture of the original, separate ingredients.
  • alkali compound mixtures can be satisfactorily compressed or rolled into sheet-like form in which the original particles become bonded together to produce a new form of product of fiaked particles each of which constitutes a mixture of the original alkali compound ingredients.
  • trisodium phosphate trisodium phosphate, tetrasodium pyrophosphate, and zincated caustic soda.
  • Fig. 1 illustrates one preferred method for practicing the process of my invention.
  • the ingredients referred to therein are caustic soda and soda ash which are first simply introduced and stirred together in the mixer.
  • the simple mixture is passed into the compression rolls where it is rolled out into thin sheets or flakes having a thickness in the range of .01 to 0.25 inch. Attempts to roll the mixtures into sheets or flakes of greater or lesser thickness than this range do not generally prove successful and hence I have determined that this optimum range of thickness is the best mode for practicing my invention.
  • the sheets or relatively large flakes issuing from the compression rolls are next introduced to the grinding mill where they are subjected to a breaking-up action.
  • Corrugated rolls or a hammer mill constitute satisfactory apparatus for this stage of the process.
  • the resultant product is then passed over the screen whereby the fines are removed and the finished product is ready for and use.
  • the fines are preferably returned to the compression rolls where they are added to the original mixture and very simply and conveniently compressed together with such mixture as it passes through the rolls.
  • the flnes may be returned to the initial step of the process, namely, to the mixer.
  • my process is conducted at room or normal temperature, since when operating upon the alkali compound ingredients indicated above, the interbonding action between the separate particles or granules of such ingredients is sufliciently satisfactory to produce a good, hard flake.
  • Example 2 A technically dry mixture of sodium metasilicate and sodium orthosilicate flnes was passed through the same 8 inch diameter rolls. The resultant flake from the rolls was .04 inch thick and is explifled in Fig. 3 which is a photomicrograph taken at 2 diameters under reflected light.
  • Example 3 A mixture of caustic soda, sodium metasilicate fines, and trisodium phosphate with a small amount of resin added, was passed through the compression rolls, resulting in a flake of .1 inch in thickness and having the appearance as shown in Fig. 4 which is also a photomicrograph taken at 2 diameters under reflected light. As will be noted from Fig. 4, the individual flakes show some darker areas which represent the resin constituent, and thus excellentlyserve to illustrate the manner in which the individual ingredients are distributed throughout the individual flaked particles.
  • Example 4 A mixture comprising sodium metasilicate flnes, crystal caustic soda and tetrasodium pyrophosphate was passed through the rolls and the resultant flake was approximately .03 inch thick. It was then broken up into smaller flakes and passed through a inch mesh screen. The flnal product therefrom was as shown in the photomicrograph of Fig. 5 (2 diameters under reflectedlight)
  • Example 5 A mixture of caustic soda, sodium hexametaphosphate and zincated causticv soda (ZnO in fused NaOH) was passed through the flaking rolls.
  • the resultant flake was approximately .1 inch in thickness, which-was subsequently passed over a 20 mesh screen. Oi. a total run of 2394 lbs. of the mixture passed through the compression rolls and the grinding mill, 2205 lbs. of 20 mesh or larger flakes were produced as the final product, leaving only 189 lbs. less than 20 mesh fines. These flnes are then available for use in the next batch.

Description

March 8, 1949. T. E. CORRIGAN 2,463,680
PROCESS OF MAKING A DUST-FREE ALKALINE DETERGENT PRODUCT Filed March 31, 1945 2 Sheets-Sheet l compouzn'r A (e CAUSTIC SODA) compouam' a e. .-sooA AsH) SCREEN FINISHED PRODUCT FINES FIG. I
INVENTOR. 7770mm? 6. (a/r1740 BY WM a? homey Mar h 8. 1949. T. E. CORRIGAN 2,463,630
PROCESS OF MAKING A DUST-FREE ALKALINE DETERGENT PRODUCT Filed March 51, 1945 2 Sheets- Sheet 2 I FIG. 2 FIG. 3
INVENTOR Thomas 5 Corn m ZdZlm K AT TOR EY Patented Mar... 8, 1949 PROCESS OF MAKING A DUST-FREE ALKALINE DETERGENT PRODUCT Thomul.
Corrlgan, to Wyandotte Chemi dotte, Mich. a corporation of Michigan Wyandotte, Mich, alsignor cals Corporation,
Wynn- Appllcafloli March 31, 1945, Serial No. 585,918 1 Chim. (Cl. 252-156) Various alkali compounds such as caustic soda (sodium hydroxide), soda ash (sodium carbonate), sodium phosphates and silicates, haveheretofore been mixed together in order to produce formulations or compositions having considerable usage in the industrial cleaning and detergent arts. One of the major difilculties encountered inthemakingupofsuchmixtureshasbeenthat the separate particles oi the individual compounds forming the ingredients of the mixture tend to segregate or to acquire non-uniform distribution-throughout the bulk of the mixtures, particularly on handling. transportation and storage. This difilculty becomes quite pronounced in the case where a relatively light powdery ingredient such as "1i8ht grade soda ash is admixed with a relatively heavier ingredientsuchas causticsodalnanyoneofitssolid forms, 1. e., granular, powder, fiake, etc. In addi-- tion, such mixtures are quite dusty, and during handling and transportation, the movement of the heavier particles of one ingredient or compound within the bulk mixture tends to have a milling or grinding efifect creating still more dust or powder content therein. This self-milling" effect ispresent even during the mixing of the alkali compound ingredients, and prior to pack agingorshipninansothatasaresultalarge amount of fines" are formed in the manufacturing process, and these fines represent a certain amount of loss and economic burden in that they must either be discarded or reworked.
My present invention, which overcomes the foregoing difiiculties, consists of rolling or compressing of the alkali compound mixtures into a sheet-like form so that the individual particles of the alkali mixture product are in the form of individual sheet particles or flakes, each one of which is itself a mixture of the alkali compound ingredients. The method of making the product of my invention involves the breaking-up of the original compressed or rolled sheet into smaller size sheets or fiakes, so that the entire mixture may be screened or classified. This permits a flexible and convenient determination of desired particle size in the final product without being dependent on the particle size of the originally admixed ingredients. The product of my invention, therefore, the advantages of being non-segregating. dust-free and of uniform particle size.
To the accomplishment of these and additional objectives and to enable any person skilled in the art readily to understand and practice the invention, the following full and concise description 2 a and annexed drawing setiorth the best mode in which I have contemplated applying the principle thereof. v
In said annexed drawing Fig. 1 is a flow sheet illustrating the process of my invention; and
Figs. 2 to 5, inc., are photomicrographs of sheet-like or fiake particles of various alkali compound mixtures made according to such process and illustrating the form of the: product of my invention. I r
When alkali compounds, such as those which are customarily formulated into alkali detergent mixtures, are simply stirred or admixed together, the individual particles of the chemical compounds forming the constituents thereof can be visually identified and separated one from the other. In fact, picking apart of the individual granules of the caustic soda and soda ash, for example, has constituted one simple method by those skilled in the art for eiiecting a rough analysis of an alkali detergent mixture. However, when these simple alkali compound mixtures are subjected to pressure, such as being rolled out into a thin sheet, the individual particles become bound together into thin fiakes, each one of which is indistinguishable from the other and is of itself an admixture of the original, separate ingredients.
I have discovered that alkali compound mixtures can be satisfactorily compressed or rolled into sheet-like form in which the original particles become bonded together to produce a new form of product of fiaked particles each of which constitutes a mixture of the original alkali compound ingredients. This applies particularly to mixtures containing compounds such as sodium hydroxide or sodium carbonate and in which there are two or more alkali compounds present such as those selected from the group of sodium orthosilicate, sodium metasilicate and sodium subsilicates (i. e., those in which the ratio of NaaO to S10: in the formula XNaa.YSiO: is
greater than 2 to 1), sodium hexametaphosphate, I
trisodium phosphate, tetrasodium pyrophosphate, and zincated caustic soda.
Fig. 1 illustrates one preferred method for practicing the process of my invention. The ingredients referred to therein, by way of exemplary illustration, are caustic soda and soda ash which are first simply introduced and stirred together in the mixer. The simple mixture is passed into the compression rolls where it is rolled out into thin sheets or flakes having a thickness in the range of .01 to 0.25 inch. Attempts to roll the mixtures into sheets or flakes of greater or lesser thickness than this range do not generally prove successful and hence I have determined that this optimum range of thickness is the best mode for practicing my invention. The sheets or relatively large flakes issuing from the compression rolls are next introduced to the grinding mill where they are subjected to a breaking-up action. Corrugated rolls or a hammer mill constitute satisfactory apparatus for this stage of the process. After the grinding or breaking-up of the large flakes into relatively smaller flakes, the resultant product is then passed over the screen whereby the fines are removed and the finished product is ready for and use. The fines are preferably returned to the compression rolls where they are added to the original mixture and very simply and conveniently compressed together with such mixture as it passes through the rolls. Alternatively, the flnes may be returned to the initial step of the process, namely, to the mixer.
The amount of flnes in the flnal product of my process is considerably reduced as compared to alkali compound mixing practices which have previously been employed. After considerable operation on a commercial scale, it has been determined that practically 100% of the components or ingredients originally introduced to the process goes directly to the formation of the flnished product. Thus, the problems heretofore encountered of accommodation and disposal of a relatively large amount of flnes, are substantially eliminated in my process.
Preferably my process is conducted at room or normal temperature, since when operating upon the alkali compound ingredients indicated above, the interbonding action between the separate particles or granules of such ingredients is sufliciently satisfactory to produce a good, hard flake.
' The possible hazard incident to the application of an amount of heat which would produce a semifluid. gummy mass or would incite a reaction between the individual ingredients, is likewise eliminated.
The following examples will better serve to illustrate the principle of my invention to those skilled in the art and more readily to enable the understanding and practice of same. These examples are given by way of illustration and not in limitation, the scope and particular deflnition of my invention being set forth in the appended Example 1 Equal parts by weight of crystal caustic soda (sodium'hydroxide) of 10 to.20 mesh particle size and light soda ash (sodium carbonate) were mixed together. The light soda ash had a'screen analysis as follows:
Percent by weight 100 mesh or larger 24 200 mesh or larger '73 2'10 mesh or larger 83 This mixture was fed between two 8 inch diameter rolls turning at 27 R. P. M. Prior to feeding in of this mixture, the rolls were set together with their surfaces in contact. As the mixture, passed between the rolls, they were slightly forced apart against resistance pressure.
4 mill where they were broken up into individual flakes of 16 to 20 mesh particle size, having a bulk density of .938 and producing a dust-free product of uniform appearance and uniform chemical constituency throughout its mass.
Example 2 A technically dry mixture of sodium metasilicate and sodium orthosilicate flnes was passed through the same 8 inch diameter rolls. The resultant flake from the rolls was .04 inch thick and is explifled in Fig. 3 which is a photomicrograph taken at 2 diameters under reflected light.
Example 3 A mixture of caustic soda, sodium metasilicate fines, and trisodium phosphate with a small amount of resin added, was passed through the compression rolls, resulting in a flake of .1 inch in thickness and having the appearance as shown in Fig. 4 which is also a photomicrograph taken at 2 diameters under reflected light. As will be noted from Fig. 4, the individual flakes show some darker areas which represent the resin constituent, and thus excellentlyserve to illustrate the manner in which the individual ingredients are distributed throughout the individual flaked particles.
. Example 4 A mixture comprising sodium metasilicate flnes, crystal caustic soda and tetrasodium pyrophosphate was passed through the rolls and the resultant flake was approximately .03 inch thick. It was then broken up into smaller flakes and passed through a inch mesh screen. The flnal product therefrom was as shown in the photomicrograph of Fig. 5 (2 diameters under reflectedlight) Example 5 A mixture of caustic soda, sodium hexametaphosphate and zincated causticv soda (ZnO in fused NaOH) was passed through the flaking rolls.
The resultant flake was approximately .1 inch in thickness, which-was subsequently passed over a 20 mesh screen. Oi. a total run of 2394 lbs. of the mixture passed through the compression rolls and the grinding mill, 2205 lbs. of 20 mesh or larger flakes were produced as the final product, leaving only 189 lbs. less than 20 mesh fines. These flnes are then available for use in the next batch. This represents only 7.9% production of flnes even though the material has been subjected to a grinding operation, and the starting materials themtogether substantially equal parts by weight of dry solid sodium hydroxide of 10 to 20 mesh particle size and dry solid sodium carbonate the majority of which has a particle size not larger than mesh, rolling-such mixture under pressure into a sheet-like flake having a thickness of not over 0.1 inch, and then breaking such flake into smaller flake particles, the majority of the latter having a particle size of no smaller than 20 mesh.
'THOMAS E. COBRIGAN. (References on following page) Number Name Date REFERENCES CITED 2,041,448 Zinn May 19, 1936 The following references are of record in the 2,282,013 Baker May 5, 1942 file of this patent: 2,303,397 Schwartz Dec. 1, 1942 UNITED STATES PATENTS OTHER REFERENCES Number Name Date Chemical Formulary, Bennett, vol. 6 (1943), 195,267 Elliott et a1 Sept. 18, 1877 pages 481 and 482, Bureau of Standards Circular, 1,715,999 Flammer et a1 June 4, 1929 C424 (1939), page 19.
2,035,652 Hall Mar. 31, 1936 lo
US585916A 1945-03-31 1945-03-31 Process of making a dust-free alkaline detergent product Expired - Lifetime US2463680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US585916A US2463680A (en) 1945-03-31 1945-03-31 Process of making a dust-free alkaline detergent product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US585916A US2463680A (en) 1945-03-31 1945-03-31 Process of making a dust-free alkaline detergent product

Publications (1)

Publication Number Publication Date
US2463680A true US2463680A (en) 1949-03-08

Family

ID=24343511

Family Applications (1)

Application Number Title Priority Date Filing Date
US585916A Expired - Lifetime US2463680A (en) 1945-03-31 1945-03-31 Process of making a dust-free alkaline detergent product

Country Status (1)

Country Link
US (1) US2463680A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1012012B (en) * 1953-06-05 1957-07-11 Dr Heinrich Carlsohn Process for the production of alkaline cleaning and degreasing agents
US2917381A (en) * 1956-07-06 1959-12-15 Otto Construction Corp Process of flaking and granulating ammonium sulphate
US2935387A (en) * 1957-05-31 1960-05-03 Duval Sulphur & Potash Company Compacting process for producing a granular product
US2960724A (en) * 1956-03-09 1960-11-22 Houilleres Du Nord Ets Process for preparing, by a mechanical way, polyethylenes with homogeneous physico-chemical properties
US3041716A (en) * 1956-01-18 1962-07-03 Commissariat Energie Atomique Method of treating metallic powders
US3213029A (en) * 1962-02-21 1965-10-19 Monsanto Co Granular compositions containing trichlorocyanuric acid
US3234141A (en) * 1963-03-29 1966-02-08 Olin Mathieson Manufacture of calcium hypochlorite article
US3491029A (en) * 1964-10-24 1970-01-20 Henkel & Cie Gmbh Solid storable and non-foaming bottle cleansing agents
US3887614A (en) * 1969-12-03 1975-06-03 Lion Fat Oil Co Ltd Detergent composed of hollow spherical pellets, and process for manufacturing the same
US3931036A (en) * 1974-05-13 1976-01-06 Philadelphia Quartz Company Compacted alkali metal silicate
US4242216A (en) * 1979-09-27 1980-12-30 Chemed Corporation Stabilized dichlorodimethyl hydantoin

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US195267A (en) * 1877-09-18 Improvement in soap-making compositions
US1715999A (en) * 1924-11-20 1929-06-04 Flammer Ernst Manufacture of soap
US2035652A (en) * 1934-04-04 1936-03-31 Hall Lab Inc Washing and cleansing
US2041448A (en) * 1933-09-05 1936-05-19 Victor Chemical Works Flaking amorphous solids
US2282018A (en) * 1938-10-31 1942-05-05 Philadelphia Quartz Co Manufacture of alkali metal silicate detergents
US2303397A (en) * 1939-05-01 1942-12-01 Hall Lab Inc Alkaline detergent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US195267A (en) * 1877-09-18 Improvement in soap-making compositions
US1715999A (en) * 1924-11-20 1929-06-04 Flammer Ernst Manufacture of soap
US2041448A (en) * 1933-09-05 1936-05-19 Victor Chemical Works Flaking amorphous solids
US2035652A (en) * 1934-04-04 1936-03-31 Hall Lab Inc Washing and cleansing
US2282018A (en) * 1938-10-31 1942-05-05 Philadelphia Quartz Co Manufacture of alkali metal silicate detergents
US2303397A (en) * 1939-05-01 1942-12-01 Hall Lab Inc Alkaline detergent

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1012012B (en) * 1953-06-05 1957-07-11 Dr Heinrich Carlsohn Process for the production of alkaline cleaning and degreasing agents
US3041716A (en) * 1956-01-18 1962-07-03 Commissariat Energie Atomique Method of treating metallic powders
US2960724A (en) * 1956-03-09 1960-11-22 Houilleres Du Nord Ets Process for preparing, by a mechanical way, polyethylenes with homogeneous physico-chemical properties
US2917381A (en) * 1956-07-06 1959-12-15 Otto Construction Corp Process of flaking and granulating ammonium sulphate
US2935387A (en) * 1957-05-31 1960-05-03 Duval Sulphur & Potash Company Compacting process for producing a granular product
US3213029A (en) * 1962-02-21 1965-10-19 Monsanto Co Granular compositions containing trichlorocyanuric acid
US3234141A (en) * 1963-03-29 1966-02-08 Olin Mathieson Manufacture of calcium hypochlorite article
US3491029A (en) * 1964-10-24 1970-01-20 Henkel & Cie Gmbh Solid storable and non-foaming bottle cleansing agents
US3887614A (en) * 1969-12-03 1975-06-03 Lion Fat Oil Co Ltd Detergent composed of hollow spherical pellets, and process for manufacturing the same
US3931036A (en) * 1974-05-13 1976-01-06 Philadelphia Quartz Company Compacted alkali metal silicate
US4242216A (en) * 1979-09-27 1980-12-30 Chemed Corporation Stabilized dichlorodimethyl hydantoin

Similar Documents

Publication Publication Date Title
US2463680A (en) Process of making a dust-free alkaline detergent product
US3931036A (en) Compacted alkali metal silicate
US3361675A (en) Dry-mixed detergent compositions
US3820970A (en) Less dusty granular gypsum product and process
EP0052693B1 (en) Process for making porous glass bodies
US4430107A (en) Method for making shaped foam glass bodies
US2219646A (en) Sodium orthosilicate and method of making same
US2195754A (en) Crushing soft heterogeneous material
US2333873A (en) Salt tablet containing a calcium salt and process for making the same
US3852212A (en) Method of producing hydrated sodium tripolyphosphate composition
US2500968A (en) Carbon black process
US3244635A (en) Sorbent products and method for making same from attapulgite clay
US2218563A (en) Manufacture of explosive compositions or blasting charges
US3548046A (en) Granulation of oil-coated water-soluble fine particle of potash material
DD140987A1 (en) CONTINUOUS MANUFACTURING METHOD GRANULATED WASHING AND CLEANING AGENT IN SWIVEL LAYERED APPARATUS
US2219660A (en) Production of calcium hypochlorite products
US3344078A (en) Drain cleaning compositions
US1083571A (en) Process of making disinfectant soap.
US1590795A (en) Process of increasing the density of finely-divided material
US2572359A (en) Making glassy phosphate compositions
US1855676A (en) Compositions containing alkali metal peroxides
US3584098A (en) Method of manufacture of improved sewer and drain cleaner compositions
US2131433A (en) Baking powder and method of improving the keeping qualities of the same
US3380667A (en) Free-flowing cyanuric acid
US2165084A (en) Process for the production of a sintered product