US2457820A - Amino acid solution and process for preparing the same - Google Patents

Amino acid solution and process for preparing the same Download PDF

Info

Publication number
US2457820A
US2457820A US637498A US63749845A US2457820A US 2457820 A US2457820 A US 2457820A US 637498 A US637498 A US 637498A US 63749845 A US63749845 A US 63749845A US 2457820 A US2457820 A US 2457820A
Authority
US
United States
Prior art keywords
amino acids
acid
mixture
acids
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US637498A
Inventor
Eugene E Howe
Tishler Max
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck and Co Inc
Original Assignee
Merck and Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck and Co Inc filed Critical Merck and Co Inc
Priority to US637498A priority Critical patent/US2457820A/en
Application granted granted Critical
Publication of US2457820A publication Critical patent/US2457820A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids

Definitions

  • This invention relates to amino acids and particularly to amino acid mixtures of the type intended for parenteral, rectal, and oral use in therapy requiring the administration of large amounts of amino acids, and to the preparation of such mixtures.
  • Amino acid mixtures of this sort are finding wide-spread use in medicine to restore and maintain the proper nitrogen balance and the necessary nutritional state of the body in the treatment of conditions where a, large protein loss exists as, for example, after injury, post-operative shock, severe malnutrition, damage to the alimentary canal, and the like.
  • Amino acid mixtures previously available in. the form of acid, basic, or enzymatic hydrolysates are not entirely satisfactory because they cause certain undesirable side reactions when administered in large doses and at a fast rate. There is. for example, a marked tendency to produce nausea and vomiting when such hydrolysates are administered at rates or in amounts exceeding very low limits. In most cases where administration of amino acid mixture may be administered parenterally is clearly demonstrated by the following amino acids is necessary or desirable, side re- Recently, Madden et al., J. Exptl. Med. 79,
  • novel features of the present invention include, as new products, balanced mixtures of the natural essential amino acids in substantially pure form, characterized as being i'ree or dicarboxylic acids and substantially free of physiologically inactive isomeric amino acids, and the process of preparin: such mixtures that comprises isolating from a protein acid hydrolysate a fraction consisting 01' substantially pure natural essential monoamino mono'carboxylic acids, and adding to said fraction substantially pure tryptophane, essential basic amino acids, and fortifying amounts of essential monoamino monocarboxylic acids present but deficient in said fraction.
  • any protein which is high in essential amino acid content can be used as the starting material.
  • Casein, lactalbumin, fibrin, blood plasma proteins, and yeast proteins are but a few of the more common proteins that can be used and it will be understood that mixtures of two or more protein materials can be employed equally as Well as individual proteins.
  • Preparation of an acid hydrolysate of the selected protein or protein mixture is efiected by conventional hydrolysis procedure as, for example, by heating with sulfuric acid, hydrohalic acids, phosphoric acid, sulfonic acids, and the like.
  • the desired hydrol ysis is effected by heating for about 20 hours in 20% by volume (approximately 7.5 N) sulfuric acid. It will be understood, however, that heating for a longer period with a less concentrated acid or for a shorter period with more concentrated acid is equally as effective in forming the protein hydrolysate.
  • excess acid is removed by forming an insoluble salt of the acid and filtering ofi the precipitate.
  • sulfuric acid can be removed by addition of barium hydrate sufflcient to obtain a pH of about 5.4
  • Hydrohalic acids can be removed by addition of silver oxide or ion exchange bases and, if alkyl sulionic acids are used in the hydrolysis, excesses can be removed as in the case of sulfuric acid by addition of barium hydrate.
  • Excess phosphoric acid can be likewise removed by forming the insoluble calcium or barium salt.
  • EXAMPLE Step 1 About 450 gms. of technical casein is heated under refiux for approximately 20 hours with about 1800 gms. of about 7.5 N sulfuric acid (20% by volume). The resulting hydrolysate is treated with sumcient barium hydrate to obtain a pH of about 5.4 and causing precipitation of barium sulfate which is removed and washed by conventional chemical operations.
  • Step 2 The resulting filtrate and washings are concentrated under reduced pressure to approximately 2200 cc., and the remaining sulfate precipitated with additional barium hydrate. The solution is then cooled to about 5-10 C. for about 16 hours causing precipitation of tyrosine. To this suspension is added about 45 gm's. of activated charcoal and the mixture filtered. The precipitate is washed with about 150 cc. of water which is then added to the filtrate.
  • Step 3 The resulting solution is extracted batch-wise with about 20 two liter portion of butanol.
  • the solution can be continuously extracted in a liquid liquid-extractor with butanol for about 36 hours.
  • the butanol is then concentrated under reduced pressure until .solved butanol and then rediluted to about essential amino acids contained therein.
  • the filtrate and washings combined and concentrated under diminished pressure to approximately 6 liters. During this heating, ammonia is evolved.
  • the resulting solution obtained is known as the basic fraction and contains the three basic essential amino acids, arginine, histidine, and lysine, which have been preferentially absorbed in the Amberlite column.
  • Step 5 The M. A. fraction obtained in step 3 and the basic fraction obtained in step 4 are then assayed to determine the amounts of individual
  • the M. A. fraction was found to contain approximately 14.3% isoleucine, 32% leucine, 10.3% methionine, 16% phenylalanine, 3.12% threonine and 11.1% valine; and the basic fraction was found to contain about 33% arginine, 15% histidine, and 49% lysine.
  • the two fractions are combined in the proper proportions and amounts of tryptophane and other crystalline amino acids in which the two fractions are deficient are then added to give the concentration of individual amino acids that is desired in the final mixture.
  • a typical solution has the following approximate composition after combination of the frac tions and fortification:
  • This solution is diluted to 1250 cc. and corresponds to an 8% solution of the Madden mixture.
  • Phenylalanine Threonine 'lryptophane Valine Total
  • our mixture contains a substantially higher percentage (based upon total solids) of essential amino acids than do other available preparations.
  • Lactalbumln was .chosen as a protein for comparison because it is considered to be extremely well-balanced with respect to essential amino acids.
  • acid hydrolysates generally, after removal of the excess acid and precipitation of tyrosine, can be subjected to subsequent steps for separation and purification of the monoamino monocarboxyllc acid and basic amino acid fractions.
  • the extraction of the essential monoamlno monocarboxylic acids can be effected with any 3 to 5 carbon alcohol.
  • adsorbents which can be I used for the isolation of the basic essential amino acid fraction.
  • these include, in addition to the Amberlite ion exchange resins (completely cured phenol formaldehyde synthetic resins, 0 stage) Zeo Karb H (a natural resin made by sulfonating coal), Filtrol-neutral (a type of fuller's earth) and the like. Elution of the adsorbate can also be effected by mineral acids other than sulfuric acid such as 5-35% hydrochloric acid or 8-12% phosphoric acid which are then removed by suitable means. The adsorbate may also be eluted with about 18% aqueous ammonia, and the ammonia is then removed by distillation.
  • the basic fraction can also be obtained by electrical transport methods or by precipitation with phosphotungstic acid.
  • composition of the final product can be varied at will to meet demands for large amounts of a uniform product as well as for products having particular compositions to treat specific cases.
  • the improved mixtures of the present invention can also be prepared by combining the substantially pure monoamino monocarboxylic acid fraction prepared as above described with tryptophane and fortifying amounts of amino acids present but deficient in said fraction,'and then supplying the three basic amino acids individually derived in pure form from the particular starting protein hydrolysate, or from other sources.
  • the solid components of an amino acid mixture, according to the present invention should contain about 52-57% of the M. A.
  • the small amount of the inactive isomer introduced in the racemic compound does not appreciably decrease the tolerance of the mixture.
  • the tendency to decrease the tolerance of the mixture becomes more pronounced.
  • An aqueous amino acid solution for parenteral, rectal, and oral administration containing not more than of the essential amino acids in the inactive d-form, solid components of said solution being free of dicarboxylic acids and comprising the natural essential amino acids leucine, isoleucine, phenylalanine, valine, methionine, threonine, arginine, histidine, and lysine, racemic essential amino acids including tryptophane, and the non-essential amino acid glycine.

Description

mixtures.
Patented Jan. 4, 1949 AMINO ACIDSOLUTION AND PROCESS F PREPARING THE SAME V Eugene E. Rowe, Linden, and Max Tishler, Rahway, N. 1.,
assignora to Merck & 00., Inc., Rahway, N. 1., a corporation of New Jersey No Drawing. Application December 27, 1945, Serial No. 837,498
1 3 Claims.
This invention relates to amino acids and particularly to amino acid mixtures of the type intended for parenteral, rectal, and oral use in therapy requiring the administration of large amounts of amino acids, and to the preparation of such mixtures. Amino acid mixtures of this sort are finding wide-spread use in medicine to restore and maintain the proper nitrogen balance and the necessary nutritional state of the body in the treatment of conditions where a, large protein loss exists as, for example, after injury, post-operative shock, severe malnutrition, damage to the alimentary canal, and the like.
Amino acid mixtures previously available in. the form of acid, basic, or enzymatic hydrolysates are not entirely satisfactory because they cause certain undesirable side reactions when administered in large doses and at a fast rate. There is. for example, a marked tendency to produce nausea and vomiting when such hydrolysates are administered at rates or in amounts exceeding very low limits. In most cases where administration of amino acid mixture may be administered parenterally is clearly demonstrated by the following amino acids is necessary or desirable, side re- Recently, Madden et al., J. Exptl. Med. 79,
607-624 (1944) hasshown that mixtures of eleven pure amino acids containing 60% of natural essential amino acids are definitely superior to protein hydrolysates in being tolerated, maintaining nitrogen balance, and in regenerating blood protein. The mixtures of pure amino acids thus have the advantage that they can be infused into patients more rapidly and in larger amounts. There are also marked disadvantages in such large part of which probably can not be utilized by the human body (see Rose, Physiological Reviews, 18, 109 (1938); Albanese, Bulletin of Johns Hopkins Hospital, (1944)) and which undoubtedly limits the usefulness oi the mixture.
It is now discovered in accordance with the present invention that by a new procedure, fully hereinafter described, it is possible to prepare from inexpensive protein material an amino acid mixture consisting predominantly of the natural Foremost of these is the high cost of 40 tabulation based upon an extended comparison of the rates at which various preparations are tolerated when a total of 220 mgms. or N/kgm. 01' body weight is infused into the normal dog.
Team: I
- InwesItImte 1!;
mm. gm. Prepmm min. WhIO h will produce vomiting Our mixture Q. 30 Madden-mixture of pure amino aci 6 Enz matic hydrolysate 4 A01 hydrolysate 2 A further advantage or our mixture over the Madden mixture is that there is less spillage into the urine. When both solutions are infused at 6 mgms. of N/kgm./min. and a total of 200 mgms. of N/kgm. is given, 19% ofthe amino acids of the Madden solution is lost into the urine in 24 hours whereas only 13% of those of our mixture is lost in an equal period of time.
Speed of infusion would be or no great advantage if there were a corresponding increase of spillage of amino acids into the urine. Experiments have shown this not to be the case with our solution; the loss into the urine is the same at rates of 6 and 12 mgms. of N/k-gm./min.
Regarded in certain of their broader aspects, novel features of the present invention include, as new products, balanced mixtures of the natural essential amino acids in substantially pure form, characterized as being i'ree or dicarboxylic acids and substantially free of physiologically inactive isomeric amino acids, and the process of preparin: such mixtures that comprises isolating from a protein acid hydrolysate a fraction consisting 01' substantially pure natural essential monoamino mono'carboxylic acids, and adding to said fraction substantially pure tryptophane, essential basic amino acids, and fortifying amounts of essential monoamino monocarboxylic acids present but deficient in said fraction.
In carrying out the process in accordance with essential amino acids which is superior nutrition- 55 the present invention, any protein which is high in essential amino acid content can be used as the starting material. Casein, lactalbumin, fibrin, blood plasma proteins, and yeast proteins are but a few of the more common proteins that can be used and it will be understood that mixtures of two or more protein materials can be employed equally as Well as individual proteins.
Preparation of an acid hydrolysate of the selected protein or protein mixture is efiected by conventional hydrolysis procedure as, for example, by heating with sulfuric acid, hydrohalic acids, phosphoric acid, sulfonic acids, and the like. By way of illustration, the desired hydrol ysis is effected by heating for about 20 hours in 20% by volume (approximately 7.5 N) sulfuric acid. It will be understood, however, that heating for a longer period with a less concentrated acid or for a shorter period with more concentrated acid is equally as effective in forming the protein hydrolysate.
After completion of the hydrolysis, excess acid is removed by forming an insoluble salt of the acid and filtering ofi the precipitate. Thus, for example, sulfuric acid can be removed by addition of barium hydrate sufflcient to obtain a pH of about 5.4 Hydrohalic acids can be removed by addition of silver oxide or ion exchange bases and, if alkyl sulionic acids are used in the hydrolysis, excesses can be removed as in the case of sulfuric acid by addition of barium hydrate. Excess phosphoric acid can be likewise removed by forming the insoluble calcium or barium salt. Thus, it is apparent that protein acid hydrolysates generally, when free of excess acid, are suitable for treatment according to successive steps embodied in the present invention. It will be noted, in this connection, that it is not necessary to remove all of the acid from the hydrolysate'. Retention of amounts of acid sumcient to form hydrohalide, sulfate, or other quaternary salts of a portion of the amino acids is not objectionable and, in fact, is in some instances to be desired as such salts are well tolerated and utilized in the body.
By way of illustration, the following example is given as a typical procedure for converting a protein or protein mixture to a mixture or substantially pure natural essential amino acids having the new and advantageous properties herein disclosed.
EXAMPLE Step 1.About 450 gms. of technical casein is heated under refiux for approximately 20 hours with about 1800 gms. of about 7.5 N sulfuric acid (20% by volume). The resulting hydrolysate is treated with sumcient barium hydrate to obtain a pH of about 5.4 and causing precipitation of barium sulfate which is removed and washed by conventional chemical operations.
Step 2.-The resulting filtrate and washings are concentrated under reduced pressure to approximately 2200 cc., and the remaining sulfate precipitated with additional barium hydrate. The solution is then cooled to about 5-10 C. for about 16 hours causing precipitation of tyrosine. To this suspension is added about 45 gm's. of activated charcoal and the mixture filtered. The precipitate is washed with about 150 cc. of water which is then added to the filtrate.
Step 3.--The resulting solution is extracted batch-wise with about 20 two liter portion of butanol. Alternatively, the solution can be continuously extracted in a liquid liquid-extractor with butanol for about 36 hours. The butanol is then concentrated under reduced pressure until .solved butanol and then rediluted to about essential amino acids contained therein.
About 4 liters of the solution thus prepared is passed through a column containing about 2006 gms. of Amberlite IR-lOO (34% moisture) (a completely cured phenol formaldehyde synthetic resin, C stage). The column is then washed with about 4 liters of water, and finally eluted with approximately 4 liters of sulfuric acid (4.5%). This column is again washed with about 4 liters of water, the first two liters of which are combined with the acid eluate,
Four such eluates and washings are combined and the sulfuric acid is removed by balancing with barium hydrate. The precipitated barium sulfate is removed and washed with water, and
the filtrate and washings combined and concentrated under diminished pressure to approximately 6 liters. During this heating, ammonia is evolved. The resulting solution obtained is known as the basic fraction and contains the three basic essential amino acids, arginine, histidine, and lysine, which have been preferentially absorbed in the Amberlite column.
Step 5.The M. A. fraction obtained in step 3 and the basic fraction obtained in step 4 are then assayed to determine the amounts of individual The M. A. fraction was found to contain approximately 14.3% isoleucine, 32% leucine, 10.3% methionine, 16% phenylalanine, 3.12% threonine and 11.1% valine; and the basic fraction was found to contain about 33% arginine, 15% histidine, and 49% lysine. On the basis of this data, the two fractions are combined in the proper proportions and amounts of tryptophane and other crystalline amino acids in which the two fractions are deficient are then added to give the concentration of individual amino acids that is desired in the final mixture.
Suificient water is added to the mixture to place all components in solution and nitrogen is passed through the solution for several minutes so that all but traces of oxygen are removed (to prevent decomposition of tryptophane in subsequent processing). The solution is then treated with about 10% (based upon weight of solids in the solution) of activated charcoal, filtered, and then autoclaved at about C. under nitrogen for about three hours. The solution is then allowed to stand in'the cold for about16 hours and is again filtered through about 2% of activated charcoal. The solution is now complete but for final sub-division and subsequent sterilization which is efiected by autoclaving for about 30 minutes under nitrogen or, alternatively, by filtration through a suitable adsorbent material such as Ertel discs (filter pads of an asbestos composition) Before sub-dividing the solution, its nitrogen content is determined by the Kjeldahl method and it is tested biologically for pyrog'ens in the rabbit, toxicity in the mouse, tolerance in the dog, and antigenicity in the guinea pig.
A typical solution has the following approximate composition after combination of the frac tions and fortification:
This solution is diluted to 1250 cc. and corresponds to an 8% solution of the Madden mixture.
Below is a tabulation of the essential amino acids content of a typical solution on a dry. basis:
TABLE III Per cent of Essential Amino Acids Bonds Arglnine Histidlne...
Phenylalanine Threonine. 'lryptophane Valine Total In addition to advantages previously mentioned. it will be noted from the following tabulation that our mixture contains a substantially higher percentage (based upon total solids) of essential amino acids than do other available preparations.
Tas a IV Per cent of essential amino acids in solids Commercial N t l fl l tes a am y r ysa Our Madden Essential Lactalbumln Amino Acids Mixture Mixture E I nz matc Acid Arginine a. e c. a a. 4 3.8 as H tidine 3.0 3.0 v 2.0 1.0 2.1 Isoleucine 7.8 6. 4 6. 0 0. 1 0. 4 Lcucine 17. 5 15. 4 7. 7 l0. 6 i0. 5 Lysine. 9.8 9.8 7.8 8.2 9.0 Methionine. 6. 2 3.1 2.0 3. 5 3.1 Phenylalanine 8. 7 3. 5 4. 4 3. 6 6. 4 Threonine 6. 4 6. 4 5.1 2. 9 7. 4 Tryptophane, 0. 9 0. 9 1. l 1. 0 2. 6 Valine 6. 1 6. 9 5. 8 7. 3 6. 4
Than 72.0 60.0 45.0 48.7 51.3
Essential amino acids in inactive form 5.0 25.0
Lactalbumln was .chosen as a protein for comparison because it is considered to be extremely well-balanced with respect to essential amino acids.
Our preparation, as well as Madden's mixture of synthetic amino acids, is essentially free of dicarboxylic amino acids whereas the hydrolysate preparations and lactalbumin contain about 25% of dicarboxylic acids. This accounts in part for the low toxicity of the present mixture, particularly when administered parenterally, as shown in Table I. The marked diflerence in toxicity between our mixture and that of Madden is probably due to the fact that Madden's mixture. being made up largely of synthetic amino acids, con- .tains larger amounts of inactive d-iso'ineis, to-
gether with the l-, or natural essentialamino acids.
As previously pointed out, acid hydrolysates generally, after removal of the excess acid and precipitation of tyrosine, can be subjected to subsequent steps for separation and purification of the monoamino monocarboxyllc acid and basic amino acid fractions. The extraction of the essential monoamlno monocarboxylic acids can be effected with any 3 to 5 carbon alcohol.
Although some-of these alcohols do not form separate layers when mixed with water alone, a
a separation is'efi'ected in the presence of concentrated amino acid solutions. Water can be removed from the extract at either atmospheric pressure or reduced pressure.
There are a number of adsorbents'which can be I used for the isolation of the basic essential amino acid fraction. These include, in addition to the Amberlite ion exchange resins (completely cured phenol formaldehyde synthetic resins, 0 stage) Zeo Karb H (a natural resin made by sulfonating coal), Filtrol-neutral (a type of fuller's earth) and the like. Elution of the adsorbate can also be effected by mineral acids other than sulfuric acid such as 5-35% hydrochloric acid or 8-12% phosphoric acid which are then removed by suitable means. The adsorbate may also be eluted with about 18% aqueous ammonia, and the ammonia is then removed by distillation. v The basic fraction can also be obtained by electrical transport methods or by precipitation with phosphotungstic acid.
In recombining the two fractions and fortifying the resulting mixture, itwill be apparent that the composition of the final product can be varied at will to meet demands for large amounts of a uniform product as well as for products having particular compositions to treat specific cases.
It will further be noted that the improved mixtures of the present invention can also be prepared by combining the substantially pure monoamino monocarboxylic acid fraction prepared as above described with tryptophane and fortifying amounts of amino acids present but deficient in said fraction,'and then supplying the three basic amino acids individually derived in pure form from the particular starting protein hydrolysate, or from other sources. Thus, referring back to Table II, the solid components of an amino acid mixture, according to the present invention, should contain about 52-57% of the M. A. fraction (monoamino monocarboxylic acid fraction) and about 19-21% of the three basic amino acids supplied either as the basic fraction prepared by the process disclosed herein or by combining arginine, histidine, and lysine isolated in essentially pure form from the basic fraction or from other sources in approximately the ratio of these amino acids as given in Table III (6.6 parts of arginine, 3.0 parts of histidine, and 9.8 parts of lysine). It will be understood that by either procedure the basic amino acids are added as the natural or l-acids and therefore the overall composition of the amino acid mixture is not affected by the source of the basic amino acids. The for- I tifying amounts of crystalline essential amino QAWFQQQO either as the active isomer or as a racemic compound. The small amount of the inactive isomer introduced in the racemic compound does not appreciably decrease the tolerance of the mixture. When a number of amino acids in racemic form are used for fortification, the tendency to decrease the tolerance of the mixture becomes more pronounced. There is distinct advantage, therefore, in selecting as starting material a protein or protein mixture which will supply as ne'arly as possible the ratio and amounts of the essential amino acids required in the final product.
As used throughout the specification and claims it is to be understood that the expression natural essential amino acids" embraces only the active or l-form of the seven monoamino monocarboxylic acids: leucine, isoleucine, phenylalanine, valine, methionine, threonine and tryptophane; and the three basic amino acids: arginine, histidlne and lysine.
Modifications may be made in carrying out the present invention without departing from the spirit and scope thereof, and the invention is to be limited only by the appended claims.
What is claimed is:
1. An aqueous amino acid solution for parenteral, rectal, and oral administration containing not more than of the essential amino acids in the inactive d-form, solid components of said solution being free of dicarboxylic acids and comprising the natural essential amino acids leucine, isoleucine, phenylalanine, valine, methionine, threonine, arginine, histidine, and lysine, racemic essential amino acids including tryptophane, and the non-essential amino acid glycine.
2. In a process for preparing an amino acid solution for parenteral, rectal, and oral administration, the steps that comprise extracting an aqueous protein acid hydrolysate with a 3 to 5 carbon alcohol, recovering from the alcohol extract an amino acid fraction free of dicarboxylic acids and consisting of the natural essential amino acids leucine, isoleucine, phenylalanine, valine, methionine and threonine and a small amount of non-essential amino acids, removing alcohol from the liquor remaining after alcohol extraction, treating the alcohol-free liquor with an adsorbent material which preferentially adsorbs basic amino acids, washing the adsorbent free of dicarboxylic acids and other contaminants, eluting the adsorbate with mineral acid, recovering from the eluate an amino acid fraction consisting of the natural essential basic amino acids arginine, histidine and lysine, and then mixing in an aqueous medium quantities of each of said fractions, racemic essential amino acids including tryptophane and the non-essential amino acid glycine to provide a solution the solid components of which are free'of dlcarboxylic acids and consist of the ten natural essential amino acids, not more than 5% of the essential amino acids in the inactive d-iorrn, and non-essential amino acids.
3. In a process for preparing an amino acid solution for parenteral, rectal, and oral administration, the steps that comprise extracting an aqueous protein acid hydrolysate with butanol, recovering from the butanol extract an amino acid fraction free of dicarboxylic acids and consisting of the natural essential amino acids leucine, isoleucine, phenylalanine, valine, methionine and threonine and a small amount of non-essential amino acids, removing butanol from the liquor remaining after butanol extraction, treating the alcohol-free liquor with an adsorbent material which preferentially adsorbs basic amino acids, washing the adsorbent free of dicarboxylic acids and other contaminants, eluting the adsorbate with mineral acid, recovering from the eluate an amino acid fraction consisting of the natural essential basic amino acids arginine, histidine and REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Name Date Block Oct. 16, 1945 OTHER REFERENCES Madden, Journal of Experimental Medicine, vol. 79, pages 607 to 624 (1944).
Melnick, Journal of the American Dietetic Association, October 1943, page 689 (167-65A).
Schmidt, Chemistry of the Amino Acids and Proteins (1938), pages 142 to 146.
Number
US637498A 1945-12-27 1945-12-27 Amino acid solution and process for preparing the same Expired - Lifetime US2457820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US637498A US2457820A (en) 1945-12-27 1945-12-27 Amino acid solution and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US637498A US2457820A (en) 1945-12-27 1945-12-27 Amino acid solution and process for preparing the same

Publications (1)

Publication Number Publication Date
US2457820A true US2457820A (en) 1949-01-04

Family

ID=24556192

Family Applications (1)

Application Number Title Priority Date Filing Date
US637498A Expired - Lifetime US2457820A (en) 1945-12-27 1945-12-27 Amino acid solution and process for preparing the same

Country Status (1)

Country Link
US (1) US2457820A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662046A (en) * 1948-06-19 1953-12-08 Merck & Co Inc Parenteral amino acid solution
US2850386A (en) * 1952-06-18 1958-09-02 Dade Reagents Inc Process for preparing an enteral feeding solution
US3080234A (en) * 1960-12-06 1963-03-05 Pfizer & Co C Method of improving the efficiency of amino acid diets
US3157575A (en) * 1959-06-16 1964-11-17 Luhby Adrian Leonard Compositions and process relating to macrocytic anemias
US4100160A (en) * 1974-04-15 1978-07-11 The Johns Hopkins University Therapeutic compositions comprising alpha-hydroxy analogs of essential amino acids and their administration to humans for promotion of protein synthesis and suppression of urea formation
US4100293A (en) * 1974-04-15 1978-07-11 The Johns Hopkins University Treatment of hepatic disorders with therapeutic compositions comprising keto analogs of essential amino acids
US4296127A (en) * 1979-04-18 1981-10-20 The Johns Hopkins University Mixed salts of essential or semi-essential amino acids and nitrogen-free analogs thereof
US4352814A (en) * 1979-04-18 1982-10-05 The Johns Hopkins University Treatment of hepatic and renal disorders with mixed salts of essential or semi-essential amino acids and nitrogen-free analogs
US4927850A (en) * 1988-04-08 1990-05-22 Bayless Robert K Antioxidant compositions and methods for ameliorating inflammatory symptoms of respiratory disease
US5032608A (en) * 1986-09-10 1991-07-16 Dudrick Stanley J Method and substrate composition for treating atherosclerosis
US5248688A (en) * 1986-09-10 1993-09-28 Dudrick Medical Research Fund I, Ltd. Method and substrate composition for treating atherosclerosis
US10201513B2 (en) 2016-12-19 2019-02-12 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US20190216709A1 (en) * 2016-09-13 2019-07-18 Basf Se Protein hydrolysates
US10596136B2 (en) 2018-06-20 2020-03-24 Axcella Health Inc. Compositions and methods for the treatment of fat infiltration in muscle
US10660870B2 (en) 2017-08-14 2020-05-26 Axcella Health Inc. Compositions and methods for the treatment of liver diseases and disorders associated with one or both of hyperammonemia or muscle wasting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386926A (en) * 1942-11-19 1945-10-16 C M Armstrong Inc Separation of amino acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386926A (en) * 1942-11-19 1945-10-16 C M Armstrong Inc Separation of amino acids

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2662046A (en) * 1948-06-19 1953-12-08 Merck & Co Inc Parenteral amino acid solution
US2850386A (en) * 1952-06-18 1958-09-02 Dade Reagents Inc Process for preparing an enteral feeding solution
US3157575A (en) * 1959-06-16 1964-11-17 Luhby Adrian Leonard Compositions and process relating to macrocytic anemias
US3080234A (en) * 1960-12-06 1963-03-05 Pfizer & Co C Method of improving the efficiency of amino acid diets
US4100161A (en) * 1974-04-15 1978-07-11 The Johns Hopkins University Promotion of protein synthesis and suppression of urea formation in the body by keto analogs of essential amino acids
US4100293A (en) * 1974-04-15 1978-07-11 The Johns Hopkins University Treatment of hepatic disorders with therapeutic compositions comprising keto analogs of essential amino acids
US4100160A (en) * 1974-04-15 1978-07-11 The Johns Hopkins University Therapeutic compositions comprising alpha-hydroxy analogs of essential amino acids and their administration to humans for promotion of protein synthesis and suppression of urea formation
US4296127A (en) * 1979-04-18 1981-10-20 The Johns Hopkins University Mixed salts of essential or semi-essential amino acids and nitrogen-free analogs thereof
US4352814A (en) * 1979-04-18 1982-10-05 The Johns Hopkins University Treatment of hepatic and renal disorders with mixed salts of essential or semi-essential amino acids and nitrogen-free analogs
US5032608A (en) * 1986-09-10 1991-07-16 Dudrick Stanley J Method and substrate composition for treating atherosclerosis
US5248688A (en) * 1986-09-10 1993-09-28 Dudrick Medical Research Fund I, Ltd. Method and substrate composition for treating atherosclerosis
US4927850A (en) * 1988-04-08 1990-05-22 Bayless Robert K Antioxidant compositions and methods for ameliorating inflammatory symptoms of respiratory disease
US20190216709A1 (en) * 2016-09-13 2019-07-18 Basf Se Protein hydrolysates
US11389387B2 (en) * 2016-09-13 2022-07-19 Basf Se Protein hydrolysates
US10201513B2 (en) 2016-12-19 2019-02-12 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US10471034B2 (en) 2016-12-19 2019-11-12 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US11129804B2 (en) 2016-12-19 2021-09-28 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US10238617B2 (en) 2016-12-19 2019-03-26 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US11602511B2 (en) 2016-12-19 2023-03-14 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
US10660870B2 (en) 2017-08-14 2020-05-26 Axcella Health Inc. Compositions and methods for the treatment of liver diseases and disorders associated with one or both of hyperammonemia or muscle wasting
US10682325B2 (en) 2017-08-14 2020-06-16 Axcella Health Inc. Compositions and methods for the treatment of liver diseases and disorders associated with one or both of hyperammonemia or muscle wasting
US11571404B2 (en) 2017-08-14 2023-02-07 Axcella Health Inc. Compositions and methods for the treatment of liver diseases and disorders associated with one or both of hyperammonemia or muscle wasting
US10596136B2 (en) 2018-06-20 2020-03-24 Axcella Health Inc. Compositions and methods for the treatment of fat infiltration in muscle
US10973793B2 (en) 2018-06-20 2021-04-13 Axcella Health Inc. Compositions and methods for the treatment of fat infiltration in muscle
US11833127B2 (en) 2018-06-20 2023-12-05 Axcella Health Inc. Compositions and methods for the treatment of fat infiltration in muscle

Similar Documents

Publication Publication Date Title
US2457820A (en) Amino acid solution and process for preparing the same
Borsook et al. Incorporation in vitro of labeled amino acids into proteins of rabbit reticulocytes
US2563794A (en) Vitamin b12
EP0014333B1 (en) Process for the preparation of fibrinogene, a prothrombine complex containing the coagulation factors ii, vii, ix, and x, antithrombine iii, and a solution containing storable serum proteins
EP0100982B2 (en) Novel purified plasminogen activator, process for its production and thrombolytic composition containing it
Chow et al. Bovine pepsinogen and pepsin: I. Isolation, purification, and some properties of the pepsinogen
US3066079A (en) Methods for purifying plasminogen
JPH049509B2 (en)
US2662046A (en) Parenteral amino acid solution
US4137307A (en) Process for preparing haptoglobin aqueous solution using strong anion exchanger
Delmonte et al. Granulocytosis-promoting extract of mouse tumor tissue: partial purification
JPS5829716A (en) Method of removing aspartic acid and glutamic acid from protein hydrolyzate or amino acid mixture and high nutritive value amino acid composition
US3152955A (en) Amino acids concentrate
US3905870A (en) Purification of kallikrein
CA1198672A (en) Fibrinolytically active agent and a method for the preparation thereof
US2473255A (en) Process of preparing modified protein
Dewey Biochemical factors in the maximal growth of Tetrahymena
Fraenkel Isolation procedures and certain properties of vitamin BT
US3937816A (en) Growth regulating compositions extracted from spleen
US2480654A (en) Recovery of arginine, histidine, and lysine from protein hydrolysates
US3549610A (en) Method of collecting protein substances having biological activity with respect to the nervous system comprising extraction of protein from submaxillary glands with ammonium sulfate or sodium sulfate
Hitchings et al. The Rat Growth Factors of the Filtrate Fraction of Liver Extracts: One Figure
US3597323A (en) Method of purifying l-asparaginase
US2680744A (en) Process for preparing therapeutic amino acids solutions
US3119740A (en) Process for preparing purified follicle stimulating hormone