US2445663A - Automatic frequency control system - Google Patents

Automatic frequency control system Download PDF

Info

Publication number
US2445663A
US2445663A US642214A US64221446A US2445663A US 2445663 A US2445663 A US 2445663A US 642214 A US642214 A US 642214A US 64221446 A US64221446 A US 64221446A US 2445663 A US2445663 A US 2445663A
Authority
US
United States
Prior art keywords
frequency
oscillator
relay
motor
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US642214A
Inventor
Melvin L Doelz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Collins Radio Co
Original Assignee
Collins Radio Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Collins Radio Co filed Critical Collins Radio Co
Priority to US642214A priority Critical patent/US2445663A/en
Application granted granted Critical
Publication of US2445663A publication Critical patent/US2445663A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/16Automatic frequency control where the frequency control is accomplished by mechanical means, e.g. by a motor

Definitions

  • This invention relates to automatic tuning control :systems and more particularly to a ,method 1.and .means for .controlling the frequency of .an :adjustable .frequency Aelectronic oscillator.
  • One of the features of this invention is .a unique circuit arrangement which is non-operative when the oscillator is on frequency and which actuates instantly a rotatable oscillator tuning control motor when the oscillator begins .to drift .and if the initial direction of rotation of the Ino- .energy introduced into the electronic circuit 'from the frequency drift of the oscillator is fed into a differentiating circuit which determines whether .2 the frequency ,is .increasing or decreasing while .the Vmotor is rotating .the tuning ⁇ means of .the .adjustable frequency oscillator.
  • the .drawing is ⁇ 4a schematic wiring diagram .which shows .one preferred .manner of practising the invention.
  • 4adjustable frequency .oscillator AI Il includes a I:tun-
  • the electronic calibrator Y24 .provides a second sourceof ⁇ radio frequency energy of 'knownaccurate .frequency such .asa piezo .crystal-controlled oscillator. yThe output .of .calibrator 2'4 is fed to the second control .grid 25 .of mixer tube 1B.
  • Thecalibrator '24 may be a multi-vibrator or other well-known means 'by which stable radio frequency waves ⁇ suitable for calibration .are produced.
  • the audio-.frequency transformer '26 applies the beat frequency output .from plate ⁇ 21 to con- .tro'l grid 28 of audio-frequency amplifier tube 29.
  • the frequency ofthe calibrating waves impressed on .grid 25 is .the same ⁇ as the ouputfrequency of the oscillator I0 impressed on gridrl there will be no audio frequency vbeat note ,present in the output of mixer I9.
  • the plate current of tube 29 is made proportional to the frequency deviation of oscillator I0.
  • resistor 3l and inductance l32 form a frequency responsive network which acts upon any audio-frequency signals applied thereto, so that when the output of tube 29 is substantially zero there is no Ibeat frequency and the output increases as the beat frequency increases.
  • the audio frequency output of tube 29 may be further amplified by the amplier tube 33.
  • Control grid 34 of amplifier tube 35 is normally biased negatively to prevent plate current conduction through that tube. However, when an audio beat frequency appears across the secondary of transformer 26, ⁇ the negative bias on grid 34 is overcome sufficiently to cause platel current to flow through tube 35.
  • rIhe winding of electromagnetic relay 31 is included in the plate circuit of tube 35, and this relay thereupon operates. The closing of the contacts of relay 31 completes a circuit traceable from the positive D. C. terrninal 38, conductor 39, winding of relay 49, conductor 4I, thence to the negative terminal v42.
  • Relay 49 thereupon closes the power circuit from the line terminals 43, 44, to the armature of the motor.
  • the field winding 45 of the motor is connected in parallel with the armature 46, through the armatures 41, 48,
  • the motor rotates the adjustable element I4, and lthereby changes the frequency of the oscillator I and the signals fed to grid I1. If the direction :of rotation of the motor is not such as to restore the oscillator I0 to its proper frequency as determined by the calibrated setting of device 24, additional means are provided to insure that even though the ⁇ motor should begin to rotate in the wrong direction, its direction of rotation is substantially im- Vmediately reversed to cau-se it to rotate to bring Ithe oscillator back to the proper frequency.
  • the output of amplifier 33 is also applied to the rectifier tube U through audio the motor is rotating in the wrong direction, an increasing D. C. current flows through the primaryof transformer 52; while if the direction of motor rotation is conrect, a decreasing current fiows through this primary.
  • This change of curyrent through transformer 52 causes either a. l.positive o-r a nega-tive voltage to appear at grid 53 of amplifier tube 54.
  • Tube 54 has its control grid vnormally biased so as to prevent the operation of relay 55 when a zero or negative voltage appears at transformer 52.
  • a positive voltage appears at that transformer,.suiiicient plate cunrent iiows through tube 54 to operate relay 55.
  • the instant relay 55 operates, it immediately closes a locking circuit for itself traceable from positive terminal 38, winding of relay 55, armature 59, contact 60,. to the negative terminal 42 through the contacts of It will be noted therefore, that this is operated, that is to say, so long as any beat frequencies appear at transformer 26. Likewise, this locking circuit remains independent of the rectifier 55 and the ⁇ amplifier tube 54.
  • relay ⁇ 55 When relay ⁇ 55 operate-s, it closes a circuit traceable from the negativeV terminal 42, contact 51 and associated armature 56, winding of relay reverses the connections from the power line In other words, if .A
  • any suitable frequency indicating device such as a calibrated dial may be suitably mechanically connected to the shafts of the adjustable elements I3 and I5.
  • an oscillator for generating a voltage of adjustable frequency
  • a source for producing another voltage of a certain standard frequency
  • a mixer network upon which signals from said oscillator and said source are simultaneously impressed to produce an oscillator tuning control voltage proportionate to the frequency difference between said oscillator and said source
  • a motor for controlling said oscillator
  • a directional control device for determining the direction of rotation of said motor
  • a relay arrangement responsive to said tuning control voltage above a predetermined minimum to cause said motor to rotate
  • another relay arrangement responsive to an increase in said tuning control voltage resulting from the starting of said motor in the wrong direction to operate said directional control device to reverse the motor rotation until said oscillator is at the desired frequency.
  • an oscillator for generating a voltage of adjustable frequency
  • a source for producing another voltage of a certain standard frequency
  • electron tube mixer means for combining said voltages to produce a tuning control voltage which is proportionate to the difference between the frequency of the voltages from said oscillator and from said source
  • a first relay which responds to .Said timing control voltage above 'a predetermined minimum, a secondrelay adjustment and the extent of the adjustmentof said adjusting means.
  • an oscillator for generating va voltage of ladjustable frequency a source'for producing: another voltage of va certain standard frequency, means lto mix said'voltages to Yproduce atuning control voltage which is'proportlonate to the'difierence between the frequency of said oscillator and that of said source, the last-mentioned means including a'frequencyl dis- :crixninator network, a relay connected to said network which responds .to said voltages above a predetermined minimum, means to rectify said voltages ⁇ to produce a uni-directional voltage onlywhen said first-mentioned voltage is varying, another relay responsive to said uni-directional voltage andfwhose energizing lcircuit is controlled by said uni-directional voltage, a locking vcircuit for said second-mentioned relay which locking circuit is independent of said uni- Adirectional'voltage vbutiscontrolled by the iirst- ,mentioned relay, means to adjust a mov
  • a frequency combining network to derive a ⁇ tuning control voltage Iproportionate to the deviation of an oscillator from a standard frequency
  • circuit arrangements including a relay which responds to said voltage above a predetermined minimum, a motor for adjusting said oscillator, a starting control relay and a direction control relay for controlling the power circuit of said motor, circuit connections for applying said voltage to ⁇ causeone of said pair of relays Vto control the initial starting of said motor, and for'causing the other of said pair of relays to control the direction of rotation of said motor, means to operate the said starting control relay in response to the operation of the first-mentioned relay, and means to operate the direction control relay only when said voltage tends to increase as a result of the starting of the operation of said motor in the wrong direction.
  • a frequency control system in which an additional relay is provided for controlling the initial energization of said direction control relay, said additional relay being energized only when said voltage tends to increase as a result of the starting of rotation of said motor in the wrong direction.
  • a frequency control system to derive beat frequencies corresponding to the output of an adjustable oscillator and a standard frequency source, a frequency discriminator network including an electron discharge tube amplifier upon which said beat frequencies are impressed, a relay which is energized by the output of said amplifier above a predetermined minimum, a rectier for rectifying a portion of said beat frequencies, a gridcontrolled amplifier tube normally biased substantially to plate current cutoff and responsive to positive rectied voltages from said rectifier to "producefplat'e current flow, a second-relay which-is initially energized in response to said plate currentffiow, a'locking circuit for said secondrelay including contacts of the iirstfrelay which locking ⁇ circuit is independent of said rectified beat'frequencies, a motor control relay which isoperated'under control of said first relay, a motor reversing relay whichis operated in response to the operation of said second ⁇ relay, and circuit arrangements for causing motor control relay to be operated only when the initial direction
  • an electron tube oscillator having :a frequency-determining circuit connected thereto, a source of standard frequency oscillations, a mixer tube having -a tunable input circuit connected to one control grid thereof, said input circuit being'tuned in unison with the tuning of said frequency-determining circuit, means to impress said standard frequency oscillations on another control grid of said mixer tube to produce audio-frequency beats in the Voutput of said mixer tube corresponding to the deviation between the frequency of said oscillator and said standard source, frequency discriminatcr network connected to the output of said mixer' tube,va grid-controlled amplifier tube normally biased to plate current cutoff, and means connecting the control grid of said tube to the output of said net-work to produce plate current when the output of -said network is above a predetermined minimum, an electromagnetic relay controlled by the' plate'current of said grid-controlled.
  • a second grid-controlled tube normally biased substantially to plate current cutoff, means to produce positive D.: C. voltages proportionate to the output of said amplifier, means toV apply vsaid positive'D. C. voltages to the grid of said second grid-controlled tube ⁇ to cause plate current to flow therethrough, another electromagnetic relay which is initially energized in response toan impulse of plate ⁇ current through said second grid-controlled tube, a locking circuit for said second electromagnetic relay which is closed through the contacts of the first-mentioned electromagnetic relay so as to be independent of said second-mentioned grid-controlled tube, and a motor reversing relay which is controlled by said second-mentioned electro-magnetic relay.
  • a frequency control system means to produce beat frequencies corresponding to the frequency deviation of an adjustable oscillator with respect to a standard frequency source, a iirst electromagnetic relay responsive to the presence of said beat frequencies, a motor for adjusting a tuning element of said oscillator, a second electromagnetic relay for controlling the starting of said motor, a third electromagnetic relay for controlling the direction of rotation of said motor, and a fourth electromagnetic relay for determining the duration of rotation of said motor,l said relays being interconnected so that said motor responds initially to the presence of said beat frequencies and its direction of rotation is automatically corrected so as to reduce said beat frequencies substantially to zero.
  • An oscillator system including an adjustn able frequency electron tube oscillator, including an adjustable frequency-determining element, a motor connected to said element to vary the oscillator frequency, a source of standard frequency, a frequency mixer adapted to ⁇ produce a Zero beat frequency only when the signal received by it from said oscillator is substantially equal to the signal received by it from said standard source, a frequency sensitive network having an output which varies in correspondence with the frequency of the energy received by it from said mixer, a control circuit connected to the output of said frequency sensitive circuit', said control -circuit being effective when said mixer produces an output to complete the power circuit to said motor, said control circuit also including a motor reversing control relay, ⁇ directional differentiating means comprising an electron tube arrangement 'for converting a part of the output of said network into a voltage whose polarity is dependent upon whether said motor is rotating in a direction tending to produce said zero beat frequency, or it is rotating in a direction tending to increase said beat frequency, and means to operate said reversing switch' contacts only when
  • said directional differentiating means includes a rectier for rec'tifyiner a portion of the output of said frequency-sensitive network, and a gridcontrolled electron tube which is normally blassecl to plate current cuto and which remains at plate current cutoff only while the output'of said recti er is decreasing.
  • An automatic frequency-controlled electronic oscillator system including an oscillator for generating a voltage of an adjustable frequency, a source for producing another voltage of a cer'- tain standard frequency, a tuning motor for said oscillator,v a frequency mixer connected .to said oscillator and source to produce a beat frequency corresponding to the deviation of said oscillator 'from a pre-assigned frequency, a beat frequency responsive circuit arrangement connected to the output of said mixer and effective to cause operation of said motor only when a beat frequency exists at the output of said mixer, said beat frequency responsive circuit including a motor starting relay which closes the motor circuit in response to a beat frequency and a motor directional control relay which responds only when' the motor is started in a direction tending to" increase said beat frequency.
  • a system according to claim 13 inwhich said motor start relay has a locking circuit which is completed through the normally open contacts of said directional contro1 relay.
  • an automatically tuned oscillator system means to produce a variable beat frequency corresponding to the departure of the oscillator from a pre-assigned frequency, an electron tube net'- w'ork to which'said beat frequency is appliedfor producing in its output a control signal whose amplitude varies with' the frequency ofthe beat, a motor for tuning the oscillator, a relay which operates in response to the presence of a beat frequency, another relay connected to the -output of said network and operated only when the motor rotates in a direction tending to increase said beat frequency, and a third relay for controlling the direction of rotation of the motor, said third ⁇ relay being operated under the joint control 'of the first and second relays.

Landscapes

  • Toys (AREA)

Description

July 20, 1948- M. 1 DoELz 2,445,663
AUTOMATIC FREQUENCY CONTROL SYSTEM Y Filed Jan. 19, 1946 /VEL v//V l. DQELZ IN VEN TOR.
Patented July 20, 1948 AUTOMATIC FREQUENCY CONTRL SYSTEM Melvin L. Doelz, Minneapolis, Minn..,assignor .to Collins Radio Company, Cedar Rapids, Iowa, a
.corporation of "Iowa Application January 19, 1-946, :Serial No. 642,214
Claims. 1
.This invention relates to automatic tuning control :systems and more particularly to a ,method 1.and .means for .controlling the frequency of .an :adjustable .frequency Aelectronic oscillator.
In certain types of yhigh frequency signalling systems employing an adjustable 4frequency `oscililator, 4itis requisite that the .oscillator be lstabilized `ata-ny -one of its predetermined frequency settings, .and oscillator dr-ift must .be reduced .to a minimum. Drift may result in ^an oscillator operating `at a `frequency either slightly above or slightly below the .desired frequency setting. ,In order to restore the oscillator automatically to .the desired frequency, it is ,necessary to employsorne tuning .control means which `will .respond not .only lto the magnitude .of drift but also 1to direction or Ipolarity of drift.
Accordingly, it is .a fprincipal object of this invention to provide 1a frequency responsive system which will immediately correct any .undesired .frequency deviations of an adjustable frequency oscillator.
It is .another object of .this invention to provide electromechanical ,control means for overvcoming oscillator frequency drift Vin .either direction with respect to the desired frequency setting of the oscillator.
It is another object of this invention to provide an electronic control circuit for controlling the direction and .dur-ation of rotation of a drift con- .trol motor.
It is a further object of this invention to provide an automatic oscillator tuning system wheren the direction of rotation of a tuning motor is determined -by a plurality .of electronically voperated relays and wherein an electronic circuit determines the direction in which said tun- -ing motor must be rotated to retune the oscillator, said direction of rotation being determined by the frequency .of the energy which the fre-v .quency .drift introduces into the system.
One of the features of this invention is .a unique circuit arrangement which is non-operative when the oscillator is on frequency and which actuates instantly a rotatable oscillator tuning control motor when the oscillator begins .to drift .and if the initial direction of rotation of the Ino- .energy introduced into the electronic circuit 'from the frequency drift of the oscillator is fed into a differentiating circuit which determines whether .2 the frequency ,is .increasing or decreasing while .the Vmotor is rotating .the tuning `means of .the .adjustable frequency oscillator.
.It .is .a l.further .feature of this invention that .a .positive or increasing .output voltage Lresults from .the differentiating .circuit if the .tuning motor .tends to increase the frequency .deviation lof the oscillator, and ,this increasing output voltage venergizes .a relay which causes .the ,tuning `motor 4to `reverse its .direction .of rotation so as .to
retune .the oscillator .to the desired .frequency setting.
Other ,features and advantages .not particularly enumerated will become apparent afterpa `consideration vof .the following detailed descrip tion and the Vappended claims.
The .drawing is `4a schematic wiring diagram .which shows .one preferred .manner of practising the invention.
Referring .more particularly to vthe drawing., the
4adjustable frequency .oscillator AI Il includes a I:tun-
.able oscillatory .circuit H anda @grid-.controlled .vacuumvtube-such as triode l2. The A.frequency -of voscillation of the circuit lll .is determinedhy yvary-ing the induotance L3 .forlarge increments known radiotransmitter 22, the other ,portionis fed fromplate 20 to grid ll. The electronic calibrator Y24 .provides a second sourceof `radio frequency energy of 'knownaccurate .frequency such .asa piezo .crystal-controlled oscillator. yThe output .of .calibrator 2'4 is fed to the second control .grid 25 .of mixer tube 1B. Thecalibrator '24 may be a multi-vibrator or other well-known means 'by which stable radio frequency waves `suitable for calibration .are produced.
The audio-.frequency transformer '26 applies the beat frequency output .from plate `21 to con- .tro'l grid 28 of audio-frequency amplifier tube 29. When the frequency ofthe calibrating waves impressed on .grid 25 is .the same `as the ouputfrequency of the oscillator I0 impressed on gridrl there will be no audio frequency vbeat note ,present in the output of mixer I9.
If the frequency of the adjustable frequency oscillator .I0 changes for anyreason, .an audio "beat 'frequency appears `across the secondary '30 `frequency transformer 5 I.
of transformer 26. In accordance with the invention, the plate current of tube 29 is made proportional to the frequency deviation of oscillator I0. For this purpose, resistor 3l and inductance l32 form a frequency responsive network which acts upon any audio-frequency signals applied thereto, so that when the output of tube 29 is substantially zero there is no Ibeat frequency and the output increases as the beat frequency increases. The audio frequency output of tube 29 may be further amplified by the amplier tube 33.
Control grid 34 of amplifier tube 35 is normally biased negatively to prevent plate current conduction through that tube. However, when an audio beat frequency appears across the secondary of transformer 26, `the negative bias on grid 34 is overcome sufficiently to cause platel current to flow through tube 35. rIhe winding of electromagnetic relay 31 is included in the plate circuit of tube 35, and this relay thereupon operates. The closing of the contacts of relay 31 completes a circuit traceable from the positive D. C. terrninal 38, conductor 39, winding of relay 49, conductor 4I, thence to the negative terminal v42. Relay 49 thereupon closes the power circuit from the line terminals 43, 44, to the armature of the motor. At the same time, the field winding 45 of the motor is connected in parallel with the armature 46, through the armatures 41, 48,
and the respective back contacts of directional control relay 49. The motor rotates the adjustable element I4, and lthereby changes the frequency of the oscillator I and the signals fed to grid I1. If the direction :of rotation of the motor is not such as to restore the oscillator I0 to its proper frequency as determined by the calibrated setting of device 24, additional means are provided to insure that even though the `motor should begin to rotate in the wrong direction, its direction of rotation is substantially im- Vmediately reversed to cau-se it to rotate to bring Ithe oscillator back to the proper frequency. For
this purpose, the output of amplifier 33 is also applied to the rectifier tube U through audio the motor is rotating in the wrong direction, an increasing D. C. current flows through the primaryof transformer 52; while if the direction of motor rotation is conrect, a decreasing current fiows through this primary. This change of curyrent through transformer 52 causes either a. l.positive o-r a nega-tive voltage to appear at grid 53 of amplifier tube 54. Tube 54 has its control grid vnormally biased so as to prevent the operation of relay 55 when a zero or negative voltage appears at transformer 52. On the other hand, when a positive voltage appears at that transformer,.suiiicient plate cunrent iiows through tube 54 to operate relay 55. The instant relay 55 operates, it immediately closes a locking circuit for itself traceable from positive terminal 38, winding of relay 55, armature 59, contact 60,. to the negative terminal 42 through the contacts of It will be noted therefore, that this is operated, that is to say, so long as any beat frequencies appear at transformer 26. Likewise, this locking circuit remains independent of the rectifier 55 and the` amplifier tube 54.
When relay` 55 operate-s, it closes a circuit traceable from the negativeV terminal 42, contact 51 and associated armature 56, winding of relay reverses the connections from the power line In other words, if .A
terminals 43, 44, to the eld winding 45, thereby reversing the direction of rotation of motor 34, and causing it to tune the oscillator towards its proper frequency. As the motor continues to rotate in the proper direction, the frequency deviation of oscillator III with respect to calibrator 24, is correspondingly reduced. This results in a decrease in the beat frequency appearing at transformer 26. When the frequency deviation approaches zero, insufficient current ows through relay 31 with the result that this relay opens :its contacts and therefore opens the locking circuit of relay 55. Relay thereupon releases as does relay 49, thus opening the power circuit lto the motor. From the foregoing, it will be seen that the relay 55 is in effect a directional sensitive relay. That is to say, it is initially energized only when the motor is actually rotating in the Wrong direction tending to increase the frequency deviation o-f the oscillator.' I-Iowever, once energized, it remains locked until the deviation is reduced to zero. It provides therefore a positive check or limit on the amount of undesirable initial rotation of the motor and at the same time it provides a positive automatic control of the reversal of direction of the motor so as to reduce to zero the frequency deviation of the oscillator with respect to calibrator 24.
It is desirable to have some visual frequency indicating means which may be used to facilitate the manual tuning of the oscillator and mixer stages. Therefore, any suitable frequency indicating device such as a calibrated dial may be suitably mechanically connected to the shafts of the adjustable elements I3 and I5. After accurate tuning is lonce accomplished by adjusting manually elements I3 and I5, the automatic control means above described will keep the oscillator I0 in accurate adjustment.
While there has been here described a preferred embodiment of this invention, it is understood that various changes and modifications may be made therein without departing from the scope of the invention, as defined in the following claims.
What is claimed is:
1. In combination, an oscillator for generating a voltage of adjustable frequency, a source for producing another voltage of a certain standard frequency, a mixer network upon which signals from said oscillator and said source are simultaneously impressed to produce an oscillator tuning control voltage proportionate to the frequency difference between said oscillator and said source, a motor for controlling said oscillator, a directional control device for determining the direction of rotation of said motor, a relay arrangement responsive to said tuning control voltage above a predetermined minimum to cause said motor to rotate, and another relay arrangement responsive to an increase in said tuning control voltage resulting from the starting of said motor in the wrong direction to operate said directional control device to reverse the motor rotation until said oscillator is at the desired frequency.
2. In combination, an oscillator for generating a voltage of adjustable frequency, a source for producing another voltage of a certain standard frequency, electron tube mixer means for combining said voltages to produce a tuning control voltage which is proportionate to the difference between the frequency of the voltages from said oscillator and from said source, a first relay which responds to .Said timing control voltage above 'a predetermined minimum, a secondrelay adjustment and the extent of the adjustmentof said adjusting means.
3,1m combination, an oscillator for generating va voltage of ladjustable frequency, a source'for producing: another voltage of va certain standard frequency, means lto mix said'voltages to Yproduce atuning control voltage which is'proportlonate to the'difierence between the frequency of said oscillator and that of said source, the last-mentioned means including a'frequencyl dis- :crixninator network, a relay connected to said network which responds .to said voltages above a predetermined minimum, means to rectify said voltages `to produce a uni-directional voltage onlywhen said first-mentioned voltage is varying, another relay responsive to said uni-directional voltage andfwhose energizing lcircuit is controlled by said uni-directional voltage, a locking vcircuit for said second-mentioned relay which locking circuit is independent of said uni- Adirectional'voltage vbutiscontrolled by the iirst- ,mentioned relay, means to adjust a movable tuning element of `said oscillator, and a motor device for controlling the direction and extent of said adjustingmovement, said motor device being controlled jointly by said first and secondmentioned relays.
4. In afrequency control system, a frequency combining network to derive a `tuning control voltage Iproportionate to the deviation of an oscillator from a standard frequency, circuit arrangements including a relay which responds to said voltage above a predetermined minimum, a motor for adjusting said oscillator, a starting control relay and a direction control relay for controlling the power circuit of said motor, circuit connections for applying said voltage to `causeone of said pair of relays Vto control the initial starting of said motor, and for'causing the other of said pair of relays to control the direction of rotation of said motor, means to operate the said starting control relay in response to the operation of the first-mentioned relay, and means to operate the direction control relay only when said voltage tends to increase as a result of the starting of the operation of said motor in the wrong direction.
5. A frequency control system according to claim 4 in which an additional relay is provided for controlling the initial energization of said direction control relay, said additional relay being energized only when said voltage tends to increase as a result of the starting of rotation of said motor in the wrong direction.
6. In a frequency control system, a frequency combining network to derive beat frequencies corresponding to the output of an adjustable oscillator and a standard frequency source, a frequency discriminator network including an electron discharge tube amplifier upon which said beat frequencies are impressed, a relay which is energized by the output of said amplifier above a predetermined minimum, a rectier for rectifying a portion of said beat frequencies, a gridcontrolled amplifier tube normally biased substantially to plate current cutoff and responsive to positive rectied voltages from said rectifier to "producefplat'e current flow, a second-relay which-is initially energized in response to said plate currentffiow, a'locking circuit for said secondrelay including contacts of the iirstfrelay which locking `circuit is independent of said rectified beat'frequencies, a motor control relay which isoperated'under control of said first relay, a motor reversing relay whichis operated in response to the operation of said second` relay, and circuit arrangements for causing motor control relay to be operated only when the initial direction. of' rotation of said motor is such as Yto lincrease said beat frequencies, so as to reverse'the rotation of said motor to a direction tofreduce said beat frequencies. Y
`v'7. In la frequency control system, an electron tube oscillator having :a frequency-determining circuit connected thereto, a source of standard frequency oscillations, a mixer tube having -a tunable input circuit connected to one control grid thereof, said input circuit being'tuned in unison with the tuning of said frequency-determining circuit, means to impress said standard frequency oscillations on another control grid of said mixer tube to produce audio-frequency beats in the Voutput of said mixer tube corresponding to the deviation between the frequency of said oscillator and said standard source, frequency discriminatcr network connected to the output of said mixer' tube,va grid-controlled amplifier tube normally biased to plate current cutoff, and means connecting the control grid of said tube to the output of said net-work to produce plate current when the output of -said network is above a predetermined minimum, an electromagnetic relay controlled by the' plate'current of said grid-controlled. tube, a motor starting relay controlled by said electromagnetic relay. a second grid-controlled tube normally biased substantially to plate current cutoff, means to produce positive D.: C. voltages proportionate to the output of said amplifier, means toV apply vsaid positive'D. C. voltages to the grid of said second grid-controlled tube `to cause plate current to flow therethrough, another electromagnetic relay which is initially energized in response toan impulse of plate `current through said second grid-controlled tube, a locking circuit for said second electromagnetic relay which is closed through the contacts of the first-mentioned electromagnetic relay so as to be independent of said second-mentioned grid-controlled tube, and a motor reversing relay which is controlled by said second-mentioned electro-magnetic relay.
8. The method of adjusting the frequency of an adjustable oscillator which comprises, producing a voltage which is proportionate to the deviation of said oscillator from a known standard frequency, operating a tuning element of said oscillator in response to said Voltage, producing another voltage which corresponds to an increase in said deviation, and applying the second-mentioned voltage to determine the direction of operation of sai-d tuning element,
9. In a frequency control system, means to produce beat frequencies corresponding to the frequency deviation of an adjustable oscillator with respect to a standard frequency source, a iirst electromagnetic relay responsive to the presence of said beat frequencies, a motor for adjusting a tuning element of said oscillator, a second electromagnetic relay for controlling the starting of said motor, a third electromagnetic relay for controlling the direction of rotation of said motor, and a fourth electromagnetic relay for determining the duration of rotation of said motor,l said relays being interconnected so that said motor responds initially to the presence of said beat frequencies and its direction of rotation is automatically corrected so as to reduce said beat frequencies substantially to zero.
10. An oscillator system including an adjustn able frequency electron tube oscillator, including an adjustable frequency-determining element, a motor connected to said element to vary the oscillator frequency, a source of standard frequency, a frequency mixer adapted to` produce a Zero beat frequency only when the signal received by it from said oscillator is substantially equal to the signal received by it from said standard source, a frequency sensitive network having an output which varies in correspondence with the frequency of the energy received by it from said mixer, a control circuit connected to the output of said frequency sensitive circuit', said control -circuit being effective when said mixer produces an output to complete the power circuit to said motor, said control circuit also including a motor reversing control relay, `directional differentiating means comprising an electron tube arrangement 'for converting a part of the output of said network into a voltage whose polarity is dependent upon whether said motor is rotating in a direction tending to produce said zero beat frequency, or it is rotating in a direction tending to increase said beat frequency, and means to operate said reversing switch' contacts only when said motor starts to rotate in a direction tending to increase said beat frequency.
11. A system according to claim 10 in which said directional differentiating means includes a rectier for rec'tifyiner a portion of the output of said frequency-sensitive network, and a gridcontrolled electron tube which is normally blassecl to plate current cuto and which remains at plate current cutoff only while the output'of said recti er is decreasing.
12. A system according to claim 10 in which said reversing control relay is connected in the output of said electron tube arrangement.
13. An automatic frequency-controlled electronic oscillator system including an oscillator for generating a voltage of an adjustable frequency, a source for producing another voltage of a cer'- tain standard frequency, a tuning motor for said oscillator,v a frequency mixer connected .to said oscillator and source to produce a beat frequency corresponding to the deviation of said oscillator 'from a pre-assigned frequency, a beat frequency responsive circuit arrangement connected to the output of said mixer and effective to cause operation of said motor only when a beat frequency exists at the output of said mixer, said beat frequency responsive circuit including a motor starting relay which closes the motor circuit in response to a beat frequency and a motor directional control relay which responds only when' the motor is started in a direction tending to" increase said beat frequency.
14. A system according to claim 13 inwhich said motor start relay has a locking circuit which is completed through the normally open contacts of said directional contro1 relay.
15. In an automatically tuned oscillator system, means to produce a variable beat frequency corresponding to the departure of the oscillator from a pre-assigned frequency, an electron tube net'- w'ork to which'said beat frequency is appliedfor producing in its output a control signal whose amplitude varies with' the frequency ofthe beat, a motor for tuning the oscillator, a relay which operates in response to the presence of a beat frequency, another relay connected to the -output of said network and operated only when the motor rotates in a direction tending to increase said beat frequency, and a third relay for controlling the direction of rotation of the motor, said third `relay being operated under the joint control 'of the first and second relays.
. MELVIN L. DOELZ.
REFERENCES CITED UNITED STATES PATENTS Number Name Date 1,873,842 Hyland Aug. 23, 1932 2,005,153 Maries Jan. 18, 1935
US642214A 1946-01-19 1946-01-19 Automatic frequency control system Expired - Lifetime US2445663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US642214A US2445663A (en) 1946-01-19 1946-01-19 Automatic frequency control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US642214A US2445663A (en) 1946-01-19 1946-01-19 Automatic frequency control system

Publications (1)

Publication Number Publication Date
US2445663A true US2445663A (en) 1948-07-20

Family

ID=24575677

Family Applications (1)

Application Number Title Priority Date Filing Date
US642214A Expired - Lifetime US2445663A (en) 1946-01-19 1946-01-19 Automatic frequency control system

Country Status (1)

Country Link
US (1) US2445663A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2510095A (en) * 1948-04-29 1950-06-06 Int Standard Electric Corp Automatic frequency control system
US2546784A (en) * 1948-02-12 1951-03-27 Remington Rand Inc Punch tape sensing condenser
US2557581A (en) * 1947-02-15 1951-06-19 Rock Ola Mfg Corp Remote control system
US2802908A (en) * 1953-12-18 1957-08-13 Collins Radio Co Automatic tuning means
DE1023797B (en) * 1956-03-21 1958-02-06 Siemens Ag Circuit for electrical locking of a tunable oscillator
US2930993A (en) * 1955-11-25 1960-03-29 Marconi Italianna S P A Oscillator tuned automatically to match crystal frequency
US2972660A (en) * 1952-09-03 1961-02-21 Moore And Hall Frequency adjustment system
US20040166708A1 (en) * 2002-10-30 2004-08-26 Kiely Kenneth M. Snap fitting electrical connector
US6916988B1 (en) 2004-07-12 2005-07-12 Bridgeport Fittings, Inc. Electrical connector with frustro conical snap fit retaining ring
US20060054341A1 (en) * 2004-09-13 2006-03-16 Delbert Auray Snap fit electrical connector assembly with conical outer snap fit retainer and one or more internal snap fit wire retainers
US20060054343A1 (en) * 2004-09-13 2006-03-16 Delbert Auray Snap fit electrical connector assembly with conical outer snap fit retainer and externally mounted internal wire retainer
US7045714B1 (en) 2004-07-12 2006-05-16 Bridgeport Fittings, Inc. Electrical connector with conical snap fit retaining ring
US20060141827A1 (en) * 2004-09-13 2006-06-29 Delbert Auray Snap fit electrical connector assembly with operating tool for facilitating the connection of a connector assembly to an electrical box
US20060180331A1 (en) * 2004-09-13 2006-08-17 Delbert Auray Snap fit electrical connector assembly with outer frustro conical retainer ring and internal unidirectional snap fit wire conductor retainer
US20060180330A1 (en) * 2004-09-13 2006-08-17 Delbert Auray Electrical connector with snap fit retainer ring constructed to enhance the connection of the connector to an electrical box
US20060289194A1 (en) * 2004-09-13 2006-12-28 Bridgeport Fittings, Inc. Electrical connector with outer retainer ring and internal unidirectional conductor retainer
US7214890B2 (en) 2004-09-13 2007-05-08 Bridgeport Fittings, Inc. Electrical connector having an outlet end angularly disposed relative an inlet end with outer retainer ring about the outlet end and internal unidirectional conductor retainer in the inlet end
US20070163804A1 (en) * 2004-09-13 2007-07-19 Bridgeport Fittings, Inc. Electrical connector assembly with frustro-conical snap fit retaining ring for enhancing electrical grounding of the connector assembly to an electrical box and installation tool therefor
US20080053680A1 (en) * 2004-09-13 2008-03-06 Bridgeport Fittings, Inc. Strap type electrical connector with frustro-conical retaining ring and improved clamping strap for either nonmetallic cables or armor or metal clad cables
US20080149388A1 (en) * 2004-09-13 2008-06-26 Bridgeport Fittings, Inc. Electrical duplex connector having an integrally formed connector body with a frustro-conical retaining ring and unidirectional cable retainers
US20090178845A1 (en) * 2004-09-13 2009-07-16 Delbert Auray Electrical connector assembly with enhanced grounding
US20100163304A1 (en) * 2004-09-13 2010-07-01 Bridgeport Fittings, Inc. Duplex electrical connector with frustro-conical retaining ring and crimped inlet end
US8350163B2 (en) 2004-09-13 2013-01-08 Bridgeport, Fittings, Inc. Electrical connector having snap in frustro-conical retaining ring with improved conductivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1873842A (en) * 1929-05-06 1932-08-23 Wired Radio Inc High frequency stabilizer
US2005153A (en) * 1931-12-09 1935-06-18 Communications Patents Inc Synchronizing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1873842A (en) * 1929-05-06 1932-08-23 Wired Radio Inc High frequency stabilizer
US2005153A (en) * 1931-12-09 1935-06-18 Communications Patents Inc Synchronizing system

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2557581A (en) * 1947-02-15 1951-06-19 Rock Ola Mfg Corp Remote control system
US2546784A (en) * 1948-02-12 1951-03-27 Remington Rand Inc Punch tape sensing condenser
US2510095A (en) * 1948-04-29 1950-06-06 Int Standard Electric Corp Automatic frequency control system
US2972660A (en) * 1952-09-03 1961-02-21 Moore And Hall Frequency adjustment system
US2802908A (en) * 1953-12-18 1957-08-13 Collins Radio Co Automatic tuning means
US2930993A (en) * 1955-11-25 1960-03-29 Marconi Italianna S P A Oscillator tuned automatically to match crystal frequency
DE1023797B (en) * 1956-03-21 1958-02-06 Siemens Ag Circuit for electrical locking of a tunable oscillator
US20040166708A1 (en) * 2002-10-30 2004-08-26 Kiely Kenneth M. Snap fitting electrical connector
US6935891B2 (en) 2002-10-30 2005-08-30 Bridgeport Fittings, Inc. Snap fitting electrical connector
US7045714B1 (en) 2004-07-12 2006-05-16 Bridgeport Fittings, Inc. Electrical connector with conical snap fit retaining ring
US6916988B1 (en) 2004-07-12 2005-07-12 Bridgeport Fittings, Inc. Electrical connector with frustro conical snap fit retaining ring
US7064273B1 (en) 2004-07-12 2006-06-20 Bridgeport Fittings, Inc. Electrical connector with conical split snap ring retainer
US20060180330A1 (en) * 2004-09-13 2006-08-17 Delbert Auray Electrical connector with snap fit retainer ring constructed to enhance the connection of the connector to an electrical box
US20080053680A1 (en) * 2004-09-13 2008-03-06 Bridgeport Fittings, Inc. Strap type electrical connector with frustro-conical retaining ring and improved clamping strap for either nonmetallic cables or armor or metal clad cables
US20060054343A1 (en) * 2004-09-13 2006-03-16 Delbert Auray Snap fit electrical connector assembly with conical outer snap fit retainer and externally mounted internal wire retainer
US20060141827A1 (en) * 2004-09-13 2006-06-29 Delbert Auray Snap fit electrical connector assembly with operating tool for facilitating the connection of a connector assembly to an electrical box
US7075007B2 (en) 2004-09-13 2006-07-11 Bridgeport Fittings, Inc. Snap fit electrical connector assembly with conical outer snap fit retainer and one or more internal snap fit wire retainers
US20060180331A1 (en) * 2004-09-13 2006-08-17 Delbert Auray Snap fit electrical connector assembly with outer frustro conical retainer ring and internal unidirectional snap fit wire conductor retainer
US20060054341A1 (en) * 2004-09-13 2006-03-16 Delbert Auray Snap fit electrical connector assembly with conical outer snap fit retainer and one or more internal snap fit wire retainers
US7151223B2 (en) 2004-09-13 2006-12-19 Bridgeport Fittings, Inc. Snap fit electrical connector assembly with outer frustro conical retainer ring and internal unidirectional snap fit wire conductor retainer
US7154042B2 (en) 2004-09-13 2006-12-26 Bridgeport Fittings, Inc. Electrical connector with snap fit retainer ring constructed to enhance the connection of the connector to an electrical box
US20060289194A1 (en) * 2004-09-13 2006-12-28 Bridgeport Fittings, Inc. Electrical connector with outer retainer ring and internal unidirectional conductor retainer
US7205489B2 (en) 2004-09-13 2007-04-17 Bridgeport Fittings, Inc. Snap fit electrical connector assembly with operating tool for facilitating the connection of a connector assembly to an electrical box
US7214890B2 (en) 2004-09-13 2007-05-08 Bridgeport Fittings, Inc. Electrical connector having an outlet end angularly disposed relative an inlet end with outer retainer ring about the outlet end and internal unidirectional conductor retainer in the inlet end
US20070163804A1 (en) * 2004-09-13 2007-07-19 Bridgeport Fittings, Inc. Electrical connector assembly with frustro-conical snap fit retaining ring for enhancing electrical grounding of the connector assembly to an electrical box and installation tool therefor
US7057107B2 (en) 2004-09-13 2006-06-06 Bridgeport Fittings, Inc. Snap fit electrical connector assembly with conical outer snap fit retainer and externally mounted internal wire retainer
US7358448B2 (en) 2004-09-13 2008-04-15 Bridgeport Fittings, Inc. Electrical connector assembly with frusto-conical snap fit retaining ring for enhancing electrical grounding of the connector assembly to an electrical box and installation tool therefor
US20080149388A1 (en) * 2004-09-13 2008-06-26 Bridgeport Fittings, Inc. Electrical duplex connector having an integrally formed connector body with a frustro-conical retaining ring and unidirectional cable retainers
US20080277160A1 (en) * 2004-09-13 2008-11-13 Bridgeport Fittings, Inc. Electrical offset nipple connector with frustro-conical retaining rings
US7488905B2 (en) 2004-09-13 2009-02-10 Bridgeport Fittings, Inc. Electrical connector with outer retainer ring and internal unidirectional conductor retainer
US20090178845A1 (en) * 2004-09-13 2009-07-16 Delbert Auray Electrical connector assembly with enhanced grounding
US7645947B2 (en) 2004-09-13 2010-01-12 Bridgeport Fittings, Inc. Electrical connector with outer retainer ring and internal unidirectional conductor retainer
US7723623B2 (en) 2004-09-13 2010-05-25 Bridgeport Fittings, Inc. Electrical duplex connector having an integrally formed connector body with a frustro-conical retaining ring and unidirectional cable retainers
US20100163304A1 (en) * 2004-09-13 2010-07-01 Bridgeport Fittings, Inc. Duplex electrical connector with frustro-conical retaining ring and crimped inlet end
US7820922B2 (en) 2004-09-13 2010-10-26 Bridgeport Fittings, Inc. Electrical offset nipple connector with frustro-conical retaining rings
US7952034B2 (en) 2004-09-13 2011-05-31 Bridgeport Fittings, Inc. Strap type electrical connector with frustro-conical retaining ring and improved clamping strap for either nonmetallic cables or armor or metal clad cables
US8119933B2 (en) 2004-09-13 2012-02-21 Bridgeport Fittings, Inc. Duplex electrical connector with frustro-conical retaining ring and crimped inlet end
US8143535B2 (en) 2004-09-13 2012-03-27 Bridgeport Fittings, Inc. Electrical connector assembly with enhanced grounding
US8350163B2 (en) 2004-09-13 2013-01-08 Bridgeport, Fittings, Inc. Electrical connector having snap in frustro-conical retaining ring with improved conductivity

Similar Documents

Publication Publication Date Title
US2445663A (en) Automatic frequency control system
US2369542A (en) Receiver
US2183725A (en) Remote control system
US2245829A (en) Remote control system
US2429771A (en) Frequency responsive remotecontrol system
US2595608A (en) Automatically tuned wide range receiver and transmitter
US2452575A (en) Automatic frequency control
US2357984A (en) Automatic frequency control system
US2462856A (en) Transmitter and/or receiver circuits
US2478977A (en) Signal seeking receiver for frequency modulated signals
US2207540A (en) Method of and means for frequency comparison and measurement
US2457792A (en) Antihunting motor control circuit
US2404852A (en) Automatic frequency control
US2565876A (en) Signal-seeking receiver for frequency-modulated signals
US2524281A (en) Electrical automatic tuning unit
US3461385A (en) System for giving calibrated amplitude indications
US2230822A (en) Synchronizing apparatus
US2631239A (en) Automatic frequency control system
GB664407A (en) Television receiving apparatus
US2754420A (en) Automatic frequency control system
US2726326A (en) Electrical automatic tuning unit
US3873923A (en) Frequency detector
US2759100A (en) Automatic frequency control
US2529677A (en) Motor tuning system for receiving systems
US3750030A (en) Frequency switching circuitry for varactor tuned radio receivers