US2438371A - Disengageable electrical circuit connector - Google Patents

Disengageable electrical circuit connector Download PDF

Info

Publication number
US2438371A
US2438371A US545911A US54591144A US2438371A US 2438371 A US2438371 A US 2438371A US 545911 A US545911 A US 545911A US 54591144 A US54591144 A US 54591144A US 2438371 A US2438371 A US 2438371A
Authority
US
United States
Prior art keywords
connector
wafers
socket
plug
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US545911A
Inventor
Richard C Marholz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BELMONT RADIO Corp
Original Assignee
BELMONT RADIO CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BELMONT RADIO CORP filed Critical BELMONT RADIO CORP
Priority to US545911A priority Critical patent/US2438371A/en
Application granted granted Critical
Publication of US2438371A publication Critical patent/US2438371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/516Means for holding or embracing insulating body, e.g. casing, hoods
    • H01R13/518Means for holding or embracing insulating body, e.g. casing, hoods for holding or embracing several coupling parts, e.g. frames

Definitions

  • This invention relates to a disengageable electrical circuit connector of the full-floating contact type and. while it is of general application, it is particularly adaptable for application in a disconnectible plug and socket and will be described as embodied in such an application.
  • the apparatus is constructed in the form of a chassis rack: that is, it is divided into a number of sub-assembly units or chassis and these chassis are removably mounted in a rack or cabinet much in the manner of a series of drawers in a chest, usually with the sockets mounted on the back of the rack and the plugs attached to the back of the chassis and adapted to engage the sockets when the chassis is fully inserted.
  • This arrangement has a number of advantages in that, when the chassis is withdrawn for service or repair, it avoids numerous circuit changes and also usually breaks the connection of the circuit embodied in the chassis from the supply circuit, thereby removing theshock hazard to the operator.
  • a disengageable electrical circuit connector of the full-floating-contact type comprises a pair of complementary wafers-of insulation material, each of the wafers being formed with one or more recesses, and means for clamping the wafers in opposed relation with corresponding recesses in alignment.
  • the connector includes an elongated contact element freely disposed in each of one or more selected pairs of aligned recesses in the wafers and positioned thereby, the clamping means being eflective substantially parallel to the contact elements and the wafers, when clamped by the means, including provisions for engaging and retaining the elements while permitting limited motionthereof.
  • a disengageable electrical circuit connector of the full-floating-contact type comprises a pair of wafers of insulation material, means for clamping the wafers in opposed relation, at least one of the wafers being formed with one or more tioned thereby.
  • the insulation wafers when clamped by the means, include provisions for engaging and retaining the contact elements while permitting limited motion thereof.
  • the connector also includes a rigid, integral, supporting frame independent of the clamping means and means for securing the wafer and contact elements assembly, when clamped, to the frame.
  • the frame includes provisions for laterally positioning the wafers independently of the clamping means.
  • a disengageable electrical plug and socket embodies a connector of the full-floatlng-contact type described in any of the preceding paragraphs and the plug and socket include. complementary aligning elements proportioned to engage each other before engagement of their associated contact elements.
  • Figs. 1a and 1b are top and side views, respectively, the latter partly in exploded section, of a disengageable electrical connector of the plug type embodying the invention
  • Figs. 2a and 2b are similar views of a disengageable electrical connector of the socket type embodying the invention and adapted to receive the plug of Figs. 1a. and 1b;
  • Fig. 3 is an enlarged end view, partly in section, of the, plug and socket connector of Figs. 1a, 1b and 2a, 2b in the proper relation just prior to engagement of the contact elements;
  • Fig. 4 is a perspective view, partially schematic of a chassis rack embodying the disengageable electrical connector of the invention, while Fig. 5 is a cross-sectional detail of a portion of the rack of Fig. 4 along the line 5-5.
  • a disengageable electrical connector of the full-floating contact type adapted to be used-as a disengageable plug.
  • the plug of Figs. 1a, 112 comprises two pairs of complementary wafers I0, III and II, II of insulation material, preferably of a molded ceramic material.
  • the wafers I0 and II are of rectangular shape and are formed with upturned rims Illa, IIa terminating at the corners in pedestals IIlb, IIb.
  • At least one of each of the pairs of wafers II), II, preferably both, are formed with one or more recesses IIlc, IIc (Fig. 3) preferably regularly spaced inone or more parallel rows as indicated in Fig.
  • Each of the recesses is shown as comprising a generally conical depression in the outer face of one of the wafers I0 and II and a substantially cylindrical recess in the inner face of the wafer, joined by a narrow rectangular aperture.
  • these recesses may, take any of a variety of shapes in accordance" with the particular design of the connector and these recessed portions are collectively referred to herein as the recesses in the insulation wafers.
  • the connector also includes means for clamping the wafers in opposed relation, this means comprising the depressions Ind, I Id at each of the corners of the wafers at which are located the holes IIle, Me for receiving bolts I2.
  • the connector also includes a plurality of contact ele- 4 me'nts I3, one being disposed freely in each of one or more selected recesses of one of the wafers or, in the embodiment illustrated, in selected pairs of aligned recesses I00, He in the wafers and positioned by such recesses.
  • the contact elements I3 are provided with enlarged middle sections I3a having shoulders lab.
  • the connector also includes a supporting .frame I4 for the wafer and contact assembly.
  • the frame I4 includes provisions for positioning the wafer and contact assembly laterally independently of the clamp ing means, these provisions comprising the opening Ida proportioned closely to surround the periphery of the wafers I0 and II when in their clamped position.
  • the frame I4 is formed with an internal peripheral rib I Ib, the opposed wafers I0 and II in their normal positions being clamped with the pedestals IIlb, IIb engaging opposite faces of the rim Mb.
  • the pedestals vIllb, I lb can be ground or otherwise finished to ensure an accurate spacing and positioning of the wafers I0 and II in the frame I4.
  • the clamping means is effective substantially parallel to the contact elements I3b, which are full-floating, so that the pressure of the clamping means exerts no stress on the contact elements I3 nor on the wafers II), II in a direction normal to the contact elements I3, which stress might tend to displace them laterally and impair their alignment with corresponding elements of the associated socket described hereinafter.
  • the wafers III- and II when clamped, include provisions, for engaging and retaining the contact elements I3 while permitting limited 'motion thereof, these provisions being either the inner surfaces of the opposed wafers I0 and II or the inner surfaces of the corresponding recesses Illc, IIc which en gage the shoulders I3b of the enlarged central portions I3a, of the contact elements and limit longitudinal movement thereof.
  • these provisions may comprise protrusions formed on the wafers I0, I I engaging complementary recesses formed in the contact ele- In, the plug type of connector of Figs.
  • the other ends, I311 of thecontact elements I3 which,
  • duplicate wafer and contact assemblies are disposed side by side in the frame I4, the wafers and contact elements of the duplicate assemblies being identified by similar reference numerals, but not requiring a repeated description. It will be apparent that any desired number of duplicate Wafer contact element assemblies may be mounted within a single supporting frame.
  • each of the contact elements I5 is in the form of a strip of resilient conductive material, such as brass, bent double on itself with re-entrant portions I5a (Fig.
  • each of the contact elements I5 extends through a recess Illc of its associated wafer III, while the spring clip portion I5a thereof is in alignment with a recess I Io in the wafter I I to facilitate the entry of the contact elements I3 of the plug connector of Figs.
  • the contact elements I5 are formed with outwardly flaring shoulders I51) near their middle section, these shoulders engaging the inner face of the wafer I or the bottoms of the inner recesses IIIc thereof while the other ends of the elements I fit into and engage the inner faces of the cylindrical recesses lie of the inner face of the other wafer II.
  • the supporting frame I4 of the plug connector of Figs. 1a. lb and the frame I4 of the socket connector of Figs. 2a, 2b include provisions to ensure their proper alignment when brought into engagement before the engagement of their associated contact elements.
  • the frame I4 of the plug connector of Figs. 1a, 1b is provided with a circular socket or hole I40 at each end thereof while the frame of the socket connector of Figs. 2a, 2b is provided with a complementary pin I4d at either end thereof having a tapered end portion Me to facilitate entry into the sockets Me of the complementary connector.
  • the length of the pins Md is such that they enter the sockets I40 of the plug connector, during the engagement of the plug and socket, prior to the engagement of the contact elements I3 of the plug with the spring contacts of the socket and even prior to the entry of the contact elements i3 into the slot-like recesses or apertures @Ic of the wafer ll of the socket connector.
  • the maximum possible accuracy of alignment is assured before it is attempted to force the plug and socket into engagement.
  • the plug and socket connectors include a large number of contact elements requiring a considerable force to effect their engagement.
  • the rigid supporting frames I4 and sturdy pins I ld and sockets I40 absorb any lateral strains or shocks imposed upon the plug and socket connectors either during their engagement or thereafter in the normal operation of the apparatus of which they form a part. This avoids deformation of the contact elements of the connectors, which would increase the difficulty of subsequent engagement and disengagement of the plug and socket, and also substantially eliminates strains on the insulation wafers I0 and I I.
  • the described aligning means avoids substantial lateral stresses and strains which might crack or chip the wafers. particularly at the recesses I00, I Ic or at the holes I06, I I c for the clamping bolts.
  • an electrical chassis rack including a housing or cabinet 20 in which are removably mounted a plurality of electrical apparatus chassis, such as the chassis illustrated at II, the chassis being disposed one above the other in vertical alignment like the drawers in a chest.
  • the cabinet 20 is provided with a vertical inset cable duct 20a the back of which is in the form of an apertured supporting plate.
  • a disengageable plug and socket of the type described is provided for each of the chassis 2
  • a series of sockets 22 are mounted on the back plate of the duct 20a while a complementary plug 23 is mounted on the back of each of the chassis 2
  • the details of the mounting of the sockets 22 on the back plate Zilb of the cable duct 20a is shown in Fig. 5, the plate 20b being provided with a series of large apertures to permit access I to the contact terminals I5a of the socket 22.
  • the plate 20b is also provided with appropriately spaced apertures 200 for receiving a plurality of machine screws 24 under the head of each of which is inserted a spring washer 25.
  • the details of the mounting of the socket from the back plate 201) are shown more clearly in Fig. 3.
  • each of the screws 24 is formed with an enlarged shank 24a which engages the frame i4 of the associated socket.
  • the shank has a diameter substantially less than that of the apertures 20c and a length substantially greater than the thickness of the back plate 201), whereby the sockets 22 have a limited free transverse movement with respect to the backing plate.
  • the several sockets 22 may be interconnected by suitable electrical cables 26, whereupon a removable cover plate 2? may be secured to cover the cable duct 20a.
  • the aligning pins lid and socket 540 preliminarily align the plugs and sockets and absorb any lateral strains due to misalignment of the chassis.
  • the resilient or free mounting of the socket frames it on the back plate 20b of the cable duct 20a permits limited transverse movement of the sockets to accommodate inaccuracies in alignment of the chassis with the rack or cabinet 20.
  • a disengageable electrical circuit connector including in combination an open frame, an internal rib within said frame, a pair of complementary opposed wafers of insulation material positioned within said open frame on opposite sides of said internal rib and each having a plurality of recesses oppositely positioned and each pair of opposed recesses providing a cavity therebetween, contact means in each pair of recesses having a portion in the cavity dimensioned for floating movement therein as limited by the walls of such recesses, said contact means having another portion extending out of a wafer for receiving a circuit connection thereto, and fastening means through said wafers to clamp the pair of wafers toward one another against the internal rib, said wafers being maintained rigid in the frame but each said contact means floating within limits in the wafers.
  • a disengageable electrical circuit connector including in combination a frame comprising an outer rim with top and bottom faces and open centrally thereof, an internal rib within said frame extending parallel to said faces and between the same, a pair of complementary opposed wafers of insulation material each having a plurality of recesses therein and said pair being positioned within said open frame supported on opposite sides of said internal rib with said recesses oppositely positioned and each pair of opposed recesses providing a cavity therebetween, contact means in each pair of recesses having a. portion positioned in the cavity dimensioned for floating movement within the cavity as limited by the walls of such recesses, said contact means having at least one portion extending out of a wafer for receiving a .circuit connection thereto, and fastening means extending through 3.
  • said contact means comprises a metal member and said portion in said cavity comprises an enlargement engageable with the walls of said recesses.
  • said contact means comprises a metal member and said portion in said cavity comprises resilient prong receiving means with a bend at one end and a shoulder at the other end engageable with the walls of said recesses.

Description

R. C. MARHOLZ March 23, 1948.
DISENGAGEABLE ELECTRICAL CIRCUIT CONNECTOR 4 Sheets-Sheet 1 Filed July 21, 1944 March 23, 1948. R. c. MARHOLZ 2,438,371
DISENGAGEABLE ELECTRICAL CIRCUIT- CONNECTOR Filed July 21, 1944 4 Sheets-Sheet 2 22m raw/25 2 2?" a 81/?4JA;
March 23, 194%). R g, MARHQLZ 2,438,373
DISENGAGEABLE ELECTRICAL CIRCUIT CONNECTOR Filed July 21, 1944 4 Shasta-Sheet 3 mil/EN 01a.
Marcia 23 1948.
R. C. MARHCDLZ DISENGAGEABLE ELECTRICAL CIRCUIT CONNECTOR Filed July 21, 1944 4 Sheets-Sheet 4 I N VEN TOR.
Patented Mar. 23, 1948 DISENGAGEABLE ELECTRICAL CIRCUIT CONNECTOR Richard C. Marholz, Chicago, 111.,
mesne Illlgnments, to Belmont Radio Co auignor, by
tion, Chicago, 11]., a corporation of Illinois Application July 21, 1944, Serial No. 545,911 4 Claims. (Cl. 173-328) This invention relates to a disengageable electrical circuit connector of the full-floating contact type and. while it is of general application, it is particularly adaptable for application in a disconnectible plug and socket and will be described as embodied in such an application.
In many applications ofdisconnectible electrical plugs and sockets it is required that the complementary contact elements maintain a good electrical contact in spite of minor misalignments due to either manufacturing tolerances or to slight misalignments of the electrical apparatus with which the plugs and the sockets are associated. For example, in certain types of communication and control apparatus of complicated forms, the apparatus is constructed in the form of a chassis rack: that is, it is divided into a number of sub-assembly units or chassis and these chassis are removably mounted in a rack or cabinet much in the manner of a series of drawers in a chest, usually with the sockets mounted on the back of the rack and the plugs attached to the back of the chassis and adapted to engage the sockets when the chassis is fully inserted. This arrangement has a number of advantages in that, when the chassis is withdrawn for service or repair, it avoids numerous circuit changes and also usually breaks the connection of the circuit embodied in the chassis from the supply circuit, thereby removing theshock hazard to the operator.
It is, of course, difllcult in such a unit construction to maintain the precise alignmentmf the mechanical parts necessary to ensure good electrical contacts from rigid-contact plug and socket connectors, so that it has been proposed to utilize full-floating-contact type connectors, that is, connectors of the type in which the contact elements are freely disposed in recesses in the connectors without any fixed engagement with the body of the connector, permitting limited movement of the contact elements in any direction. In some of these proposed connector constructions, the arrangement of the contact elements and parts is such that manufacturing tolerances on the individual elements are cumulative in the final structure, thus introducing difficult alignment problems. In this type or plug and socket connector, either of the rigid-contact typ or the full-floating-contact type, the structures previously proposed have tended to apply excessive lateral strains upon the contact elements in case of any substantial misalignment of the plug and socket occasioned by inaccuracies of the mechanical structure of the rack and chassis units. These stresses in some instances have deformed the contact elements or chipped or broken the insulating material comprising the supporting body of the plug or socket, thus aggravating the diiliculty upon subsequent engagements of the plug and socket.
It is an object of the invention. therefore, to
provide a new and improved disengageable electrical circuit connnector of the full-floating-contact type which is eflective to overcome one or more of the disadvantages of the prior art arrangements.
It is another object of the invention to provide a new and improved disengageable electrical circuit connector of the full-floating-contact type which is particularly adapted for use in plug and socket connectors suitable for the unit type of rack and chassis construction of electrical apparatus.
It is another object of the invention to provide a new and improved disengasea'ble electrical circuit connector of the full-floating-contact type which is simple and economical in construction and in which the effects of manufacturing tolerances on the individual elements are not cumuiative but random.
It is another object of the invention to provide a new and improved disengageable electrical circuit connector of the full-floating-contact type for use in plug and socket connectors by means of which the lateral strains of the contact elements may be substantially removed.
In accordance with the invention, a disengageable electrical circuit connector of the full-floating-contact type comprises a pair of complementary wafers-of insulation material, each of the wafers being formed with one or more recesses, and means for clamping the wafers in opposed relation with corresponding recesses in alignment. The connector includes an elongated contact element freely disposed in each of one or more selected pairs of aligned recesses in the wafers and positioned thereby, the clamping means being eflective substantially parallel to the contact elements and the wafers, when clamped by the means, including provisions for engaging and retaining the elements while permitting limited motionthereof.
Further in accordance with the invention, a disengageable electrical circuit connector of the full-floating-contact type comprises a pair of wafers of insulation material, means for clamping the wafers in opposed relation, at least one of the wafers being formed with one or more tioned thereby. The insulation wafers, when clamped by the means, include provisions for engaging and retaining the contact elements while permitting limited motion thereof. The connector also includes a rigid, integral, supporting frame independent of the clamping means and means for securing the wafer and contact elements assembly, when clamped, to the frame. Preferably in a connector ofthis type the frame includes provisions for laterally positioning the wafers independently of the clamping means.
Further in accordance with the invention a disengageable electrical plug and socket embodies a connector of the full-floatlng-contact type described in any of the preceding paragraphs and the plug and socket include. complementary aligning elements proportioned to engage each other before engagement of their associated contact elements.
For a better understanding of the invention, together with other and further objects thereof, reference is had to the following description taken in connection with the accompanying drawings while its scope will be pointed out in the appended claims.
Referring now to the drawings,
Figs. 1a and 1b are top and side views, respectively, the latter partly in exploded section, of a disengageable electrical connector of the plug type embodying the invention;
Figs. 2a and 2b are similar views of a disengageable electrical connector of the socket type embodying the invention and adapted to receive the plug of Figs. 1a. and 1b;
Fig. 3 is an enlarged end view, partly in section, of the, plug and socket connector of Figs. 1a, 1b and 2a, 2b in the proper relation just prior to engagement of the contact elements;
Fig. 4 is a perspective view, partially schematic of a chassis rack embodying the disengageable electrical connector of the invention, while Fig. 5 is a cross-sectional detail of a portion of the rack of Fig. 4 along the line 5-5.
Referring now to Figs. la, 1b of the drawings, there is illustrated a disengageable electrical connector of the full-floating contact type adapted to be used-as a disengageable plug. The plug of Figs. 1a, 112 comprises two pairs of complementary wafers I0, III and II, II of insulation material, preferably of a molded ceramic material. The wafers I0 and II are of rectangular shape and are formed with upturned rims Illa, IIa terminating at the corners in pedestals IIlb, IIb. At least one of each of the pairs of wafers II), II, preferably both, are formed with one or more recesses IIlc, IIc (Fig. 3) preferably regularly spaced inone or more parallel rows as indicated in Fig. 1a. Each of the recesses is shown as comprising a generally conical depression in the outer face of one of the wafers I0 and II and a substantially cylindrical recess in the inner face of the wafer, joined by a narrow rectangular aperture. However, these recesses may, take any of a variety of shapes in accordance" with the particular design of the connector and these recessed portions are collectively referred to herein as the recesses in the insulation wafers.
The connector also includes means for clamping the wafers in opposed relation, this means comprising the depressions Ind, I Id at each of the corners of the wafers at which are located the holes IIle, Me for receiving bolts I2. The connector also includes a plurality of contact ele- 4 me'nts I3, one being disposed freely in each of one or more selected recesses of one of the wafers or, in the embodiment illustrated, in selected pairs of aligned recesses I00, He in the wafers and positioned by such recesses. The contact elements I3 are provided with enlarged middle sections I3a having shoulders lab.
The connector also includes a supporting .frame I4 for the wafer and contact assembly.
when clamped in their normal positions, and this supporting frame is preferably a rigid integral structure, as illustrated, which is independent of, that is, forms no part of, the clamping means of the connector. The frame I4 includes provisions for positioning the wafer and contact assembly laterally independently of the clamp ing means, these provisions comprising the opening Ida proportioned closely to surround the periphery of the wafers I0 and II when in their clamped position. The frame I4 is formed with an internal peripheral rib I Ib, the opposed wafers I0 and II in their normal positions being clamped with the pedestals IIlb, IIb engaging opposite faces of the rim Mb. The pedestals vIllb, I lb can be ground or otherwise finished to ensure an accurate spacing and positioning of the wafers I0 and II in the frame I4.
With the arrangement described, when the opposing wafers I0 and II are clamped by the bolts I2 to engage opposite faces of the rim Mb, the clamping means is effective substantially parallel to the contact elements I3b, which are full-floating, so that the pressure of the clamping means exerts no stress on the contact elements I3 nor on the wafers II), II in a direction normal to the contact elements I3, which stress might tend to displace them laterally and impair their alignment with corresponding elements of the associated socket described hereinafter. As can be seen from Fig. lb and Fig. 3, the wafers III- and II, when clamped, include provisions, for engaging and retaining the contact elements I3 while permitting limited 'motion thereof, these provisions being either the inner surfaces of the opposed wafers I0 and II or the inner surfaces of the corresponding recesses Illc, IIc which en gage the shoulders I3b of the enlarged central portions I3a, of the contact elements and limit longitudinal movement thereof. Conversely, if desired, these provisions may comprise protrusions formed on the wafers I0, I I engaging complementary recesses formed in the contact ele- In, the plug type of connector of Figs. la, 1b, the ends I30 of the contact elements I3, which in use are remote from the associated socket, extend through their respective recesses I00 of the upper wafer II] to provide means for making an external electrical connection thereto. Similarly, the other ends, I311 of thecontact elements I3 which,
when associated with a complementary socket,
form elements of resilient frictional contacts, ex-
tend through the recesses of the wafer II for insertion in the complementary socket.
As illustrated in Figs. 1a., 1b, duplicate wafer and contact assemblies are disposed side by side in the frame I4, the wafers and contact elements of the duplicate assemblies being identified by similar reference numerals, but not requiring a repeated description. It will be apparent that any desired number of duplicate Wafer contact element assemblies may be mounted within a single supporting frame.
Referring now to Figs. 2a and 2b, there are represented a disengageable electrical connector of 5 the socket type suitable for operation with the plug of Figs. la, 1b. The elements of the socket connector of Figs. 2a and 2b, with the sole exception of the contact elements, are substantially 7 identical withthose of Figs. la, 1b and for the sake of clarity corresponding elements are identified by the same reference numerals. In the connector of Figs. 2a, 21) each of the contact elements I5 is in the form of a strip of resilient conductive material, such as brass, bent double on itself with re-entrant portions I5a (Fig. 3) constructed to form a spring clip for receiving the protruding portions I3d of the contact elements I3 of the plug of Figs. la, lb. One end I5d of each of the contact elements I5 extends through a recess Illc of its associated wafer III, while the spring clip portion I5a thereof is in alignment with a recess I Io in the wafter I I to facilitate the entry of the contact elements I3 of the plug connector of Figs. 1a, lb; The contact elements I5 are formed with outwardly flaring shoulders I51) near their middle section, these shoulders engaging the inner face of the wafer I or the bottoms of the inner recesses IIIc thereof while the other ends of the elements I fit into and engage the inner faces of the cylindrical recesses lie of the inner face of the other wafer II.
' From the description of Figs. 1a, lb and 2a, 2b it will be seen that the insulation wafers I0 and I I are completely interchangeable, both as between the opposing wafers of each of the types of connectors and as between the plug and socket connectors. This has the apparent advantage of reducing the number of types of molded insulation elements required.
The supporting frame I4 of the plug connector of Figs. 1a. lb and the frame I4 of the socket connector of Figs. 2a, 2b include provisions to ensure their proper alignment when brought into engagement before the engagement of their associated contact elements. Specifically. the frame I4 of the plug connector of Figs. 1a, 1b is provided with a circular socket or hole I40 at each end thereof while the frame of the socket connector of Figs. 2a, 2b is provided with a complementary pin I4d at either end thereof having a tapered end portion Me to facilitate entry into the sockets Me of the complementary connector.
As indicated in the enlarged detail view of Fig. 3, the length of the pins Md is such that they enter the sockets I40 of the plug connector, during the engagement of the plug and socket, prior to the engagement of the contact elements I3 of the plug with the spring contacts of the socket and even prior to the entry of the contact elements i3 into the slot-like recesses or apertures @Ic of the wafer ll of the socket connector. By this arrangement the engagement of the plug and socket are facilitated in that any minor misalignments of the plug and socket due to manufacturing tolerances or to inaccuracies of their mountings in the chassis and rack portions of the associated electrical apparatus are taken up by the pins Md and sockets i 10. Thus, the maximum possible accuracy of alignment is assured before it is attempted to force the plug and socket into engagement. This is particularly helpful when the plug and socket connectors include a large number of contact elements requiring a considerable force to effect their engagement. At the same time the rigid supporting frames I4 and sturdy pins I ld and sockets I40 absorb any lateral strains or shocks imposed upon the plug and socket connectors either during their engagement or thereafter in the normal operation of the apparatus of which they form a part. This avoids deformation of the contact elements of the connectors, which would increase the difficulty of subsequent engagement and disengagement of the plug and socket, and also substantially eliminates strains on the insulation wafers I0 and I I. In the case of the use of molded ceramic material for the wafers I0 and II, which is brittle, the described aligning means avoids substantial lateral stresses and strains which might crack or chip the wafers. particularly at the recesses I00, I Ic or at the holes I06, I I c for the clamping bolts.
Referring now to Fig. 4, there is represented an electrical chassis rack including a housing or cabinet 20 in which are removably mounted a plurality of electrical apparatus chassis, such as the chassis illustrated at II, the chassis being disposed one above the other in vertical alignment like the drawers in a chest. The cabinet 20 is provided with a vertical inset cable duct 20a the back of which is in the form of an apertured supporting plate. A disengageable plug and socket of the type described is provided for each of the chassis 2| and comprises complementary plug and socket members, corresponding ones of which are adapted to be mounted on the supporting plate of the cable duct 20a and the others being adapted to be individually mounted on the chassis. As illustrated. a series of sockets 22 are mounted on the back plate of the duct 20a while a complementary plug 23 is mounted on the back of each of the chassis 2|. The details of the mounting of the sockets 22 on the back plate Zilb of the cable duct 20a is shown in Fig. 5, the plate 20b being provided with a series of large apertures to permit access I to the contact terminals I5a of the socket 22.
The plate 20b is also provided with appropriately spaced apertures 200 for receiving a plurality of machine screws 24 under the head of each of which is inserted a spring washer 25. The details of the mounting of the socket from the back plate 201) are shown more clearly in Fig. 3. As there illustrated each of the screws 24 is formed with an enlarged shank 24a which engages the frame i4 of the associated socket. The shank has a diameter substantially less than that of the apertures 20c and a length substantially greater than the thickness of the back plate 201), whereby the sockets 22 have a limited free transverse movement with respect to the backing plate.
20b and are resiliently supported therefrom in a free-floating connection. The several sockets 22 may be interconnected by suitable electrical cables 26, whereupon a removable cover plate 2? may be secured to cover the cable duct 20a.
It will be apparent that, upon the insertion of any of the chassis 2! into the cabinet 20, the complementary socket 22 and plug 23 associated with such chassis will be brought into engagement. As described above, the aligning pins lid and socket 540 preliminarily align the plugs and sockets and absorb any lateral strains due to misalignment of the chassis. At the same time the resilient or free mounting of the socket frames it on the back plate 20b of the cable duct 20a permits limited transverse movement of the sockets to accommodate inaccuracies in alignment of the chassis with the rack or cabinet 20.
While there has been described what is at present considered to be the preferred embodiment oi the invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit or scope of the invention.
I claim:
1. A disengageable electrical circuit connector including in combination an open frame, an internal rib within said frame, a pair of complementary opposed wafers of insulation material positioned within said open frame on opposite sides of said internal rib and each having a plurality of recesses oppositely positioned and each pair of opposed recesses providing a cavity therebetween, contact means in each pair of recesses having a portion in the cavity dimensioned for floating movement therein as limited by the walls of such recesses, said contact means having another portion extending out of a wafer for receiving a circuit connection thereto, and fastening means through said wafers to clamp the pair of wafers toward one another against the internal rib, said wafers being maintained rigid in the frame but each said contact means floating within limits in the wafers.
2. A disengageable electrical circuit connector including in combination a frame comprising an outer rim with top and bottom faces and open centrally thereof, an internal rib within said frame extending parallel to said faces and between the same, a pair of complementary opposed wafers of insulation material each having a plurality of recesses therein and said pair being positioned within said open frame supported on opposite sides of said internal rib with said recesses oppositely positioned and each pair of opposed recesses providing a cavity therebetween, contact means in each pair of recesses having a. portion positioned in the cavity dimensioned for floating movement within the cavity as limited by the walls of such recesses, said contact means having at least one portion extending out of a wafer for receiving a .circuit connection thereto, and fastening means extending through 3. In a connector as defined in claim 1 wherein said contact means comprises a metal member and said portion in said cavity comprises an enlargement engageable with the walls of said recesses.
4. In a connector as defined in claim 1 wherein said contact means comprises a metal member and said portion in said cavity comprises resilient prong receiving means with a bend at one end and a shoulder at the other end engageable with the walls of said recesses.
RICHARD C. MARHOLZ.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS Number Name Date 1,157,026 Mesohenmoser Oct. 19, 1915 1,227,375 Boirault May 22, 1917 1,418,171 Raettig May 30, 1922 1,686,534 Rosenzweig Oct. 9, 1928 1,722,816 Meunier July 30, 1929 1,750,014 Lofgren Mar. 11, 1930 2,031,564 Knutson Feb. 18, 1936 2,124,182 Braun July 19, 1938 2,135,267 Alden Nov. 1, 1938 2,151,756 Fletcher et al Mar. 28, 1939 2,162,453 Field June 13, 1939 2,173,323 Roby Sept. 19, 1939 2,207,477 Blackmon July 9, 1940 2,274,422 Mahoney et al Feb. 24, 1942 FOREIGN PATENTS 4,0 Number Country Date 381,178 Great Britain 1932
US545911A 1944-07-21 1944-07-21 Disengageable electrical circuit connector Expired - Lifetime US2438371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US545911A US2438371A (en) 1944-07-21 1944-07-21 Disengageable electrical circuit connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US545911A US2438371A (en) 1944-07-21 1944-07-21 Disengageable electrical circuit connector

Publications (1)

Publication Number Publication Date
US2438371A true US2438371A (en) 1948-03-23

Family

ID=24178035

Family Applications (1)

Application Number Title Priority Date Filing Date
US545911A Expired - Lifetime US2438371A (en) 1944-07-21 1944-07-21 Disengageable electrical circuit connector

Country Status (1)

Country Link
US (1) US2438371A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495531A (en) * 1945-11-09 1950-01-24 Weston Electrical Instr Corp Instrument panel assembly
US2538042A (en) * 1945-04-30 1951-01-16 Frank W Reilly Enclosed switchgear
US2548795A (en) * 1947-04-22 1951-04-10 Rca Corp Pulse multiplex system
US2603683A (en) * 1949-09-10 1952-07-15 Western Electric Co Electrical test equipment
US2610998A (en) * 1948-07-07 1952-09-16 Westinghouse Air Brake Co Removable mountings and interlocking means for electrical devices
US2619021A (en) * 1949-08-04 1952-11-25 Ilg Electric Ventilating Compa Ventilator fan mounting
US2619893A (en) * 1946-11-27 1952-12-02 Enkopings Verkst Er Ab Motor-driven ventilating unit mounting
US2647244A (en) * 1950-08-31 1953-07-28 Reeves Instrument Corp Prepatch connector bay
US2658183A (en) * 1950-03-13 1953-11-03 American Phenolic Corp Hermetically sealed socket with freely floating contacts
US2709247A (en) * 1950-03-07 1955-05-24 Alden Milton Electrical connectors
US2714195A (en) * 1951-09-19 1955-07-26 John W Beatty Quick connect-disconnect electrical connectors
US2810114A (en) * 1953-12-31 1957-10-15 Borg Warner Floating electrical connector for a cabinet door
US2852197A (en) * 1953-12-31 1958-09-16 Bristol Company Controlling and exhibiting apparatus
US2899665A (en) * 1959-08-11 Resistor
US2930020A (en) * 1958-10-02 1960-03-22 Gen Electric Mounting and connecting means for electric circuit controlling devices
US2938188A (en) * 1957-07-01 1960-05-24 Rca Corp Interlock assembly
US2944240A (en) * 1956-08-03 1960-07-05 Bell Telephone Labor Inc Electrical contact member
US2954543A (en) * 1956-07-13 1960-09-27 Pyle National Co Automatic train line connector
US3025489A (en) * 1957-08-14 1962-03-13 Birtcher Corp Tube mounting device
US3066244A (en) * 1959-02-20 1962-11-27 Cutler Hammer Inc Switchboard-type of cabinet for electrical control apparatus
US3141715A (en) * 1962-03-27 1964-07-21 Ralph F Hereth Electrical contactor apparatus for guided missiles
US3275953A (en) * 1963-08-20 1966-09-27 Erie Technological Prod Inc Multiple pin connector having ferrite bead-capacitor filter
US3394287A (en) * 1961-06-26 1968-07-23 Siemens Ag Frames for electrical communication apparatus
US3947080A (en) * 1971-06-14 1976-03-30 Underwriters Safety Device Co. Quick-connect-disconnect terminal block assembly
US4780090A (en) * 1986-06-25 1988-10-25 Yazaki Corporation Ultra multi-pole connector
US4850885A (en) * 1988-01-06 1989-07-25 E. I. Du Pont De Nemours And Company Connector mounting system
US4909750A (en) * 1987-11-27 1990-03-20 Webasto Ag Fahrzeugtechnik Electric connection device for components of heaters and heater utilizing same
US4954094A (en) * 1989-09-15 1990-09-04 Gte Products Corporation Sliding gimbal connector
US4993965A (en) * 1988-05-10 1991-02-19 E. I. Du Pont De Nemours And Company Support for floated header/connector
US5205755A (en) * 1992-03-31 1993-04-27 Amp Incorporated Float mount electrical connector
US5328381A (en) * 1991-05-16 1994-07-12 Osram Sylvania Inc. Connector module having six degrees of freedom
US20040014338A1 (en) * 2002-06-11 2004-01-22 Kabushiki Kaisha Tokai Rika Denki Seisakusho Connector and mounting structure of connector to substrate

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1157026A (en) * 1911-10-20 1915-10-19 William F Meschenmoser Plug-switch.
US1227375A (en) * 1913-07-25 1917-05-22 Louis Boirault Electric connection for railway-vehicles.
US1418171A (en) * 1921-09-17 1922-05-30 Raettig Bruno Plug and socket contact
US1686534A (en) * 1924-03-13 1928-10-09 Regan Safety Devices Co Inc Electric coupling
US1722816A (en) * 1925-07-17 1929-07-30 Chicago Pneumatic Tool Co Cable connection for portable tools
US1750014A (en) * 1928-01-06 1930-03-11 Ralco Mfg Company Electric-current connection
GB381178A (en) * 1931-06-29 1932-09-29 Charles Leonard Arnold Improvements in or relating to plug-and-socket connectors, switches, fuses, and the like
US2031564A (en) * 1933-09-09 1936-02-18 Cinch Mfg Corp Separable electrical contact device
US2124182A (en) * 1937-05-20 1938-07-19 Remington Rand Inc Multicontact plug
US2135267A (en) * 1936-02-25 1938-11-01 Alden Milton Electrical plug and socket
US2151756A (en) * 1937-10-09 1939-03-28 Westinghouse Electric & Mfg Co Metal-clad switch gear
US2162453A (en) * 1935-12-27 1939-06-13 Gen Railway Signal Co Detachable electrical connector
US2173323A (en) * 1936-11-20 1939-09-19 Cinch Mfg Corp Shielded plug and socket device
US2207477A (en) * 1938-08-16 1940-07-09 Delbert C Blackmon Electric cord plug and receptacle
US2274422A (en) * 1940-01-20 1942-02-24 Gen Electric Electrical connection

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1157026A (en) * 1911-10-20 1915-10-19 William F Meschenmoser Plug-switch.
US1227375A (en) * 1913-07-25 1917-05-22 Louis Boirault Electric connection for railway-vehicles.
US1418171A (en) * 1921-09-17 1922-05-30 Raettig Bruno Plug and socket contact
US1686534A (en) * 1924-03-13 1928-10-09 Regan Safety Devices Co Inc Electric coupling
US1722816A (en) * 1925-07-17 1929-07-30 Chicago Pneumatic Tool Co Cable connection for portable tools
US1750014A (en) * 1928-01-06 1930-03-11 Ralco Mfg Company Electric-current connection
GB381178A (en) * 1931-06-29 1932-09-29 Charles Leonard Arnold Improvements in or relating to plug-and-socket connectors, switches, fuses, and the like
US2031564A (en) * 1933-09-09 1936-02-18 Cinch Mfg Corp Separable electrical contact device
US2162453A (en) * 1935-12-27 1939-06-13 Gen Railway Signal Co Detachable electrical connector
US2135267A (en) * 1936-02-25 1938-11-01 Alden Milton Electrical plug and socket
US2173323A (en) * 1936-11-20 1939-09-19 Cinch Mfg Corp Shielded plug and socket device
US2124182A (en) * 1937-05-20 1938-07-19 Remington Rand Inc Multicontact plug
US2151756A (en) * 1937-10-09 1939-03-28 Westinghouse Electric & Mfg Co Metal-clad switch gear
US2207477A (en) * 1938-08-16 1940-07-09 Delbert C Blackmon Electric cord plug and receptacle
US2274422A (en) * 1940-01-20 1942-02-24 Gen Electric Electrical connection

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899665A (en) * 1959-08-11 Resistor
US2538042A (en) * 1945-04-30 1951-01-16 Frank W Reilly Enclosed switchgear
US2495531A (en) * 1945-11-09 1950-01-24 Weston Electrical Instr Corp Instrument panel assembly
US2619893A (en) * 1946-11-27 1952-12-02 Enkopings Verkst Er Ab Motor-driven ventilating unit mounting
US2548795A (en) * 1947-04-22 1951-04-10 Rca Corp Pulse multiplex system
US2610998A (en) * 1948-07-07 1952-09-16 Westinghouse Air Brake Co Removable mountings and interlocking means for electrical devices
US2619021A (en) * 1949-08-04 1952-11-25 Ilg Electric Ventilating Compa Ventilator fan mounting
US2603683A (en) * 1949-09-10 1952-07-15 Western Electric Co Electrical test equipment
US2709247A (en) * 1950-03-07 1955-05-24 Alden Milton Electrical connectors
US2658183A (en) * 1950-03-13 1953-11-03 American Phenolic Corp Hermetically sealed socket with freely floating contacts
US2647244A (en) * 1950-08-31 1953-07-28 Reeves Instrument Corp Prepatch connector bay
US2714195A (en) * 1951-09-19 1955-07-26 John W Beatty Quick connect-disconnect electrical connectors
US2810114A (en) * 1953-12-31 1957-10-15 Borg Warner Floating electrical connector for a cabinet door
US2852197A (en) * 1953-12-31 1958-09-16 Bristol Company Controlling and exhibiting apparatus
US2954543A (en) * 1956-07-13 1960-09-27 Pyle National Co Automatic train line connector
US2944240A (en) * 1956-08-03 1960-07-05 Bell Telephone Labor Inc Electrical contact member
US2938188A (en) * 1957-07-01 1960-05-24 Rca Corp Interlock assembly
US3025489A (en) * 1957-08-14 1962-03-13 Birtcher Corp Tube mounting device
US2930020A (en) * 1958-10-02 1960-03-22 Gen Electric Mounting and connecting means for electric circuit controlling devices
US3066244A (en) * 1959-02-20 1962-11-27 Cutler Hammer Inc Switchboard-type of cabinet for electrical control apparatus
US3394287A (en) * 1961-06-26 1968-07-23 Siemens Ag Frames for electrical communication apparatus
US3141715A (en) * 1962-03-27 1964-07-21 Ralph F Hereth Electrical contactor apparatus for guided missiles
US3275953A (en) * 1963-08-20 1966-09-27 Erie Technological Prod Inc Multiple pin connector having ferrite bead-capacitor filter
US3947080A (en) * 1971-06-14 1976-03-30 Underwriters Safety Device Co. Quick-connect-disconnect terminal block assembly
US4780090A (en) * 1986-06-25 1988-10-25 Yazaki Corporation Ultra multi-pole connector
US4909750A (en) * 1987-11-27 1990-03-20 Webasto Ag Fahrzeugtechnik Electric connection device for components of heaters and heater utilizing same
US4850885A (en) * 1988-01-06 1989-07-25 E. I. Du Pont De Nemours And Company Connector mounting system
US4993965A (en) * 1988-05-10 1991-02-19 E. I. Du Pont De Nemours And Company Support for floated header/connector
US4954094A (en) * 1989-09-15 1990-09-04 Gte Products Corporation Sliding gimbal connector
US5328381A (en) * 1991-05-16 1994-07-12 Osram Sylvania Inc. Connector module having six degrees of freedom
US5205755A (en) * 1992-03-31 1993-04-27 Amp Incorporated Float mount electrical connector
US5228865A (en) * 1992-03-31 1993-07-20 The Whitaker Corporation Float mount electrical connector
US20040014338A1 (en) * 2002-06-11 2004-01-22 Kabushiki Kaisha Tokai Rika Denki Seisakusho Connector and mounting structure of connector to substrate
US6991486B2 (en) * 2002-06-11 2006-01-31 Kabushiki Kaisha Tokai Rika Denki Seisakusho Connector and mounting structure of connector to substrate

Similar Documents

Publication Publication Date Title
US2438371A (en) Disengageable electrical circuit connector
US3085221A (en) Connector with selectivity key
US3611272A (en) Polarizing means for mateable units such as electrical connectors
US2765450A (en) Multiple electrical sockets
US2946033A (en) Polarized connector for printed circuit cards
US2658183A (en) Hermetically sealed socket with freely floating contacts
US2935725A (en) Electrical connector for printed circuit board
GB894160A (en) Improvements in electrical pin boards
US2348088A (en) Detachable relay
US3273107A (en) Plug-and-socket connectors
US2606228A (en) Guiding device for contact leads of electrical elements under test
US3202955A (en) Electrical connector
US2436914A (en) Detachable electrical connector
GB927482A (en) Improvements in or relating to the construction of modular electrical circuits
US1719288A (en) Radio tube socket
US2248598A (en) Tubular lamp base and socket
US2495531A (en) Instrument panel assembly
US2709247A (en) Electrical connectors
US2391324A (en) Mounting plate for plug-in devices
US2151555A (en) Fused convenience outlet
US2458993A (en) Testing socket
US6361340B1 (en) Adjustable contact jaw spacing for circuit breaker plug-in base
US2326538A (en) Receptacle for electric wiring systems
US1591773A (en) Attachment plug receptacle
US1964541A (en) Mounting for electrical devices