US2437240A - Space discharge device - Google Patents

Space discharge device Download PDF

Info

Publication number
US2437240A
US2437240A US490110A US49011043A US2437240A US 2437240 A US2437240 A US 2437240A US 490110 A US490110 A US 490110A US 49011043 A US49011043 A US 49011043A US 2437240 A US2437240 A US 2437240A
Authority
US
United States
Prior art keywords
cathode
anode
conductor
discharge device
oscillating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US490110A
Inventor
William C Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Manufacturing Co filed Critical Raytheon Manufacturing Co
Priority to US490110A priority Critical patent/US2437240A/en
Application granted granted Critical
Publication of US2437240A publication Critical patent/US2437240A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge
    • H01J23/18Resonators
    • H01J23/20Cavity resonators; Adjustment or tuning thereof
    • H01J23/213Simultaneous tuning of more than one resonator, e.g. resonant cavities of a magnetron

Definitions

  • This invention relates to a magnetron, and more particularly to one which has a plurality of possible oscillating modes, each determined primarily by the geometry of the internal structureoi the magnetron.
  • a device of this kind is intended to oscillate in a predetermined principal mode so as to generate the predetermined frequency.
  • certain spurious modes of oscillation were avoided by means of strapping wires interconnecting alternate anode arms of a multiple anode magnetron. However, in some cases it is undesirable or impractical to utilize such strapping wires.
  • an object of this invention is to devise a magnetron in which the use of strapping wiresof the foregoing type are avoided but nevertheless in which the frequencies f the different modes at which the tube structure is resonantare separated by sufficiently great differences to increase the efiiciency of the tube substantially over those tubes which do not utilize either strapping conductors of the foregoing type or the principles of this invention.
  • Another object is to accomplish the foregoing by a structure which is simple to manufacture and assemble.
  • Fig. 1 is. a transverse section of a magnetron embodying my invention.
  • Fig. 2 is a cross-section taken approximately along line 22 of Fig, 1, with certain parts thereof brokenaway. a
  • the magnetron illustrated in the drawings comprises a tubular envelope i made of a cylinder of conducting material, such as copper.
  • the ends of the envelope are covered by caps 2 and 3 likewiseformed-of conducting material, such as copper, and hermetically soldered in place on the ends of the envelope I.
  • the envelope i is formed with a central annular projection 4.
  • a plurality of radial plates 5 are soldered in place along the inner surface of the projection 4. These plates may be stamped out of a sheet of highly-conductive copper.
  • the inner ends of the plates 5 form anode faces which cooperate with a cathode 6 supported substantially centrally of said anode faces.
  • the cathode 6 is preferably of the indirectly-heated oxide-coated thermionic type having an outer conducting cylinder l coated with an 2 l electron-emissive oxide layer 8, and having an internal heater 9, the end conductors Hi and H of which project from the opposite ends of the cathode structure 5.
  • a pair of insulating plugs 12 and I3 are inserted in the opposite ends of the sleeve 1, The. end conductors Hi and II pass through openings in these insulating lugs.
  • a pair of conducting straps [4' are welded to the upper end of the sleeve I, extend across the outer surface of the insulating plug l2, and'are in turn welded to the end conductor In. This retains the end conductor l0 and the heater 9 in place, and also electrically connects the end conductor ill to the sleeve 1'.
  • the lower insu- 'lating plug is retained in place by a pair of strips i5 welded in place at the lower end of the conducting sleeve 1. These strips, however, do not come into electrical contact with the end conductor H which is thus insulated from the sleeve 1.
  • the cathode is supported and provided with external electrical connections by means of a pair of cathode and heater lead-in conductors l8 and Il.
  • the conductor I6 is rigidly and electrically connected to the end conductor l0, while the conductor I! is rigidly and electrically connected to theend conductor H.
  • the lead-ins I6 and I! are sealed respectively through glass seals [8 and 59 mounted at the outer end of conducting pipes 20 and 2i hermetically fastened through the wall of the envelope l adjacent the upper and lower ends thereof.
  • a capacitance exists between the cathode E and the end faces of the anode arms 5.
  • capacitances exist between the side walls of each oscillating cavity.
  • the conductive path around each cavity afforded by the side walls thereof constitutes an inductance.
  • the anode therefor is so designed and spaced relat ive to the cathode that the inductances and capacitances described constitute tuned circuits. It is desired that these circuits shall be resonant at a definite predetermined frequency at which the device is to be operated.
  • the device is intended to operate so that each oscillating cavity is tuned to the frequency at which each of the other oscillating cavities oscillates.
  • the frequencies, at which the structure is resonant can be determined by feeding the output of an oscillator whose frequency can be varied into the oscillating cavities.
  • the different frequencies at which the structure is resonant whioh are thus determined are designated as cold resonance frequencies of the tube.
  • rings 28 and 29 are electrically connected to the cathode l, and are held sufiiciently close to the surfaces of the end faces of the anode arms 5 to be effectively coupled to said faces by the capacity which is thus produced between these members.
  • the rings 28v and 29 each forms a path which has a. relatively low impedance to the desired oscil1ations, generated by the tube, and that these low impedance paths are coupled between the active anode faces. This facilitates the feeding of energy between successive oscillating anode loops, and reinforces the principal oscillating mode, while at the same time presenting an obstacle to the building up of spurious oscillating voltages.
  • the rings 28 and 29 must be of substantial width in order to secure the requisite value of capacity coupling to the anode faces. Also these rings must be.
  • An electron discharge device comprising a cathode and an anode having a plurality of electron-receiving face portions adjacent said cathode With a cavity resonator between each pair of electron-receiving portions, and a trough-shaped electrical conductor connected to said cathode,v said conductor having an arm of relatively extended surface area supported closely adjacent to and substantially parallel with said electron-receiving face portions.
  • a magnetron comprising a cathode and an anode having a plurality of electron-receiving face portions adjacent said cathode with a cavity resonator between each pair of electron-receiving portions, means adjacent said cathode for producing a magnetic field about said cathode, and a trough-shaped electrical conductor connected to. said cathode and having an arm of relatively extended surface area supported closely adjacent to and substantially parallel with said electronreceiving face portions.
  • An electron discharge device comprising a cathode, an anode in juxtaposition to said cathode, said anode having a plurality of electronreceiving portions, and a trough-shaped conductor having an arm connected to said cathode, and another arm closely adjacent to and. substantially parallel with said electron-receiving portions.

Landscapes

  • Microwave Tubes (AREA)

Description

March 9, 1948. w. C. BROWN SPACE DISCHARGE DEVICE 2 Sheets-Sheet 1 Filed June 7, 1945 INVENTTOR.
M WILLIAM C. BR
. TTY.
March 9, 1948. w. c. BROWN SPACE DISCHARGE DEVICE Filed June 7, 1943 2 Sheets-Sheet 2 INVENTOR. WILLIAM C, BROWN) ATTY.
Patented Mar. 9, 1948 l m V 2,437,240 SPACE DISCHARGE DEVICE William C. Brown, Watertown, Mass., assignor to Raytheon Manufacturing Company, Newton, Mass, a corporation of Delaware l Application June 7, 1943, Serial No. 490,110
3 Claims. (01150-4215) This invention relates to a magnetron, and more particularly to one which has a plurality of possible oscillating modes, each determined primarily by the geometry of the internal structureoi the magnetron. A device of this kind is intended to oscillate in a predetermined principal mode so as to generate the predetermined frequency. As described and claimed in the copending application of Percy L, Spencer, Serial No. 421,145, now Patent No. 2,417,789, certain spurious modes of oscillation were avoided by means of strapping wires interconnecting alternate anode arms of a multiple anode magnetron. However, in some cases it is undesirable or impractical to utilize such strapping wires.
'An object of this invention is to devise a magnetron in which the use of strapping wiresof the foregoing type are avoided but nevertheless in which the frequencies f the different modes at which the tube structure is resonantare separated by sufficiently great differences to increase the efiiciency of the tube substantially over those tubes which do not utilize either strapping conductors of the foregoing type or the principles of this invention.-
' Another object is to accomplish the foregoing by a structure which is simple to manufacture and assemble.
The foregoing and other objects of this invention will be-best understood from the following description of an exemplification thereof, reference being had to the accompanying drawings,
wherein:
Fig. 1 is. a transverse section of a magnetron embodying my invention; and
Fig. 2 is a cross-section taken approximately along line 22 of Fig, 1, with certain parts thereof brokenaway. a
. The magnetron illustrated in the drawings comprises a tubular envelope i made of a cylinder of conducting material, such as copper. The ends of the envelope are covered by caps 2 and 3 likewiseformed-of conducting material, such as copper, and hermetically soldered in place on the ends of the envelope I. The envelope i is formed with a central annular projection 4. A plurality of radial plates 5 are soldered in place along the inner surface of the projection 4. These plates may be stamped out of a sheet of highly-conductive copper. The inner ends of the plates 5 form anode faces which cooperate with a cathode 6 supported substantially centrally of said anode faces. The cathode 6 is preferably of the indirectly-heated oxide-coated thermionic type having an outer conducting cylinder l coated with an 2 l electron-emissive oxide layer 8, and having an internal heater 9, the end conductors Hi and H of which project from the opposite ends of the cathode structure 5. In order to support and insulate the heater from the cylinder 1, a pair of insulating plugs 12 and I3 are inserted in the opposite ends of the sleeve 1, The. end conductors Hi and II pass through openings in these insulating lugs. A pair of conducting straps [4' are welded to the upper end of the sleeve I, extend across the outer surface of the insulating plug l2, and'are in turn welded to the end conductor In. This retains the end conductor l0 and the heater 9 in place, and also electrically connects the end conductor ill to the sleeve 1'. The lower insu- 'lating plug is retained in place by a pair of strips i5 welded in place at the lower end of the conducting sleeve 1. These strips, however, do not come into electrical contact with the end conductor H which is thus insulated from the sleeve 1. l
The cathode is supported and provided with external electrical connections by means of a pair of cathode and heater lead-in conductors l8 and Il. The conductor I6 is rigidly and electrically connected to the end conductor l0, while the conductor I! is rigidly and electrically connected to theend conductor H. The lead-ins I6 and I! are sealed respectively through glass seals [8 and 59 mounted at the outer end of conducting pipes 20 and 2i hermetically fastened through the wall of the envelope l adjacent the upper and lower ends thereof.
When such a magnetron is placed. between suitable magnetic poles 22 and 23 to create a longitudinal magnetic field and the device is energized. oscillations are set up. These oscillations may be led out from the tube by means of a coupling loop 24 extending into the space between two of the plates 5. One end of the coupling loop 24 is connected to the inner end of a conducting pipe 25 hermetically sealed through the wallof the envelope l substantially midway between the ends thereof. The other'end of the coupling loop 24 is connected to a conductor 26 which passes through said pipe 25 and is sealed through a glass seal 21 mounted at the outer end of said pipe. An additional conducting pipe, not shown, may be electrically connected to the pipe 25 and form with the conductor 26 a concentric line through which the high frequency oscillations generated by the magnetron may be conducted to a suitable utilization circuit.
Each pair of anode arms 5, together with the portion of the projection 4 between them, forms an oscillating cavity. A capacitance exists between the cathode E and the end faces of the anode arms 5. Also capacitances exist between the side walls of each oscillating cavity. The conductive path around each cavity afforded by the side walls thereof constitutes an inductance. The anode therefor is so designed and spaced relat ive to the cathode that the inductances and capacitances described constitute tuned circuits. It is desired that these circuits shall be resonant at a definite predetermined frequency at which the device is to be operated. The device is intended to operate so that each oscillating cavity is tuned to the frequency at which each of the other oscillating cavities oscillates.
In tubes of this type, the frequencies, at which the structure is resonant can be determined by feeding the output of an oscillator whose frequency can be varied into the oscillating cavities. The different frequencies at which the structure is resonant whioh are thus determined are designated as cold resonance frequencies of the tube. The more widely separated these cold resonance frequencies are, the more efficient is the tube due probably to the fact, that. there is less inclination for the tube to operate in two oscillating modes at the same time. I have found thatthe separa tion between such cold resonance frequencies can be increased substantially by the construction to be described below. Adjacent the end faces of the anode arms 51, at the upper and lower ends thereof respectively, are. supported a pairof con ducting rings 28 and, 29. These rings are conveniently formed by the outside of a pair of trough-shaped annular members 32 and Si, the inner wall of which is Welded to the surface of the. cathode. sleeve 1.. In this way the rings 28 and 29 are electrically connected to the cathode l, and are held sufiiciently close to the surfaces of the end faces of the anode arms 5 to be effectively coupled to said faces by the capacity which is thus produced between these members.
I have found that with. such an arrangement, the overall efiiciency of the tube is substantially increased. I believev this is due to the fact that the rings 28v and 29 each forms a path which has a. relatively low impedance to the desired oscil1ations, generated by the tube, and that these low impedance paths are coupled between the active anode faces. This facilitates the feeding of energy between successive oscillating anode loops, and reinforces the principal oscillating mode, while at the same time presenting an obstacle to the building up of spurious oscillating voltages. I have found that. in order to perform these functions, the rings 28 and 29 must be of substantial width in order to secure the requisite value of capacity coupling to the anode faces. Also these rings must be. placed sufiicient'ly close to the anode faces to. secure such value of capacity coupling. I have found, for example, in a particular embodiment of my invention, that rings having a widthof .055 inch and spaced about .020 inch from. the anode faces produced a highly satisfactory operation. Of course the actual values for these dimensions will vary with different geometrical arrangements and dimensions of the tube.
Of course it is to be understood that this invention is not limited to the particular details as describedabove inasmuch as many equivalents will suggest themselves to those skilled in the art. For example, instead of a pair of rings. coupled to the anode faces, in some cases it may be possible'to use a single ring. Also the portion of the active anode faces to which these rings may be coupled may be varied. It is believed that various other variations of structure in which the teachings of my present invention may be incorporated will suggest themselves to those skilled in the art.
What is claimed is:
1. An electron discharge device comprising a cathode and an anode having a plurality of electron-receiving face portions adjacent said cathode With a cavity resonator between each pair of electron-receiving portions, and a trough-shaped electrical conductor connected to said cathode,v said conductor having an arm of relatively extended surface area supported closely adjacent to and substantially parallel with said electron-receiving face portions.
2. A magnetron comprising a cathode and an anode having a plurality of electron-receiving face portions adjacent said cathode with a cavity resonator between each pair of electron-receiving portions, means adjacent said cathode for producing a magnetic field about said cathode, and a trough-shaped electrical conductor connected to. said cathode and having an arm of relatively extended surface area supported closely adjacent to and substantially parallel with said electronreceiving face portions.
3. An electron discharge device comprising a cathode, an anode in juxtaposition to said cathode, said anode having a plurality of electronreceiving portions, and a trough-shaped conductor having an arm connected to said cathode, and another arm closely adjacent to and. substantially parallel with said electron-receiving portions.
WILLIAM C. BROWN.
REFERENCES CKTED The following references are of record in the file of this patent:
UNITED STATES PATENTS Great Britain July 11, 1 939
US490110A 1943-06-07 1943-06-07 Space discharge device Expired - Lifetime US2437240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US490110A US2437240A (en) 1943-06-07 1943-06-07 Space discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US490110A US2437240A (en) 1943-06-07 1943-06-07 Space discharge device

Publications (1)

Publication Number Publication Date
US2437240A true US2437240A (en) 1948-03-09

Family

ID=23946672

Family Applications (1)

Application Number Title Priority Date Filing Date
US490110A Expired - Lifetime US2437240A (en) 1943-06-07 1943-06-07 Space discharge device

Country Status (1)

Country Link
US (1) US2437240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329753B1 (en) 1998-01-08 2001-12-11 Litton Systems, Inc. M-type microwave device with slanted field emitter
US6388379B1 (en) 1998-01-08 2002-05-14 Northrop Grumman Corporation Magnetron having a secondary electron emitter isolated from an end shield
US6485346B1 (en) 2000-05-26 2002-11-26 Litton Systems, Inc. Field emitter for microwave devices and the method of its production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2115521A (en) * 1936-04-30 1938-04-26 Telefunken Gmbh Magnetron
US2144222A (en) * 1935-08-15 1939-01-17 Telefunken Gmbh Electron discharge device
US2154758A (en) * 1935-02-28 1939-04-18 Pintsch Julius Kg Electronic tube
GB509102A (en) * 1937-10-08 1939-07-11 Electricitatsgesellschaft Sani Improvements in vacuum electric discharge apparatus
US2410396A (en) * 1943-01-25 1946-10-29 Raytheon Mfg Co High efficiency magnetron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2154758A (en) * 1935-02-28 1939-04-18 Pintsch Julius Kg Electronic tube
US2144222A (en) * 1935-08-15 1939-01-17 Telefunken Gmbh Electron discharge device
US2115521A (en) * 1936-04-30 1938-04-26 Telefunken Gmbh Magnetron
GB509102A (en) * 1937-10-08 1939-07-11 Electricitatsgesellschaft Sani Improvements in vacuum electric discharge apparatus
US2410396A (en) * 1943-01-25 1946-10-29 Raytheon Mfg Co High efficiency magnetron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329753B1 (en) 1998-01-08 2001-12-11 Litton Systems, Inc. M-type microwave device with slanted field emitter
US6388379B1 (en) 1998-01-08 2002-05-14 Northrop Grumman Corporation Magnetron having a secondary electron emitter isolated from an end shield
US6485346B1 (en) 2000-05-26 2002-11-26 Litton Systems, Inc. Field emitter for microwave devices and the method of its production
US6646367B2 (en) 2000-05-26 2003-11-11 L-3 Communications Corporation Field emitter for microwave devices and the method of its production

Similar Documents

Publication Publication Date Title
US2417789A (en) Magnetron anode structure
US2063342A (en) Electron discharge device
US2411953A (en) Electron discharge device of the magnetron type
US2411151A (en) Output coupling for high-frequency oscillators
US2413385A (en) Electron discharge device of the magnetron type
US2481151A (en) Electron discharge device
US2832005A (en) Electron-discharge devices
US2423819A (en) Vacuum tube with coupling-feedback electrode arrangement
US2496500A (en) Electron discharge device
US2437240A (en) Space discharge device
US2063341A (en) Electron discharge device
US2422028A (en) Cavity resonator magnetron
US2432827A (en) High efficiency magnetron
US3376463A (en) Crossed field microwave tube having toroidal helical slow wave structure formed by a plurality of spaced slots
US2437279A (en) High-power microwave discharge tube
US2423161A (en) Electron discharge device of the plural cavity resonator type
US2209923A (en) Magnetron
US2681997A (en) Feedback coupling means
US2585084A (en) Electron discharge device of the magnetron type
US3317785A (en) Magnetron assembly having dielectric means, external to envelope, for setting the center operating frequency
US2863092A (en) Magnetron oscillators
US2467538A (en) Electron discharge device
US2539337A (en) Electron discharge device of the magnetron type
US2247216A (en) Resonant line control oscillation generator
US2403782A (en) Resonator for discharge tubes