US2428300A - Ultra high frequency receiving system - Google Patents

Ultra high frequency receiving system Download PDF

Info

Publication number
US2428300A
US2428300A US520395A US52039544A US2428300A US 2428300 A US2428300 A US 2428300A US 520395 A US520395 A US 520395A US 52039544 A US52039544 A US 52039544A US 2428300 A US2428300 A US 2428300A
Authority
US
United States
Prior art keywords
oscillator
frequency
modulator
circuit
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US520395A
Inventor
Harold B Stott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US520395A priority Critical patent/US2428300A/en
Application granted granted Critical
Publication of US2428300A publication Critical patent/US2428300A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers

Definitions

  • This invention relates generally to ultra-highfrequency apparatus and more particularly to an improved ultra-high-frequency receiving system including means for improving the signal-to-noise magnitude ratio.
  • the signal converter comprises a conventional thermionic tube modulator
  • energizing potentials for the cathode and other electrodes thereof may be supplied from the local receiver power supply over the same feeder line which transmits the intermediate frequency signals and local oscillator signals.
  • tuning of [the antenna circuit of the remote converter may be accomplished over the same transmission line or a separate feeder line by means of direct current or low frequency alternating currents controlled at the local receiver network.
  • Another object of the invention is to provide an improved method of and means for coupling an ultra-high-frequency antenna to an ultra-high-frequency receiver. Another object of the invention is to provide an improved method of and means for improving the signal-to-noise ratio in an ultra-high-frequency syst-em. A further object of the invention is to provide an improved method of and means for converting ultra-high-.frequency signals to lower intermediate frequency signals for transmission between a remotely located ultra-high-frequency antenna and converter to the local circuits of an ultrahigh-frequency receiver.
  • Further objects of the invention include improved means for converting receivedultra-highfrequency signals to lower intermediate frequency signals, transmitting said intermediate frequency signals over a feeder line to the remaining circuits of a radio receiver, transmitting local oscillations from said remaining receiver circuits Ato said remote ,converting means to provide said beat frequency intermediate frequency signals and synchronously tuning said converting means and predetermined ones of said remaining receiver circuits.
  • Figure 1 is a .schematic circuit diagram ofV one embodiment thereof
  • Figure 2 is a schematic circuit diagram of a second embodiment thereof
  • Figure 3 is a schematic circuit diagram of a third embodiment
  • Figure 4 is a fragmentary schematic circuit diagram of a remote controltuning means which may be incorporated in any of the circuits shown in Figures l, 2 and 3. Similar reference characters vare applied to similar elements throughout the drawings.
  • an ultra-hig'h-frequency antenna such, for example, as a dipole I, 2 is connected to the terminals of an antenna coupling coil 3 located within an adjacently disposed unit enclosure 5 which may Ior may not be shielded.
  • the antenna coupling coil 8 is coupled inductively to a tapped secondary inductor 1.
  • v -One end terminal .ofthe secondary Inductor 1 is serially i.. uff" n3 connected through a resistor 9 to one terminal of an adjustable tuning capacitor II.
  • the ref maining terminal of the tuning capacitor II is
  • the anode of the thermionic mixer tube I5 isr connected through a. parallel-connected tuning capacitor I1 and the primary winding I9 of an intermediate frequency transformer,Y 2l to the tube screen electrode.
  • is connected through D.C. blocking'capacitors 25, 21 to a conventional high frequency transmission line 29 which passes through a suitable aperture inthe remote enclosure 5.
  • the secondary 4Winding 39 of thesecond intermediate frequency-transformer 3l is tuned to the desired intermediate frequency by a third tuning capacitor 4I. and-,is connected across the control electrode circuit of a first intermediate frequency amplifier tube V43.
  • the output of the rst intermediate frequency tube 43 may be applied to successive intermediate frequency amplifier tubes, a second detector and an audio samplifier, all not shown, in accordance with conventional superheterodyne practice.
  • Thelocal receiving circuits mayycomprise a conventional superheterodyne circuit in which the converter is omitted.
  • a source of direct voltage connected to terminals 45 is applied, through first and second radio frequency chokes 41, 48, to the local receiver end of the high frequency transmission line 29.
  • the positive .terminal of the high frequency transmission line 29 Within the remote unit enclosure 5 is connected through a third radiofrequency chokef49 to the common terminal of the screen electrodeand the primary winding I9 of the first intermediate frequency transformer 2 I, to provide operating voltages for the screen and anode electrodes of the remote thermionic mixer tube I5.
  • This common terminal is connected through a voltage dropping 'resistor 5l to one terminal of the heater element of the thermionic mixer tube I5.
  • the remaining terminal ofthe heater element of the mixer tube I5 is connected through a fourth radio frequency choke 53 to the negativelybiased terminal of a high frequency transmission line 29.
  • the superheterodyne local oscillator 55 located at the local receiver network, includes a parallelresonant circuit comprising a, tapped oscillator inductor 51 and an adjustable oscillator tuning capacitor 59.
  • a coupling coil 6I inductively coupled to the oscillator inductor 51, is connected through a balanced H high-pass filter 63 to the local receiver terminals of the high frequency transmission line 29 to supply the local oscillator frequency to the remotely located kthermionic mixer tube I5.
  • the terminals of the high frequencytransmission line 29 within the remote enclosure. 5 are connected through asecond balancedfH: high-pass4 filter 65 'to Y the primary winding 61.of ahigh frequency coupling trans- 4 former 69.
  • the secondary winding 1I of the high frequency coupling transformer 69 is connected between the negative terminal of the heater element and the cathode of the thermionic mixer tube I5 to apply to the cathode the currents of oscillator frequency.
  • the oscillator frequency currents are applied to the mixercircuit to beai-l with the received signals'to provide in the output circuit of the remote mixer tube the desired intermediate frequency signals for transmission over the high frequency transmission line 29to the input of the intermediate frequency amplier tube 43 at the local receiver.
  • the grid return from the adjustable contact I3 on the antenna secondary reactor 1 is connected to the low voltage terminal of the primary winding 61 of the high frequency coupling transformer 69.
  • the position of the adjustable contact I3 on the taps of the tapped antenna secondary inductor 'l may be adjusted simultaneously with the adjustment of the position of the adjustable contact 13 on the tapped local oscillator inductor 51 by any convenient remote control means knowny in the art.
  • Two control devices for adjustingthe contact I3 in synchronism with the contact 13 on the oscillator inductor are described hereinafter and are illustrated inl Figures 3 and el. ⁇
  • the tuning of the remote input and local oscillator circuits by means of tapped inductors in combination with preset adjustable capacitors provides a convenient method of tuning such a receiving system to various fixed frequency bands such, for example, as-are employed in lthe television spectrum.
  • the series resistor 9 connected between the input tapped secondary inductor 1 and the tuning capacitor II provides the required broad frequency response necessary for the reception of .television signals or other signals which cover a relatively Wide frequency band.
  • the circuit of Figure 2 is similar to the .circuit of Figure 1 described heretofore with the exception that the thermionic mixer tube I5 is of the type employing a directly-heated cathode.
  • the cathode of the tube I5 is heated by radio frequency energy derived from the local receiver heterodyne oscillator tube 55 through the transmission line 29.
  • the high frequency energy derived from the heterodyne oscillator is applied to the cathode of the remote mixertube ⁇ I5 through a coupling capacitor 15 'thereby providing a shunt connection from the mixer tube cathode to the high frequency transmission-line 29.
  • a tapped series resistor 111 connected between one side of the mixer tube filament and the grounded conductor of the transmission line provides suitable grid bias for the mixer tube I5 through a grid leak 19 connected between the grid .of the tube I5 and the resistor tap.
  • a grid' condenser 8I is'inserted between the mixer tube control electrode and the common terminal of the input circuit series resistor 9 and tuning capacitor II.
  • a radio frequency choke coil 49 is connected between the positive terminal of the transmission line and the common terminals of the mixer tube screen electrode and the first intermediate frequency transformer primary winding I9 as described in the circuit of Figurel. Single D.C.
  • blocking capacitors 31, 83 are inserted between the high frequency transmission line 29 and the inductors 33, 6I coupled respectively to the input of the local intermediate frequency amplifier tube 43 and the llocal oscillator inductor 51.
  • the second radio frequency choke coil 41 is inserted in the local connection between the positive terminal of the power supply and the positive conductor of the high frequency transmission line 29.
  • the currents of heterodyne oscillator frequency are injected into the input circuit of the remote mixer tube I5 by means of their direct application to the tube cathode circuit.
  • the transmission line 29 transmits intermediate frequency signals from the output of the remote mixer tube I5 to the input of the local intermediate frequency amplifier tube t3,Y while simultaneously transmitting the heterodyne oscillator frequency and the anode and screen energizing potentials from the local receiver circuits to the remote mixer tube I5.
  • the adjustment of the movable contact I3 on the remote input inductor 1 and the movable contact i3 on the local oscillator inductor 51 may be accomplished simultaneously in the same manner as Will be described hereinafter in the circuits'of Figures 3 and 4.
  • Figure 3 is similar to the circuits of Figures 1 and 2 with the exception that the remote mixer tube I5 employs a directly-heated cathode which is series energized at the oscillator frequency through a series coupling capacitor connected to the low voltage .terminal of the first intermediate frequency transformer secondary winding 23.
  • a shunt capacitor 85 connected across the secondary winding 23 of the rst intermediate frequency transformer 2 I, effectively bypasses the oscillator frequency across the transformer Winding, thereby providing a low impedance path for oscillator energy applied to the cathode circuit.
  • the remaining terminal of the mixer tube cathode is connected, through a voltage dropping resistor 11, to the adjustable tap I3 on the tapped. input inductor 1 and to the remaining grounded terminal of the high frequency transmission line 29.
  • the anode return circuit and the screen grid are'connected to the junction of a series-connected radio frequency choke 81 and blocking Y capacitor 89 connected between the low voltage terminal of the secondary winding 23 of the rst intermediate frequency transformer 2
  • connected between the high potential side of the cathode of the mixer tube I5 and the ground terminal of the high frequency transmission line 29 completes, with the choke coil 81 and the capacitor 15, a rst high pass lter 92 in the energizing circuit to the mixer tube cathode.
  • coupled to the input circuit of the rst intermediate frequency amplifier tube 43 is bypassed by a capacitor 93 and is serially connected through a second high pass lter 95 and a capacitor 91 to the local grounded terminal of the ultra-high-frequency transmission line 29.
  • the local receiver heterodyne oscillator inductor 51 is coupled through an oscillator coupling capacitor 99 to the input of the second high pass filter 95.
  • the anode and screen operating potentials for the mixer tube I5 are applied to the local end of the transmission line 29 across the series capacitor 91. In this manner the two operating potentials, the heterodyne oscillator frequency currents and the intermediate frequency input signals are applied in series to the local receiver terminals of the high frequency transmission line 29.
  • the high frequency transmission line 29 also may be employed as a tuning line for adjusting the adjustable tap I 3 on the remote input secondary inductor 1 simultaneously with the adjustment of the adjustable tap 13 on the local oscillator inductor 51.
  • the adjustment of the adjustable contact I3 on the input secondary inductor 1 may be accomplished by an A.C. operated solenoid energizing the solenoid winding IOI whenever the contacts II 5, II1 in series with the low frequency transformer I I3 are closed.
  • the contacts I5, I I1 may be synchronized with the positioning of the adjustable contact 13 on the local oscillator 51 in a manner to provide a pulse of low frequency energy on the transmission line 29 during the interval between contacts on the oscillator inductor 51.
  • the pulse intervals will co-rrespond to intervals in which no oscillator frequency is existent on the line and hence will be ineffective in the high frequency local receiving system circuits including the intermediate frequency amplifier tube 43.
  • Figure 4 discloses an optional circuit for actuating the remote mixer tu'be input secondary inductor adjustable contact I3 synchronously with the adjustment of the local heterodyne oscillator inductor adjustable contact 13.
  • a solenoid winding IIJI as described in the circuit of Figure 3, actuates a solenoid plunger II9 which steps a ratchet gear
  • 21 is mechanically coupled, as indicated by the dash line
  • 3I actuated by a band tuning knob
  • a movable contact 'I3 may be arranged to tap the oscillator inductor as the input inductor 1 connected to the remote mixer tube I5 is adjusted.
  • the various positions of the oscillator inductor switch I3I may be indicated by means of the knob
  • 35 having all of its xed contacts connected together and arranged at angular positions intermediate the angular positions of the contacts on the second switch I3I, is serially connected with terminals
  • the remote solenoid winding lill will be intermittently energized and actuate the input inductor switch at the mixer unit.
  • 35 may be ganged to a ratchet gear
  • any of the three embodiments of the invention described in Figures 1, 2 and 3 may be employed in combination with either of the remote control circuits described in Figures 3 and 4, or that any other known type of remote control circuit or device may be substituted therefor.
  • any other type of non-linear rectifying device may be substituted for the thermionic mixer tube in the remote antenna mixer stage.
  • a crystal detector may be thus employed in a manner well known in the art.
  • the invention comprises several embodiments of an improved circuit for receiving high frequency signals wherein the mixer circuit of a superheterodyne system is disposed within a unit enclosure immediately adjacent a remote high frequency antenna.
  • Signals derived from the heterodyne oscillator located at the local receiver, (in which the mixer is omitted), are transmitted through a conventional high Vfrequency transmission line to beat with the received signals in the remote mixer stage.
  • biasing potentials for the mixer tube electrodes are supplied through the transmission line.
  • Intermediate irequency signals derived from the mixer are transmitted in the opposite direction through the transmission line to a conventional intermediate frequency ampliiier forming a local portion oi' an otherwise conventional superheterodyne receiver system.
  • Tuning of the local oscillator frequency and of the input circuit of the remote mixer stage may be accomplished either through the same high frequency transmission line or through an auxiliary line.
  • the resultant signal-to-noise ratio in the complete receiver system is greater than in conventional systems wherein the noise as well as the desired signal receive like amplication and the ultrahigh-frequency signal is greatly attenuated in the transmission line.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to and responsive to signals from said antenna, an intermediate frequency amplifier and a heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator and said ampliiier, and means for coupling said oscillator through said line to said modulator to provide intermediate frequency signals in said modulator for transmission in the opposite direction through said line to said amplifier.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to said antenna and having input and output circuits, said input circuit being responsive to signals from said antenna, a, fixed tuned intermediate frequency amplifier and an a'djustably tunable heterodyne oscillator both located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, and means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplifier.
  • a noise reduction circuit for an ultra-highrequency antenna including a modulator situated adjacent to said antenna and having an adjustably tunable input circuit and an output circuit, said input circuit being responsive to signals from said antenna, a xed tuned intermediate frequency amplifier and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplier, and means operable at said remote point for simultaneously adjusting the tuning Hughesctances of said oscillator and said modulator input circuit.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to said antenna and having an adjustably tunable input circuit and an output circuit, said input circuitbeing responsive to signals from said antenna, an intermediate frequency amplier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplifier, means for connecting said potential source through said line to provide operating potentials for said modulator, and means operable adjacent said oscillator for simultaneously adjusting the tuning reactances of said oscillator and said modulator input circuit.
  • a circuit as described in claim 4 including a second line interconnecting said oscillator and said modulator and wherein said simultaneous adjustment of said modulator and said oscillator tuning reactances is operable through said second ine.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control electrode cincuit, an intermediate frequency amplifier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplifier, means for coupling said oscillator through said line to said modulator tube cathode circuit to provide intermediate frequency signals in sai-d modulator tube anode cincuit for transmission in the opposite direction through said line to said amplifier, means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control electrode circuit, an intermediate frequency amplifier, a sounce of operating potentials and an adjustalbly tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplifier, means for coupling said oscillator through said line to said modulator tube cathode circuit to provide intermediate frequency signals in said modulator tube anode circuit for transmission in the opposite direction through said line to said amplifier, isolating filter means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
  • a noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control intermediate frequency amplifier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplier, means including a high-pass filter connected between said line and said modulator cathode circuit for coupling said oscillator through said line to said modulator to provide intermediate frequency signals in said modulator tube anode circuit for transmission in the opposite direction through said line to said amplier, isolating filter means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
  • a circuit of the type described in claim 6 including means for energizing said modulator tuibeI cathode by radio frequency energy transmitted by said transmission line from said local oscillator.
  • tylpe described in claim 1 including a source of low frequency alternating current, and means selectively responsive to said current and operable through said trans'- mission line for selectively tuning said modulator input circuit to signals derived from said antenna.
  • a cincuit of the type described in claim l including a source of low frequency alternating current, and means selectively responsive to said current and operable thro-ugh said transmission line for selectively tuning said modulator input circuit to signals derived from said antenna, the intervals of said tuning corresponding to intervals during which no intermediate frequency signals are derived from said modulator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Superheterodyne Receivers (AREA)

Description

' sept. 3o, 1947. H. B; sm; l 2,428,300
ULTRA-HIGH FREQUENCYk RECEIVING SYSTEM l Filed Jan. :51, 1944 2 sneetsfs'neet '1 M E W L m A n m sept. so, 1947. j H. B. sfo" 2,428,300 f ULTRA-HIGH FREQUENCY RECEIVING SYSTEM I Filed Jan. 51,' 1944 2 Sheets-Sheet 2 :frans/Iy Patented Sept. 30, r1947 ULTRA HIGH FREQUENCY RECEIVING SYSTEM Harold B. Stott, Glen Olden, Pa., Aassigner to Radio Corporation of America, a cor-poration of Delaware Application January 31, 1944, Serial No.v 520,395
'This invention relates generally to ultra-highfrequency apparatus and more particularly to an improved ultra-high-frequency receiving system including means for improving the signal-to-noise magnitude ratio.
For ultra-high--frequency reception, it is usually desirable to install the antenna in a location as high above ground and as free of obstructions as possible in order .to obtain maximum signal pickup with a minimum of signal reflections. Such an installation requires along antenna feeder system with the result that considerable signal attenuation is encountered before the received signals reach the receiver.r Also, interference picked up by the feeder system is amplified .in the receiver to the same extent as the signal intelligence.
In the instant invention several modifications of an improved circuit are provided whereby the received ultra-high-frequency signals are converted in the immediate vicinity of the receiving antenna to corresponding signals of a considerably lower intermediate frequency which are transmitted from the remotely located converter over the feeder line to a local conventional intermediate frequency amplier. forming a part of a superheterodyne radio receiver in which the converter is omitted. An adjustable local hetercdyne oscillator, forming a part of the local receiver system remote from the converter and the antenna, furnishes heterodyne signals over the same feeder line to beat with the received signals in the remote converter thereby to provide the desired intermediate frequency signals.
If the signal converter comprises a conventional thermionic tube modulator, energizing potentials for the cathode and other electrodes thereof may be supplied from the local receiver power supply over the same feeder line which transmits the intermediate frequency signals and local oscillator signals. Similarly, tuning of [the antenna circuit of the remote converter may be accomplished over the same transmission line or a separate feeder line by means of direct current or low frequency alternating currents controlled at the local receiver network.
Since signal attenuation, or feeder line loss is proportional to the signal frequency, it will be seen that the transmission of intermediate frequency signals which are usually of the order of 1,5 of the signal frequency will permit improved transmission of the received signals to the local receiver Ycircuits for a given transmission line, While noise signals induced in the transmission line will not be amplified in the remote converter i 12 claims. (o1. 25o-'209 stage. Incidental attenuation of the llocal oscillator signals transmitted to the converter is not a serious disadvantage since sufficient local oscillator power may be provided readily to compensate for any such losses. The vheterodyne oscillator is located a-t the local receiver network to minimize the apparatus necessarily located adjacent the remote antenna, and to facilitate accurate tuning of the oscillator frequency.
Among the objects of the invention are to provide an improved method of and means for coupling an ultra-high-frequency antenna to an ultra-high-frequency receiver. Another object of the invention is to provide an improved method of and means for improving the signal-to-noise ratio in an ultra-high-frequency syst-em. A further object of the invention is to provide an improved method of and means for converting ultra-high-.frequency signals to lower intermediate frequency signals for transmission between a remotely located ultra-high-frequency antenna and converter to the local circuits of an ultrahigh-frequency receiver.
Further objects of the invention include improved means for converting receivedultra-highfrequency signals to lower intermediate frequency signals, transmitting said intermediate frequency signals over a feeder line to the remaining circuits of a radio receiver, transmitting local oscillations from said remaining receiver circuits Ato said remote ,converting means to provide said beat frequency intermediate frequency signals and synchronously tuning said converting means and predetermined ones of said remaining receiver circuits.
The invention will be described in fur-ther detail by reference to the accompanying drawings of which Figure 1 is a .schematic circuit diagram ofV one embodiment thereof, Figure 2 is a schematic circuit diagram of a second embodiment thereof, Figure 3 is a schematic circuit diagram of a third embodiment and Figure 4 is a fragmentary schematic circuit diagram of a remote controltuning means which may be incorporated in any of the circuits shown in Figures l, 2 and 3. Similar reference characters vare applied to similar elements throughout the drawings.
Referring to Figure 1, an ultra-hig'h-frequency antenna such, for example, as a dipole I, 2 is connected to the terminals of an antenna coupling coil 3 located within an adjacently disposed unit enclosure 5 which may Ior may not be shielded. The antenna coupling coil 8 is coupled inductively to a tapped secondary inductor 1. v -One end terminal .ofthe secondary Inductor 1 is serially i.. uff" n3 connected through a resistor 9 to one terminal of an adjustable tuning capacitor II. The ref maining terminal of the tuning capacitor II is The anode of the thermionic mixer tube I5 isr connected through a. parallel-connected tuning capacitor I1 and the primary winding I9 of an intermediate frequency transformer,Y 2l to the tube screen electrode. A secondary winding 23 of the intermediate frequency transformer 2| is connected through D.C. blocking'capacitors 25, 21 to a conventional high frequency transmission line 29 which passes through a suitable aperture inthe remote enclosure 5. The transmission line Z9.extends to the remaining circuits of a local radio receiver circuit which includes a second intermediate frequency transformer 3l having its primary winding 33 terminating the transmission linev-29through third and fourth D.C. blocking condensers35, 31, respectively. The secondary 4Winding 39 of thesecond intermediate frequency-transformer 3l is tuned to the desired intermediate frequency by a third tuning capacitor 4I. and-,is connected across the control electrode circuit of a first intermediate frequency amplifier tube V43. The output of the rst intermediate frequency tube 43 may be applied to successive intermediate frequency amplifier tubes, a second detector and an audio samplifier, all not shown, in accordance with conventional superheterodyne practice. Thelocal receiving circuits mayycomprise a conventional superheterodyne circuit in which the converter is omitted.
A source of direct voltage connected to terminals 45 is applied, through first and second radio frequency chokes 41, 48, to the local receiver end of the high frequency transmission line 29. The positive .terminal of the high frequency transmission line 29 Within the remote unit enclosure 5 is connected through a third radiofrequency chokef49 to the common terminal of the screen electrodeand the primary winding I9 of the first intermediate frequency transformer 2 I, to provide operating voltages for the screen and anode electrodes of the remote thermionic mixer tube I5. This common terminal is connected through a voltage dropping 'resistor 5l to one terminal of the heater element of the thermionic mixer tube I5. The remaining terminal ofthe heater element of the mixer tube I5 is connected through a fourth radio frequency choke 53 to the negativelybiased terminal of a high frequency transmission line 29.
p The superheterodyne local oscillator 55, located at the local receiver network, includes a parallelresonant circuit comprising a, tapped oscillator inductor 51 and an adjustable oscillator tuning capacitor 59. A coupling coil 6I, inductively coupled to the oscillator inductor 51, is connected through a balanced H high-pass filter 63 to the local receiver terminals of the high frequency transmission line 29 to supply the local oscillator frequency to the remotely located kthermionic mixer tube I5. The terminals of the high frequencytransmission line 29 within the remote enclosure. 5 are connected through asecond balancedfH: high-pass4 filter 65 'to Y the primary winding 61.of ahigh frequency coupling trans- 4 former 69. The secondary winding 1I of the high frequency coupling transformer 69 is connected between the negative terminal of the heater element and the cathode of the thermionic mixer tube I5 to apply to the cathode the currents of oscillator frequency. Thus the oscillator frequency currents are applied to the mixercircuit to beai-l with the received signals'to provide in the output circuit of the remote mixer tube the desired intermediate frequency signals for transmission over the high frequency transmission line 29to the input of the intermediate frequency amplier tube 43 at the local receiver. The grid return from the adjustable contact I3 on the antenna secondary reactor 1 is connected to the low voltage terminal of the primary winding 61 of the high frequency coupling transformer 69.
The position of the adjustable contact I3 on the taps of the tapped antenna secondary inductor 'l may be adjusted simultaneously with the adjustment of the position of the adjustable contact 13 on the tapped local oscillator inductor 51 by any convenient remote control means knowny in the art. Two control devices for adjustingthe contact I3 in synchronism with the contact 13 on the oscillator inductor are described hereinafter and are illustrated inlFigures 3 and el.` It should be understood that the tuning of the remote input and local oscillator circuits by means of tapped inductors in combination with preset adjustable capacitors provides a convenient method of tuning such a receiving system to various fixed frequency bands such, for example, as-are employed in lthe television spectrum. The series resistor 9 connected between the input tapped secondary inductor 1 and the tuning capacitor II provides the required broad frequency response necessary for the reception of .television signals or other signals which cover a relatively Wide frequency band. Y
^ Basically, the circuit of Figure 2 is similar to the .circuit of Figure 1 described heretofore with the exception that the thermionic mixer tube I5 is of the type employing a directly-heated cathode. The cathode of the tube I5 is heated by radio frequency energy derived from the local receiver heterodyne oscillator tube 55 through the transmission line 29. The high frequency energy derived from the heterodyne oscillator is applied to the cathode of the remote mixertube` I5 through a coupling capacitor 15 'thereby providing a shunt connection from the mixer tube cathode to the high frequency transmission-line 29. A tapped series resistor 111, connected between one side of the mixer tube filament and the grounded conductor of the transmission line provides suitable grid bias for the mixer tube I5 through a grid leak 19 connected between the grid .of the tube I5 and the resistor tap. A grid' condenser 8I is'inserted between the mixer tube control electrode and the common terminal of the input circuit series resistor 9 and tuning capacitor II. A radio frequency choke coil 49 is connected between the positive terminal of the transmission line and the common terminals of the mixer tube screen electrode and the first intermediate frequency transformer primary winding I9 as described in the circuit of Figurel. Single D.C. blocking capacitors 31, 83 are inserted between the high frequency transmission line 29 and the inductors 33, 6I coupled respectively to the input of the local intermediate frequency amplifier tube 43 and the llocal oscillator inductor 51. The second radio frequency choke coil 41 is inserted in the local connection between the positive terminal of the power supply and the positive conductor of the high frequency transmission line 29.
The currents of heterodyne oscillator frequency are injected into the input circuit of the remote mixer tube I5 by means of their direct application to the tube cathode circuit. As'in the circuit of Figure 1, the transmission line 29 transmits intermediate frequency signals from the output of the remote mixer tube I5 to the input of the local intermediate frequency amplifier tube t3,Y while simultaneously transmitting the heterodyne oscillator frequency and the anode and screen energizing potentials from the local receiver circuits to the remote mixer tube I5. The adjustment of the movable contact I3 on the remote input inductor 1 and the movable contact i3 on the local oscillator inductor 51 may be accomplished simultaneously in the same manner as Will be described hereinafter in the circuits'of Figures 3 and 4.
Figure 3 is similar to the circuits of Figures 1 and 2 with the exception that the remote mixer tube I5 employs a directly-heated cathode which is series energized at the oscillator frequency through a series coupling capacitor connected to the low voltage .terminal of the first intermediate frequency transformer secondary winding 23. A shunt capacitor 85, connected across the secondary winding 23 of the rst intermediate frequency transformer 2 I, effectively bypasses the oscillator frequency across the transformer Winding, thereby providing a low impedance path for oscillator energy applied to the cathode circuit. The remaining terminal of the mixer tube cathode is connected, through a voltage dropping resistor 11, to the adjustable tap I3 on the tapped. input inductor 1 and to the remaining grounded terminal of the high frequency transmission line 29.
The anode return circuit and the screen grid are'connected to the junction of a series-connected radio frequency choke 81 and blocking Y capacitor 89 connected between the low voltage terminal of the secondary winding 23 of the rst intermediate frequency transformer 2| and the ground terminal of the ultra-high-frequency transmission line 29. Another radio frequency choke coil 9| connected between the high potential side of the cathode of the mixer tube I5 and the ground terminal of the high frequency transmission line 29 completes, with the choke coil 81 and the capacitor 15, a rst high pass lter 92 in the energizing circuit to the mixer tube cathode.
The primary winding 33 of the local second intermediate frequency transformer 3| coupled to the input circuit of the rst intermediate frequency amplifier tube 43 is bypassed by a capacitor 93 and is serially connected through a second high pass lter 95 and a capacitor 91 to the local grounded terminal of the ultra-high-frequency transmission line 29. The local receiver heterodyne oscillator inductor 51 is coupled through an oscillator coupling capacitor 99 to the input of the second high pass filter 95. The anode and screen operating potentials for the mixer tube I5 are applied to the local end of the transmission line 29 across the series capacitor 91. In this manner the two operating potentials, the heterodyne oscillator frequency currents and the intermediate frequency input signals are applied in series to the local receiver terminals of the high frequency transmission line 29.
In addition to the signal coupling circuits described heretofore in the embodiments of the 6I invention disclosed in Figures 1, 2, and 3, the high frequency transmission line 29 also may be employed as a tuning line for adjusting the adjustable tap I 3 on the remote input secondary inductor 1 simultaneously with the adjustment of the adjustable tap 13 on the local oscillator inductor 51. The adjustment of the adjustable contact I3 on the input secondary inductor 1 may be accomplished by an A.C. operated solenoid energizing the solenoid winding IOI whenever the contacts II 5, II1 in series with the low frequency transformer I I3 are closed.
The contacts I5, I I1 may be synchronized with the positioning of the adjustable contact 13 on the local oscillator 51 in a manner to provide a pulse of low frequency energy on the transmission line 29 during the interval between contacts on the oscillator inductor 51. Under these conditions, while low frequency energy will be transmitted` by the high frequency transmission line 29 in successive pulses as the oscillator inductor contact is adjusted, the pulse intervals will co-rrespond to intervals in which no oscillator frequency is existent on the line and hence will be ineffective in the high frequency local receiving system circuits including the intermediate frequency amplifier tube 43.
Figure 4 discloses an optional circuit for actuating the remote mixer tu'be input secondary inductor adjustable contact I3 synchronously with the adjustment of the local heterodyne oscillator inductor adjustable contact 13. A solenoid winding IIJI, as described in the circuit of Figure 3, actuates a solenoid plunger II9 which steps a ratchet gear |21 counterclockwise an angle of 60 for each actuation of the solenoid plunger against the tension of the spring |29. The ratchet gear |21 is mechanically coupled, as indicated by the dash line |28, to the adjustable contact I3 which connects one terminal of the input tuning capacitor II to any one of the taps I2I, |22, |23, |24, |25, |29 on the tapped inductor 1 to tune the input circuit of the remote mixer tube I5.
A similar second switch |3I, actuated by a band tuning knob |33 at the local receiver network, has xed contacts I2I, |22', |23', |24', |25', |26 connected to corresponding taps on the local oscillator inductor 51. A movable contact 'I3 may be arranged to tap the oscillator inductor as the input inductor 1 connected to the remote mixer tube I5 is adjusted. The various positions of the oscillator inductor switch I3I may be indicated by means of the knob |33 as positions I, II, DI,
IV, V, VI. A third switch |35 having all of its xed contacts connected together and arranged at angular positions intermediate the angular positions of the contacts on the second switch I3I, is serially connected with terminals |31 to apply either low voltage, low frequency alternating current or direct current through the high frequency transmission line or a separate transmission line |39 to energize the remote solenoid windingV I0| each time the movable contact I4| of the-,third switch V|35 touches one of theswitch xed contacts. Since the contacts of the solenoid actuating third switch |35 are closed intermediate each step on the oscillator inductor second switch |3I, the remote solenoid winding lill will be intermittently energized and actuate the input inductor switch at the mixer unit.
The oscillator inductor second switch |3| and the solenoid actuating third switch |35 may be ganged to a ratchet gear |43 which, in conjunction with a pawl |45, permits rotation of the switches in denite steps and in only one direction. If the local oscillator and remote mixer input inductor switches get out of step, the solenoid may be actuated independently of the oscillator inductor switch by means of a pair of local auxiliary contacts |41, |48 which may besuccessively closed until signals are obtained, at which time the switches will be in synchronism.
It should be understood that any of the three embodiments of the invention described in Figures 1, 2 and 3 may be employed in combination with either of the remote control circuits described in Figures 3 and 4, or that any other known type of remote control circuit or device may be substituted therefor. Also it should be understood that any other type of non-linear rectifying device may be substituted for the thermionic mixer tube in the remote antenna mixer stage. For example, a crystal detector may be thus employed in a manner well known in the art.
As described, the invention comprises several embodiments of an improved circuit for receiving high frequency signals wherein the mixer circuit of a superheterodyne system is disposed within a unit enclosure immediately adjacent a remote high frequency antenna. Signals derived from the heterodyne oscillator located at the local receiver, (in which the mixer is omitted), are transmitted through a conventional high Vfrequency transmission line to beat with the received signals in the remote mixer stage. Similarly, biasing potentials for the mixer tube electrodes are supplied through the transmission line. Intermediate irequency signals derived from the mixer are transmitted in the opposite direction through the transmission line to a conventional intermediate frequency ampliiier forming a local portion oi' an otherwise conventional superheterodyne receiver system. Tuning of the local oscillator frequency and of the input circuit of the remote mixer stage may be accomplished either through the same high frequency transmission line or through an auxiliary line.
Due to the fact that received signals picked up by the antennae are amplied and are converted to a lower intermediate frequency before any line attenuation, and since the amount of attenuation per unit length of the transmission line is considerably less at the lower frequency being transmitted, and the noise picked up by the transmission line does not receive amplification by the remote mixer stage preceding the line, the resultant signal-to-noise ratio in the complete receiver system is greater than in conventional systems wherein the noise as well as the desired signal receive like amplication and the ultrahigh-frequency signal is greatly attenuated in the transmission line.
I claim as my invention:
1. A noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to and responsive to signals from said antenna, an intermediate frequency amplifier and a heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator and said ampliiier, and means for coupling said oscillator through said line to said modulator to provide intermediate frequency signals in said modulator for transmission in the opposite direction through said line to said amplifier.
2. A noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to said antenna and having input and output circuits, said input circuit being responsive to signals from said antenna, a, fixed tuned intermediate frequency amplifier and an a'djustably tunable heterodyne oscillator both located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, and means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplifier.
3. A noise reduction circuit for an ultra-highrequency antenna including a modulator situated adjacent to said antenna and having an adjustably tunable input circuit and an output circuit, said input circuit being responsive to signals from said antenna, a xed tuned intermediate frequency amplifier and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplier, and means operable at said remote point for simultaneously adjusting the tuning vreactances of said oscillator and said modulator input circuit.
4; A noise reduction circuit for an ultra-highfrequency antenna including a modulator situated adjacent to said antenna and having an adjustably tunable input circuit and an output circuit, said input circuitbeing responsive to signals from said antenna, an intermediate frequency amplier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator output circuit and said amplifier, means for coupling said oscillator through said line to said modulator input circuit to provide intermediate frequency signals in said modulator output circuit for transmission in the opposite direction through said line to said amplifier, means for connecting said potential source through said line to provide operating potentials for said modulator, and means operable adjacent said oscillator for simultaneously adjusting the tuning reactances of said oscillator and said modulator input circuit.
5. A Ycircuit as described in claim 4 wherein said tunable input and oscillator circuits include adjustably tunable capacitors responsive to said simultaneous adjusting means.
6; A circuit as described in claim 4 including a second line interconnecting said oscillator and said modulator and wherein said simultaneous adjustment of said modulator and said oscillator tuning reactances is operable through said second ine.
7. A noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control electrode cincuit, an intermediate frequency amplifier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplifier, means for coupling said oscillator through said line to said modulator tube cathode circuit to provide intermediate frequency signals in sai-d modulator tube anode cincuit for transmission in the opposite direction through said line to said amplifier, means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
8. A noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control electrode circuit, an intermediate frequency amplifier, a sounce of operating potentials and an adjustalbly tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplifier, means for coupling said oscillator through said line to said modulator tube cathode circuit to provide intermediate frequency signals in said modulator tube anode circuit for transmission in the opposite direction through said line to said amplifier, isolating filter means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
9. A noise reduction circuit for an ultra-highfrequency antenna including a modulator tube situated adjacent to said antenna and having anode, cathode and control electrode circuits, an adjustably tuned network responsive to signals from said antenna and connected to said control intermediate frequency amplifier, a source of operating potentials and an adjustably tunable heterodyne oscillator located at a point remote from said modulator, a transmission line interconnecting said modulator tube anode circuit and said amplier, means including a high-pass filter connected between said line and said modulator cathode circuit for coupling said oscillator through said line to said modulator to provide intermediate frequency signals in said modulator tube anode circuit for transmission in the opposite direction through said line to said amplier, isolating filter means for connecting said potential source through said line to provide operating potentials for said modulator tube, a second line interconnecting said oscillator and said modulator, and means situated adjacent said oscillator and operable through said second line for simultaneously adjusting the tuning reactances of said oscillator and said modulator tuned network.
10. A circuit of the type described in claim 6 including means for energizing said modulator tuibeI cathode by radio frequency energy transmitted by said transmission line from said local oscillator.
11. A circuit of the electrode circuit, an
tylpe described in claim 1 including a source of low frequency alternating current, and means selectively responsive to said current and operable through said trans'- mission line for selectively tuning said modulator input circuit to signals derived from said antenna.
12. A cincuit of the type described in claim l including a source of low frequency alternating current, and means selectively responsive to said current and operable thro-ugh said transmission line for selectively tuning said modulator input circuit to signals derived from said antenna, the intervals of said tuning corresponding to intervals during which no intermediate frequency signals are derived from said modulator.
HAROLD B. STOTT.
REFERENCES CITED The following references are of record in the file of this patent:
UNITED STATES PATENTS
US520395A 1944-01-31 1944-01-31 Ultra high frequency receiving system Expired - Lifetime US2428300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US520395A US2428300A (en) 1944-01-31 1944-01-31 Ultra high frequency receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US520395A US2428300A (en) 1944-01-31 1944-01-31 Ultra high frequency receiving system

Publications (1)

Publication Number Publication Date
US2428300A true US2428300A (en) 1947-09-30

Family

ID=24072420

Family Applications (1)

Application Number Title Priority Date Filing Date
US520395A Expired - Lifetime US2428300A (en) 1944-01-31 1944-01-31 Ultra high frequency receiving system

Country Status (1)

Country Link
US (1) US2428300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536329A (en) * 1946-11-23 1951-01-02 Ferris Instr Lab Apparatus for receiving electrical alternating field effects
US2789215A (en) * 1955-11-01 1957-04-16 Rca Corp Diode frequency converter with combined local oscillator-intermediate frequency amplifier having common triode
US2806900A (en) * 1954-06-24 1957-09-17 George W Dexter Remote control system for broadcast receivers
US2815440A (en) * 1953-04-27 1957-12-03 Wendell S Fletcher Remotely controlled plural antennas and radio frequency amplifiers for receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1922623A (en) * 1932-05-17 1933-08-15 Wired Radio Inc Wired radio receiving system
US2056011A (en) * 1933-07-25 1936-09-29 Rca Corp System for remotely controlling the frequency of an oscillator circuit
US2103079A (en) * 1934-11-15 1937-12-21 Hazeltine Corp Wave signaling system
US2114031A (en) * 1934-08-03 1938-04-12 Rca Corp Remotely controllable radio and similar high frequency receivers
US2189287A (en) * 1938-06-10 1940-02-06 Hazeltine Corp Remotely controlled radio receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1922623A (en) * 1932-05-17 1933-08-15 Wired Radio Inc Wired radio receiving system
US2056011A (en) * 1933-07-25 1936-09-29 Rca Corp System for remotely controlling the frequency of an oscillator circuit
US2114031A (en) * 1934-08-03 1938-04-12 Rca Corp Remotely controllable radio and similar high frequency receivers
US2103079A (en) * 1934-11-15 1937-12-21 Hazeltine Corp Wave signaling system
US2189287A (en) * 1938-06-10 1940-02-06 Hazeltine Corp Remotely controlled radio receiver

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536329A (en) * 1946-11-23 1951-01-02 Ferris Instr Lab Apparatus for receiving electrical alternating field effects
US2815440A (en) * 1953-04-27 1957-12-03 Wendell S Fletcher Remotely controlled plural antennas and radio frequency amplifiers for receiver
US2806900A (en) * 1954-06-24 1957-09-17 George W Dexter Remote control system for broadcast receivers
US2789215A (en) * 1955-11-01 1957-04-16 Rca Corp Diode frequency converter with combined local oscillator-intermediate frequency amplifier having common triode

Similar Documents

Publication Publication Date Title
US2189317A (en) Diversity antenna system
US2273098A (en) Ultra high frequency receiver
US2653228A (en) Ultrahigh-frequency converter
US2428300A (en) Ultra high frequency receiving system
US2692919A (en) Stabilized driven grounded grid amplifier circuits
US2816222A (en) Mixing circuit for superheterodyne receivers
US2252609A (en) Wide-band coupling circuits
US2056011A (en) System for remotely controlling the frequency of an oscillator circuit
US2028859A (en) Radioreceiver
US2685001A (en) Extended automatic gain control system
US2250519A (en) Automatic tuning system
US2000084A (en) Short wave receiver arrangement
GB1059305A (en) Linearity correction circuits for television apparatus
US2011941A (en) Radio receiving circuit
US2075526A (en) Radio signal receiving system
US2530329A (en) Television receiver antenna input circuit
US2022805A (en) Radio receiver
US2123221A (en) Radio circuit for channel reception
US2778934A (en) Neutralized amplifier system for ultrahigh to very high frequency converter
US2194512A (en) Combined oscillator-detector circuits
US2092885A (en) Volume control system
US2711477A (en) Tuner for television receivers
GB481020A (en) Improvements in or relating to frequency changer systems for multi-range wireless receiving apparatus
US2000113A (en) Superheterodyne radioreceiver
US2737580A (en) Mixing circuit for superheterodyne receivers