US2422327A - Resilient piston pin bushing - Google Patents

Resilient piston pin bushing Download PDF

Info

Publication number
US2422327A
US2422327A US539656A US53965644A US2422327A US 2422327 A US2422327 A US 2422327A US 539656 A US539656 A US 539656A US 53965644 A US53965644 A US 53965644A US 2422327 A US2422327 A US 2422327A
Authority
US
United States
Prior art keywords
piston
piston pin
bushing
resilient
connecting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US539656A
Inventor
William B Winslow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US539656A priority Critical patent/US2422327A/en
Application granted granted Critical
Publication of US2422327A publication Critical patent/US2422327A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/02Trunnions; Crank-pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/10Connection to driving members
    • F16J1/14Connection to driving members with connecting-rods, i.e. pivotal connections
    • F16J1/16Connection to driving members with connecting-rods, i.e. pivotal connections with gudgeon-pin; Gudgeon-pins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32114Articulated members including static joint
    • Y10T403/32221Articulate joint comprises pivoted clevis or channel bar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32606Pivoted
    • Y10T403/32861T-pivot, e.g., wrist pin, etc.
    • Y10T403/32877Pin is integral with or secured to inner member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32606Pivoted
    • Y10T403/32861T-pivot, e.g., wrist pin, etc.
    • Y10T403/32893T-pivot, e.g., wrist pin, etc. including distinct pin retainer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/32Articulated members
    • Y10T403/32606Pivoted
    • Y10T403/32861T-pivot, e.g., wrist pin, etc.
    • Y10T403/32918T-pivot, e.g., wrist pin, etc. fork and tongue
    • Y10T403/32926T-pivot, e.g., wrist pin, etc. fork and tongue with interposed antifriction means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/45Flexibly connected rigid members
    • Y10T403/454Connecting pin traverses radially interposed elastomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2142Pitmans and connecting rods
    • Y10T74/2144Yieldable

Definitions

  • This invention relates to piston pin bushings, and more particularly to piston pin bushings of a resilient material for use in refrigeration compressor pistons.
  • An object of this invention is a resilient piston pin bushing that will limit the frequency of pres. sure waves with the cylinder of a compressor to less than a disagreeably audible frequency.
  • a further object is a resilient piston pin bushing which will retain a piston pin in substantially xed relation to a connecting rod.
  • Still another object of this invention is a pair of resilient piston pin bushings which will retainl a piston pin in substantially fixed relation to a piston.
  • Figure 1 is a perspective view of a resilient piston pin bushing adapted for use in an assembly including a connecting rod, a piston, and a piston D111;
  • Figure 2 is a vertical sectional view through a piston assembly which utilizes two bushings of the type shown in Figure 2;
  • Figure 3 is a vertical sectional View through ak piston assembly utilizing the bushing in a different type of piston construction.
  • the numeral 4 refers to the complete resilient piston pin bushing shown,
  • This bushing is constructed preferably of a synthetic rubber such as Neoprene, having a durometer hardness reading of between 40 and 100 points.
  • the selection of hardness is to be specifically determined by the mechanical requirements for the desired natural frequency of the piston on the resilient bushing. These mechanical requirements are met by the selection of appropriate relationship between the piston head area, the projected area and wall thickness of the bushing or bushings used, and the working pressures Within the cylinder generated by the piston.
  • Annular anges 5 at each end of bushing d has a lcross section vthickness substantially equal toy that of the tubular body .of the bushing. It flares outwardly at an angle of approximately 4.5 degrees.
  • Bushing Il has an in'.- ternal concentric annular rib 6 and anexternal concentric annular groove 'I in the plane of annular rib 6, of such proportions-that the Wall secisfmadeby first assembling the bushing 4 in contion of bushing 4 retains approximatelyan. equal thickness throughout its length.
  • piston pin 8 has concentric annular grooves 9 near each end.
  • -Piston Ivf hasapiston pinhole .I-I yin. each side; each hole II having both its outer and .inner ends chamfered at an angle of 45 degrees as at .I 2 tomate withv external annular .flanges 5 of bushing il.
  • the flanges .5 establish a substantially fixed .relationship .between bushingll and piston 1.0.
  • Aconnecting rod L3 is assembled to piston I0 by means of they piston pin. 8.
  • An oil hole I1! inthe connecting rod I3 is in registry with an annular oil groove I;5- midway between. the ends.
  • a piston pin IZB. has. an .annular groove I'I midway between its ends., This groove is of thesame shape and servesthe same .function as. the grooves 9 in piston pin .8. of Figure 2.
  • the bushingV 4 is assembled to the. piston .pin I6 with its annular ⁇ rib 6 .fitting in the annular groove I'I. This fit substantially fixes the relationship between the bushing 4 and piston pin I6..
  • the connecting rod I8 has. a hole. to receive the bushing 4. Both endsof the saidconnecting rodhole .are chamfered at 45 degrees to .receive annular flanges 5. of bushing d, which .anges I maintain a substantially fixed relationship .between the bushings ⁇ and connecting rod I8.V
  • This structure described', and shown in. Figure 3, is suitablefor compressors having splashrlubrication for the bearing ofthe piston pin
  • Sometirries refrigeration compressors are con'-A structed so that a greaterl than minimum volume of compressed iluid ispurposelyY retainedwithi'n presser is' rendered' more quiet by the increased ⁇ A volume of lie-expanding fluid.
  • this invention attains its object of improved compressor eilciency.
  • a cushioning device for use with a piston having a piston pin bore and a piston pin adapted to t within said bore comprising a resilient bushing moulded to an external shape adapted for nesting into a portion of said piston bore and moulded to an internal shape adapted to be assembled contiguous with a portion of the eX- ternal surface of said piston pin, the said piston pin bore having an irregular shape longitudinally such that a exing of said resilient bushing is required for its assembly or disassembly within said piston pin bore, and the external shape of said piston pin being irregular longitudinally such as to require a ilexing of said resilient bushing for its assembly on or disassembly from said piston pin.

Description

June17,1947.r wawmsmw 2,422,327
RESILIENT PISTON PIN BUSHING Filed June 10, 1944 i IWTOR. I fffwwwm Patented June 17, 1947 RESILIENT PISTON PIN BUSHING William B. Winslow, chicago, 111., assigner to `Allen Trask, Chicago, Ill.
Application June 10, 1944, Serial No. 539,656
6 Claims.
This invention relates to piston pin bushings, and more particularly to piston pin bushings of a resilient material for use in refrigeration compressor pistons.
In many refrigeration installations it is highly desirable to have the compressor function as quietly as possible. Household refrigerators are one example of such installation. Another example is the self-contained unit air conditioner.
When the compressor in units of this class is of the reciprocating type using a piston in a cylinder for effecting compression, a clicking noise is often caused by the sudden pressure drop in the cylinder as the piston starts on the suction.
stroke from upper dead center. It has been learned from careful laboratory experiments that this particular clicking noise referred to does not result from a sudden contact of mechanical parts. Compressors have been built wherein the piston pin was fit to the piston with a ,light press t that would admit of no relative movement in the direction of piston travel, and wherein the connecting rod fit on the piston pin and crankshaft would not permit a relative movement between said parts, and yet a clicking noise would occur at the point of sudden pressure reduction in the cylinder at the start of the suction stroke.
It was found that this clicking noise is louder in fast operating compressors than in those being driven at a relatively slow speed. It is particularly noticeable in compressors being driven betweenV 1700 R. P. M. and 1800 R. P. M. by standard 60 cycle alternating current motors having four poles in the stator.
It has also been discovered that a compressor operating at a ve pound gauge suction pressureV that noise gradually diminish in intensity as the suction pressure is gradually increased. The clicking noise has been observed to diminish to inaudibility upon an increase of suction pressure to 40 pounds gauge pressure. During these experiments the head pressure, or end pressure of compression, was approximately 100 pounds per square inch gauge pressure. These observations bear out the conclusion that the said clicking noise is caused by the sudden reduction of pressure in the compressor cylinder at the beginning of the suction stroke, for when the amount of pressure reduction is diminished to a certain extent by an increase of suction pressure the clicking noise stops.
A similar clicking noise is often observed in steam radiators which are vcold when steam is 2 rst admitted. In this instance there is no question as to the possibility that the click be originated by sudden mechanical contacts, for there are no separate parts within the radiator. Likewise, in the radiator, the clicking noise is caused by a sudden reduction of pressure. The sudden condensation of steam causes the sudden pressure drop, and the resultant clicking noise.
It is highly desirable to eliminate the clicking noises of refrigeration compressors. Precision iitting parts are now the rule, yet in spite of this and all other mechanical refinements of compressors as known and constructed today, an objectionable clicking noise persists in many compressors. Y
I have discovered that by the use of piston pin bushings constructed of a resilient material the maximum frequency of pressure waves within the cylinder can be reduced below the frequency that produces an audible clicking noise.
An object of this invention is a resilient piston pin bushing that will limit the frequency of pres. sure waves with the cylinder of a compressor to less than a disagreeably audible frequency.
A further object is a resilient piston pin bushing which will retain a piston pin in substantially xed relation to a connecting rod.
Still another object of this invention is a pair of resilient piston pin bushings which will retainl a piston pin in substantially fixed relation to a piston.
Improved volumetric efliciency of compression is also an object of this invention.
These and other objects and advantages of the invention will more fully appear from the following description made in connection with the accompanying drawings, wherein like reference characters refer to the same parts throughout the Views, and, in which: v
Figure 1 is a perspective view of a resilient piston pin bushing adapted for use in an assembly including a connecting rod, a piston, and a piston D111;
Figure 2 is a vertical sectional view through a piston assembly which utilizes two bushings of the type shown in Figure 2; and
Figure 3 is a vertical sectional View through ak piston assembly utilizing the bushing in a different type of piston construction.
In Figure 1 the numeral 4 refers to the complete resilient piston pin bushing shown, This bushing is constructed preferably of a synthetic rubber such as Neoprene, having a durometer hardness reading of between 40 and 100 points. The selection of hardness is to be specifically determined by the mechanical requirements for the desired natural frequency of the piston on the resilient bushing. These mechanical requirements are met by the selection of appropriate relationship between the piston head area, the projected area and wall thickness of the bushing or bushings used, and the working pressures Within the cylinder generated by the piston. Annular anges 5 at each end of bushing d has a lcross section vthickness substantially equal toy that of the tubular body .of the bushing. It flares outwardly at an angle of approximately 4.5 degrees. Bushing Il has an in'.- ternal concentric annular rib 6 and anexternal concentric annular groove 'I in the plane of annular rib 6, of such proportions-that the Wall secisfmadeby first assembling the bushing 4 in contion of bushing 4 retains approximatelyan. equal thickness throughout its length.
In Figure 2, piston pin 8 has concentric annular grooves 9 near each end. Two bushings @arenassembled to piston pin 8 with their annular ribs 6 fitting in piston pin. grooves 9. This t estab,- lishes a substantially fixed relationship between. bushing 4. and piston pin .8. -Piston Ivfhasapiston pinhole .I-I yin. each side; each hole II having both its outer and .inner ends chamfered at an angle of 45 degrees as at .I 2 tomate withv external annular .flanges 5 of bushing il. The flanges .5 establish a substantially fixed .relationship .between bushingll and piston 1.0.
.Aconnecting rod L3 is assembled to piston I0 by means of they piston pin. 8. An oil hole I1! inthe connecting rod I3 is in registry with an annular oil groove I;5- midway between. the ends.
of' piston pin. 8. This structure described, and shown in Figure 2, is adapted for refrigeration compressors having pressure feed .of lubricating oilv through thev hole VIii. in connecting rod t3: to its bearing. on piston .pin 8.
'In Figure 3 .a piston pin IZB. has. an .annular groove I'I midway between its ends., This groove is of thesame shape and servesthe same .function as. the grooves 9 in piston pin .8. of Figure 2. The bushingV 4 is assembled to the. piston .pin I6 with its annular `rib 6 .fitting in the annular groove I'I. This fit substantially fixes the relationship between the bushing 4 and piston pin I6..
The connecting rod I8 has. a hole. to receive the bushing 4. Both endsof the saidconnecting rodhole .are chamfered at 45 degrees to .receive annular flanges 5. of bushing d, which .anges I maintain a substantially fixed relationship .between the bushings` and connecting rod I8.V This structure described', and shown in. Figure 3, is suitablefor compressors having splashrlubrication for the bearing ofthe piston pin |16 in the. piston I9.
The .assembly of the parts shownin. Figure. 2. is made'by rst assemblingone. ofthe bushings 4 to one end of piston pin B.. Next, a second bush.- ing I is assembled into the piston pinhole in one side of piston lil. The annular flange Sis flexed to a circumference equaling the' diameter ,of the. piston pin hole as it is inserted' and with a rotary motion it is pressed in. Next, the bearing of connecting rod I3" is aligned withthe piston pin holes II'ln thepiston I0; Next, the. end' ofthe piston pin 8 Without the bushing Aassembled,,is inserted in the-piston pinhole II inwhich there has not been a bushing assembled. The end of piston pin 8 passes through theV connecting roel4 bearing and-'enters thesecond 'bushing'iir as flanged olithe first' bushing assembled enters' thechamfenof' the piston pin hole in which the insertion hasbeen made. By flexing flange 5 'to the diameter ofthe piston pin hole Yand imparting a rotary mjotion'` as 4 it is pressed in, piston pin 8 and said rst essembled bushing 4 may be pressed into place in piston I8. When the leading end of the piston pin 8 reaches the internal annular rib 8 in the second bushing 4, the rotary motion and pressure used for assembling will cause annular rib 6 to flex into the annular groove 1 which is made of such size that this method of assembly may be executed. The continuation of rotarymotion and pressure will produce the-.alignment and assembly of parts as shown in Figure 2. The piston pin 8 will be retained in its operating position Within the piston I0, by the resistance of the internal ribs E and external flanges 5 to flexing.
VThe.assembly of the parts shown in Figure 3 necting rod I8. Next the connecting rod I8 is assem'hl'ed within the piston I8 so that its bearing is in alignment with the piston pin holes. Next, piston pin I6 is inserted in the piston pin hole on one side of the piston and. pressed through the bushing 4 in connecting rod i8 until it reaches its nal position wherethe internal annular rib.` 6 engages the annular groove I1 in the piston .pin
I6.. The pistonpin 1.6 will be retained in its oper-` ating position. within the piston I8, by theresistance-to ilexingof internal rib S and external ii'anges ,5; v
VIn operation the. heads of pistons I0 and I9' are subjected' to f-ull compressive forces .at. the end of the compression stroke and the bushings ..4 are'subjected to compression to the same degree. Immediately subsequent to the ending of the compression stroke the suction stroke begins, `and the fluid pressure withinthecylinder drops to the suction pressure ofv the fluid entering the compressor. The sudden release vo'f pressure from thepistons releases the compression pressure from bushings '4. which by .their elasticity then returnv to their normal balance of assembly stress within. the piston pin holes of the piston or the connect; ingY rod` as the case may be. Under the shock of sudden pressure reduction the pressure waves set up. Within'the cylinder cannot exceed the natural frequency of the pistons on. the resilient V'piston pin bushings. The resilience of the'bushi'ngs is.v such that `the piston Afrequency 'is lower than'the frequency of sound wavesv which are heard asa click' or' otherv objectionable sound. Thus the l resilient'hushings of this' invention eliminate 'an objectionablel sound' of compressor operation..
Sometirries refrigeration compressors are con'-A structed so that a greaterl than minimum volume of compressed iluid ispurposelyY retainedwithi'n presser is' rendered' more quiet by the increased`A volume of lie-expanding fluid.
However,A vre-emJanding fluidv in. a compressorv cyiinder'reduces the amount of l'ovv pressure Huidv that caribeA drawn in on the suction stroke. 'In
other words, the. volumetric efliciency `of 'the vc'on'rpressoris reduced. AWhen quietness of opera-4 tionis an important factor of compressor design...
thevoiumetriceiiiciency, andthus refrigeration ing the resulting Vhigh eilici'encyand refrigeration capacity. It eliminates the need for reduced refrigeration capacity for the purpose of obtaining quiet operation. Thus this invention attains its object of improved compressor eilciency.
Although I have illustrated and described a specific design of resilient piston pin bushing for refrigeration compressors, it is, of course, t be understood that various ychanges can be made in the form, details, materials and arrangement and proportions of the bushing and its associated parts without departing from the scope of my' invention.
What I claim is:
1. A cushioning device for use with a reciprocating piston adapted to operate in a cylinder, a connecting rod and a piston pin, wherein the piston is provided with a piston pin aperture having ilared ends, comprising a yieldable bushing adapted to t between said piston pin and said piston and in said opening, said bushing having outwardly ilared end portions adapted to fit the contour of said opening in said piston to prevent movement of said bushing relative to said piston.
2. A cushioning device for use with a reciprocating piston adapted to operate in a cylinder, connecting rod and piston pin, wherein said connecting rod is provided with a piston pin bearing aperture, comprising a yieldable bushing adapted to it within said connecting rod piston pin bearing aperture, said bushing having flared ends to prevent displacement oi the bushing relative to said connecting rod bearing aperture.
3. A cushioning device for use with a piston, a connecting rod and a piston pin, wherein said piston pin is provided with an annular groove, comprisinga sleeve-like bushing having an internal rib moulded to fit said annular groove and adapted when assembled into said annular groove to resist longitudina1 movement relative to said piston pin.
4. A cushioning device for use with a piston having a piston pin bore and a piston pin adapted to t within said bore, comprising a resilient bushing moulded to an external shape adapted for nesting into a portion of said piston bore and moulded to an internal shape adapted to be assembled contiguous with a portion of the eX- ternal surface of said piston pin, the said piston pin bore having an irregular shape longitudinally such that a exing of said resilient bushing is required for its assembly or disassembly within said piston pin bore, and the external shape of said piston pin being irregular longitudinally such as to require a ilexing of said resilient bushing for its assembly on or disassembly from said piston pin.
5. A cushioning device for use with a piston, a connecting rod and a piston pin wherein said connecting rod is provided with a bore adapted to receive said piston pin, comprising, a resilient bushing moulded to an external shape adapted for nesting into the bore in said connecting rod and moulded to an internal shape adapted to be assembled on a portion of the external surface of said piston pin lying within said bore in said connecting rod, said bore having an irregular shape longitudinally such that flexing of said resilient bushing is required for its assembly or disassembly within said yconnecting rod bore, and the ex. ternal shape of said piston pinbeing irregular longitudinally such as to require a exing of said resilient bushing for its assembly on or disassembly from said piston pin.
6. A cushioning device for use with a piston, a connecting rod and a piston pin, wherein said piston pin is provided with an annular groove, comprising a resilient sleeve-like bushing having an internal rib formed to t said annular groove and adapted, when assembled into said annular groove, to resist longitudinal movement relative to said piston pin.
WILLIAM B. WINSLOW.
REFERENCES CITED Thekfollowing references are of record in the le of this patent:
UNITED STATES PATENTS
US539656A 1944-06-10 1944-06-10 Resilient piston pin bushing Expired - Lifetime US2422327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US539656A US2422327A (en) 1944-06-10 1944-06-10 Resilient piston pin bushing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US539656A US2422327A (en) 1944-06-10 1944-06-10 Resilient piston pin bushing

Publications (1)

Publication Number Publication Date
US2422327A true US2422327A (en) 1947-06-17

Family

ID=24152120

Family Applications (1)

Application Number Title Priority Date Filing Date
US539656A Expired - Lifetime US2422327A (en) 1944-06-10 1944-06-10 Resilient piston pin bushing

Country Status (1)

Country Link
US (1) US2422327A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1000406B (en) * 1953-12-07 1957-01-10 Licentia Gmbh Two-cylinder compressor
US2829934A (en) * 1955-10-26 1958-04-08 Schulze Heinrich Wilhelm Multi-element articles of furniture
US2937040A (en) * 1957-01-07 1960-05-17 Silentbloc Flexible couplings for axially aligned, pivotally connected members
US2989330A (en) * 1959-11-16 1961-06-20 Gen Motors Corp Resilient suspension means
US2993715A (en) * 1957-05-08 1961-07-25 Silentbloc Flexible mountings for pivotal joints
US2995041A (en) * 1956-05-29 1961-08-08 Honeywell Regulator Co Transmitting apparatus
US3049362A (en) * 1958-02-28 1962-08-14 Eaton Axles Ltd Hydraulic suspension for vehicle tandem axles
US3158072A (en) * 1960-09-16 1964-11-24 Detrez Rene Driving cylinders actuated by fluid under pressure
US3177978A (en) * 1962-04-02 1965-04-13 Chrysler Corp Brake vibration eliminator
US3687404A (en) * 1969-12-15 1972-08-29 Cheysler Corp Automobile engine mounting and method
US4082050A (en) * 1976-08-30 1978-04-04 Single Buoy Moorings, Inc. Coupling between an anchor under water and a buoyant body
WO1981000545A1 (en) * 1979-08-29 1981-03-05 M Roussin Track joint locking collar and assembly method
US4291614A (en) * 1978-06-28 1981-09-29 Alcan Aluminiumwerk Nurnberg Gmbh Piston and process for its manufacture
US4406558A (en) * 1979-12-22 1983-09-27 Richard Kochendorfer Gudgeon pin
US4430928A (en) * 1981-08-03 1984-02-14 Carrier Corporation Piston assembly and a method for manufacturing piston assemblies
US4508019A (en) * 1982-03-29 1985-04-02 Deere & Company Reduced impact piston assembly
FR2624557A1 (en) * 1987-12-11 1989-06-16 Suzuki Motor Co PISTON ASSEMBLY FOR INTERNAL COMBUSTION ENGINES
US4907906A (en) * 1987-08-28 1990-03-13 Netzsch-Mohnopumpen Gmbh Pin joint for eccentric worm pumps
US4961354A (en) * 1985-02-28 1990-10-09 Yoshigai Kikai Kinzoku Kabushiki Kaisha Wire connecting structure for brake manipulating device or operating device
US4970751A (en) * 1989-04-17 1990-11-20 Tridon Limited Adaptor for windshield wiper pin
US5103533A (en) * 1990-12-04 1992-04-14 Truth Division Of Spx Corporation Lock handle pivot structure
US5414899A (en) * 1993-07-20 1995-05-16 Truth Hardware Corporation Pivot structure from a lock handle
US5443521A (en) * 1992-12-21 1995-08-22 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5599056A (en) * 1994-06-15 1997-02-04 Dr. Ing. H.C.F. Porsche Ag Articulated connection of two adjoining components, particularly of a vehicle top
WO2003010446A1 (en) * 2001-07-25 2003-02-06 Empresa Brasileira De Compressores S.A. - Embraco Mounting arrangement for the piston of a reciprocating hermetic compressor
US20040112614A1 (en) * 2002-10-23 2004-06-17 Achim Buchholz Hammer
US20100300337A1 (en) * 2009-06-02 2010-12-02 Danny Wipf Method and apparatus for improving air seeder boot
US20150030377A1 (en) * 2013-07-29 2015-01-29 MAGNA STEYR Engineering AG & Co KG Rotatable connection
DE102014100138B3 (en) * 2014-01-08 2015-03-26 Netzsch Pumpen & Systeme Gmbh Eccentric screw pump, pin joint and method for producing a pin joint
US20150330381A1 (en) * 2014-05-16 2015-11-19 Quincy Compressor Llc Compressor Bushing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1384186A (en) * 1921-07-12 Wrist-pin
US1450177A (en) * 1922-01-11 1923-04-03 Henri J Houpert Internal-combustion-engine piston
US1511135A (en) * 1924-03-26 1924-10-07 George W Moser Gas-engine piston
US1772187A (en) * 1929-03-23 1930-08-05 Gen Motors Corp Piston pin
US2122839A (en) * 1936-10-15 1938-07-05 Guy And Murton Inc Resilient bushing and method of making the same
US2187923A (en) * 1937-07-29 1940-01-23 Duquesne Slag Products Company Resilient connection
US2322138A (en) * 1941-11-12 1943-06-15 Wright Aeronautical Corp Piston pin retainer
US2324997A (en) * 1941-11-04 1943-07-20 Firestone Tire & Rubber Co Resilient coupling

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1384186A (en) * 1921-07-12 Wrist-pin
US1450177A (en) * 1922-01-11 1923-04-03 Henri J Houpert Internal-combustion-engine piston
US1511135A (en) * 1924-03-26 1924-10-07 George W Moser Gas-engine piston
US1772187A (en) * 1929-03-23 1930-08-05 Gen Motors Corp Piston pin
US2122839A (en) * 1936-10-15 1938-07-05 Guy And Murton Inc Resilient bushing and method of making the same
US2187923A (en) * 1937-07-29 1940-01-23 Duquesne Slag Products Company Resilient connection
US2324997A (en) * 1941-11-04 1943-07-20 Firestone Tire & Rubber Co Resilient coupling
US2322138A (en) * 1941-11-12 1943-06-15 Wright Aeronautical Corp Piston pin retainer

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1000406B (en) * 1953-12-07 1957-01-10 Licentia Gmbh Two-cylinder compressor
US2829934A (en) * 1955-10-26 1958-04-08 Schulze Heinrich Wilhelm Multi-element articles of furniture
US2995041A (en) * 1956-05-29 1961-08-08 Honeywell Regulator Co Transmitting apparatus
US2937040A (en) * 1957-01-07 1960-05-17 Silentbloc Flexible couplings for axially aligned, pivotally connected members
US2993715A (en) * 1957-05-08 1961-07-25 Silentbloc Flexible mountings for pivotal joints
US3049362A (en) * 1958-02-28 1962-08-14 Eaton Axles Ltd Hydraulic suspension for vehicle tandem axles
US2989330A (en) * 1959-11-16 1961-06-20 Gen Motors Corp Resilient suspension means
US3158072A (en) * 1960-09-16 1964-11-24 Detrez Rene Driving cylinders actuated by fluid under pressure
US3177978A (en) * 1962-04-02 1965-04-13 Chrysler Corp Brake vibration eliminator
US3687404A (en) * 1969-12-15 1972-08-29 Cheysler Corp Automobile engine mounting and method
US4082050A (en) * 1976-08-30 1978-04-04 Single Buoy Moorings, Inc. Coupling between an anchor under water and a buoyant body
US4291614A (en) * 1978-06-28 1981-09-29 Alcan Aluminiumwerk Nurnberg Gmbh Piston and process for its manufacture
WO1981000545A1 (en) * 1979-08-29 1981-03-05 M Roussin Track joint locking collar and assembly method
US4406558A (en) * 1979-12-22 1983-09-27 Richard Kochendorfer Gudgeon pin
US4430928A (en) * 1981-08-03 1984-02-14 Carrier Corporation Piston assembly and a method for manufacturing piston assemblies
US4508019A (en) * 1982-03-29 1985-04-02 Deere & Company Reduced impact piston assembly
US4961354A (en) * 1985-02-28 1990-10-09 Yoshigai Kikai Kinzoku Kabushiki Kaisha Wire connecting structure for brake manipulating device or operating device
US4907906A (en) * 1987-08-28 1990-03-13 Netzsch-Mohnopumpen Gmbh Pin joint for eccentric worm pumps
FR2624557A1 (en) * 1987-12-11 1989-06-16 Suzuki Motor Co PISTON ASSEMBLY FOR INTERNAL COMBUSTION ENGINES
US4970751A (en) * 1989-04-17 1990-11-20 Tridon Limited Adaptor for windshield wiper pin
US5103533A (en) * 1990-12-04 1992-04-14 Truth Division Of Spx Corporation Lock handle pivot structure
US5443521A (en) * 1992-12-21 1995-08-22 Mauch Laboratories, Inc. Hydraulic control unit for prosthetic leg
US5414899A (en) * 1993-07-20 1995-05-16 Truth Hardware Corporation Pivot structure from a lock handle
US5599056A (en) * 1994-06-15 1997-02-04 Dr. Ing. H.C.F. Porsche Ag Articulated connection of two adjoining components, particularly of a vehicle top
US8549988B2 (en) 2001-07-25 2013-10-08 Whirlpool S.A. Mounting arrangement for the piston of a reciprocating hermetic compressor
WO2003010446A1 (en) * 2001-07-25 2003-02-06 Empresa Brasileira De Compressores S.A. - Embraco Mounting arrangement for the piston of a reciprocating hermetic compressor
US20040261613A1 (en) * 2001-07-25 2004-12-30 Lilie Dietmar Erich Bernhard Mounting arrangement for the piston of a reciporocating hermetic compressor
CN1318784C (en) * 2001-07-25 2007-05-30 巴西船用压缩机有限公司 Mounting arrangement for piston of reciprocating hermetic compressor
KR100883854B1 (en) * 2001-07-25 2009-02-17 월풀 에쎄.아. A reciprocating hermetic compressor and mounting arragement for the piston of the reciprocating hermetic compressor
US9353862B2 (en) 2001-07-25 2016-05-31 Whirlpool S.A. Piston for a reciprocating hermetic compressor
US20040112614A1 (en) * 2002-10-23 2004-06-17 Achim Buchholz Hammer
US6978847B2 (en) * 2002-10-23 2005-12-27 Black & Decker Inc. Hammer
US20060065416A1 (en) * 2002-10-23 2006-03-30 Achim Buchholz Hammer
US7077217B2 (en) * 2002-10-23 2006-07-18 Black & Decker Inc. Hammer
US20100300337A1 (en) * 2009-06-02 2010-12-02 Danny Wipf Method and apparatus for improving air seeder boot
US8616140B1 (en) 2009-06-02 2013-12-31 Lakeview Hutterian Brethren Method and apparatus for improving air seeder boot
US8141503B2 (en) * 2009-06-02 2012-03-27 Lakeview Hutterian Brethren Method and apparatus for improving air seeder boot
US20150030377A1 (en) * 2013-07-29 2015-01-29 MAGNA STEYR Engineering AG & Co KG Rotatable connection
US10151335B2 (en) * 2013-07-29 2018-12-11 Magna Steyr Fahrzeugtechnik Ag & Co Kg Rotatable connection
US10428848B2 (en) 2013-07-29 2019-10-01 Magna Steyr Fahrzeugtechnik Ag & Co Kg Rotatable connection
DE102014100138B3 (en) * 2014-01-08 2015-03-26 Netzsch Pumpen & Systeme Gmbh Eccentric screw pump, pin joint and method for producing a pin joint
WO2015104012A1 (en) * 2014-01-08 2015-07-16 Netzsch Pumpen & Systeme Gmbh Progressive cavity pump, pin joint, and method for producing a pin joint
AU2014377061B2 (en) * 2014-01-08 2017-04-20 Netzsch Pumpen & Systeme Gmbh Progressive cavity pump, pin joint, and method for producing a pin joint
US20150330381A1 (en) * 2014-05-16 2015-11-19 Quincy Compressor Llc Compressor Bushing
US10087920B2 (en) * 2014-05-16 2018-10-02 Quincy Compressor Llc Compressor bushing

Similar Documents

Publication Publication Date Title
US2422327A (en) Resilient piston pin bushing
DE60114805T2 (en) SUPPORT DEVICE FOR THE STATOR OF A PISTON COMPRESSOR
US3920252A (en) Dynamic seal for double-acting piston
US1016561A (en) Plunger and cylinder packing.
JPH11257224A (en) Muffler coupling structure for linear compressor
GB2172085A (en) Refrigerant compressor
KR890008448A (en) Air conditioning compressor
US3309967A (en) Rolling diaphragm devices having loose coupling between piston and piston rod to render the piston floating
US4189984A (en) Piston-cylinder arrangement for a compressor
US2328160A (en) Fluid sealing device
US4364306A (en) Swash plate type compressor
US3120338A (en) Compressor
US2550392A (en) Hydraulic reciprocating pump
US3465952A (en) Piston and connecting rod structure for air compressors
US2633155A (en) Pump diaphragm
US2964365A (en) Piston and connecting rod assembly
US2798663A (en) Refrigerating apparatus
CN114651127A (en) Diaphragm assembly for a pump
US4632405A (en) Device for forcing piston ring radially outwardly
US2827227A (en) Compressor
KR890002553A (en) Fluid compressor
US2699364A (en) Bearing structure
US1357624A (en) Pump-piston
EP0927825A2 (en) Torque clip and packing for a piston
US1248263A (en) Pump-plunger.