US2415477A - Conversion of hydrocarbons - Google Patents

Conversion of hydrocarbons Download PDF

Info

Publication number
US2415477A
US2415477A US470304A US47030442A US2415477A US 2415477 A US2415477 A US 2415477A US 470304 A US470304 A US 470304A US 47030442 A US47030442 A US 47030442A US 2415477 A US2415477 A US 2415477A
Authority
US
United States
Prior art keywords
per cent
runs
cracking
sensitizer
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US470304A
Inventor
Hillis O Folkins
Carlisle M Thacker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pure Oil Co
Original Assignee
Pure Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pure Oil Co filed Critical Pure Oil Co
Priority to US470304A priority Critical patent/US2415477A/en
Application granted granted Critical
Publication of US2415477A publication Critical patent/US2415477A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/06Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides

Definitions

  • organic compounds are those having both carbon and hydrogen in the molecule.
  • An object of the invention is to convert higher with hydrocarbons undergoing conversion in an boiling hydrocarbons into lower boiling hydroamount of 3 molal per cent or less, a marked accarbons. v celeration in the rate of cracking occurs at tem- Another object of the invention is to provide a peratures above 375 C. Sensitizers, in accordmethod of accelerating the rate of conversion ance with our invention, are effective at sub-atof higher boiling into lower boiling hydrocarbons, mospheric, atmospheric and super-atmospheric A still further object of the invention is to propressure.
  • a further object of the invention is to accelour invention, a number of tests were made in erate the cracking of saturated to unsaturated both a Pyrex reaction vessel and in a stainless hydrocarbong steel reaction. vessel. The results of these tests Still another object of the invention is to proare set forth in Tables I, II and III. In the vide a method of accelerating cracking of hydrogreat majority of tests normal butane was used carbons under known thermal conditions and in as the charging aterial. Some of the tests were present types of cracking apparatus. conducted with pentane as the charging stock.
  • the sulfur compounds, which we have found useful, sensitization factor is the quotient of the time may be mentioned methyl, ethyl, n-propyl, is0- required for 25 per cent pressure increase for a propyl, n-butyl, iso-butyl, tertiary butyl, n-amyl non-sensitized run divided by the time required and iso-amyl mercaptans;methy1, ethyl, n-propyl, 40 for the same pressure increase in a sensitized allyl, methyl ethyl, methyl n-butyl and ethyl run.
  • Table I the tests were all carried out at n-butyl sulfides; and methyl and ethyl disulfides. a temperature of 525 C.
  • Table III is a tabulation of the gas analyses by volume per cent of the gases produced in the runs tabulated in Tables I and II.
  • the gas 10 analyses demonstrate that the composition of the gas produced in the cracking operation is fairly uniform, regardless of whether or not a sensitizer is used.
  • the analyses also show that a considerable portion of the butane and pentane charged in the various runs was converted to unsaturated hydrocarbons and that very little hydrogen was produced in these runs, thereby demonstrating that the cracking took place between the carbon bonds rather than between carbon and hydrogen.
  • Runs 415 and 420 are blank runs. Runs 416 and 423 were carried out with hydrogen sulfide as the sensitizer. Run 425 was carried out with Although mercaptans, sulfides, disulfides and methyl sulfide as the sensitizer, The sensitizer hydrogen sulfide all generally accelerated the rate was added to the Stoddards solvent before it was of cracking of normal butane, as shown in Table I, charged to the preheater coil.
  • sensitizer produced a liquid product which had a lower initial boiling point and a higher octane number than the product prepared without a, sensitizer, thereby definitely showing that higher cracking took place with the sensitizer in the same period of time than without the sensitizer.
  • the greater extent of cracking in the sensitized runs is the bromine number showing a larger proportion of unsaturates in the distillate made in the sensitized runs than in the non-sensitized runs.
  • the analyses of the liquid product for sulfur compound indicates that by a simple aqueous caustic soda wash of the distillate the amount of sulfur compounds in the distillate can be reduced to a point where they are unobjectionable.
  • the invention is applicable to cracking of both low boiling and high boiling hydrocarbons within the range of 375 C. to approximately 709 C.
  • the sensitizers are effective in very small amounts and when cracking gasoline or higher boiling hydrocarbons, should be used in amounts below 1 per cent by weight of the charge since larger amounts not only cause corrosion dificulties but deleteriously afiect the quality or the product. Good results are obtained by using from 0.25 to '1 molal per cent of the sensitizer.
  • the sensitizer may be added to the hydrocarbons under going cracking prior to charging the latter to the heating zone or may be injected directly into the reaction zone either alone or in admixture with a small amount of solvent.
  • the invention is useful in connection with conventional thermal cracking operations to accelerate the rate of cracking or maybe used in connection with catalytic cracking operations of the A further indication of stationary or moving bed catalyst type, or in conjunction with vapor suspended solid catalyst type of operation, in which solid, comminuted catalytic clays or synthetic alumina-silica or other solid catalysts are used.

Description

Patented Feb. 11, 1947 UNITED STATES 2,415,477 CUNVERSION' F HYDRGCAREON S Hiilis 0. Folkins, Skokie, and Carlisle M. Thacher, Highland Park, Ill., assignors to The Pure 0111 Company, Chicago, Ill, a corporation of Ohio No Drawing. Application December 26, 1942,
Serial No. 470,304
2 For the purpose of this invention organic compounds are those having both carbon and hydrogen in the molecule.
We have found that when sulfur, hydrogen sulhydrocarbons. 5 fide and/or organic sulfur compounds are mixed An object of the invention is to convert higher with hydrocarbons undergoing conversion in an boiling hydrocarbons into lower boiling hydroamount of 3 molal per cent or less, a marked accarbons. v celeration in the rate of cracking occurs at tem- Another object of the invention is to provide a peratures above 375 C. Sensitizers, in accordmethod of accelerating the rate of conversion ance with our invention, are effective at sub-atof higher boiling into lower boiling hydrocarbons, mospheric, atmospheric and super-atmospheric A still further object of the invention is to propressure. vide a method for preparing unsaturated hydro- In order to demonstrate the effectiveness of carbons from saturated hydrocarbons. various compounds falling within the scope of A further object of the invention is to accelour invention, a number of tests were made in erate the cracking of saturated to unsaturated both a Pyrex reaction vessel and in a stainless hydrocarbong steel reaction. vessel. The results of these tests Still another object of the invention is to proare set forth in Tables I, II and III. In the vide a method of accelerating cracking of hydrogreat majority of tests normal butane was used carbons under known thermal conditions and in as the charging aterial. Some of the tests were present types of cracking apparatus. conducted with pentane as the charging stock. Other objects and advantages inherent in the The tests were carried out by heating the reaction invention will become apparent from the followvessel to reaction temperature (either 500 or ing description. 525 (3.), evacuating it, injecting into the evac- We have discovered that thermal conversion of uated vessel sufficient butane (or pentane), conhydrocarbons into lower boiling hydrocarbons taining the desired amount ofv sensitizer, to proand/or into unsaturated hydrocarbons can be acduce the desired n t al pressure s y a o t 1 celerated by introducing into the hydrocarbons atmosphere), allowing the reactionv to proceed undergoing conversion small amount of ulfur, until a pressure increase Of 25% over the initial hydrogen sulfide, and/or organic sulfur compressure was obtained, and then rapidly removpounds, preferably mercaptans, sulfides, disulfides 1 r cti n gases for an y The time reand other alkyl sulfur compounds. quired for an increase inpressure of 5, 12.5 and The particular compound or compounds select- 25 D 66m Was de A umber of blank ed as sensitizers should preferably be in the same runs i which 110 n t Zer Was used were made phase (liquid or vapor) as the charging stock in order to obtain'a comparison with the sensiat the temperature of reaction. As examples of tized runs. In the last column of the tables the sulfur compounds, which we have found useful, sensitization factor is the quotient of the time may be mentioned methyl, ethyl, n-propyl, is0- required for 25 per cent pressure increase for a propyl, n-butyl, iso-butyl, tertiary butyl, n-amyl non-sensitized run divided by the time required and iso-amyl mercaptans;methy1, ethyl, n-propyl, 40 for the same pressure increase in a sensitized allyl, methyl ethyl, methyl n-butyl and ethyl run. In Table I the tests were all carried out at n-butyl sulfides; and methyl and ethyl disulfides. a temperature of 525 C.
TABLE I 'Time in minutes Sensitizer required for presgg ggi' Charg sure increase offor 25% pressure Compound Per cent. 5% 12.5% 25% Increase 474248766313731 LL3 2 LL1 L1 L2 LLL Sensitization factor for 25% pressure increase Sensitization factor for 25% pressure increase 653263321227 0 0 0 0 fiw00 0 0 0 0 0 464984089969 321 2 1 22222fl222fl22 Run No.
27505 wmwwmm w .99773 0 .7 .7040824 141041112 11 1 11 TABLE III minutes minutes Gas analyses by volume IGS.
Time
required for pressure increase of- Time required for pressure increase of- 7-D50280 m69nl5-DO7 4. 2 &. 1 2 3 2 Percent 5% 12.5% 25% Percent .ILLLLLLL TABLE II TABLE I-Continued Sensitizer Compound Tet-CalIeSfiII do N-Cdia Sensitizer Compound (CH3)2S- Per cent Per cent Percent Percent OnHzn Charge Charge Per cent acid constituents Mixed mercaptans extracted from sour gasoline with aqueous caustic soda solution and stripped from the caustic soda with steam.
Run
332 N-C Hm 6.60 24.90
Run
310 do do 311..." do do 314.--" do do 271 N-C3H7SH Iso-C3H SH '308... do CH 1 Initial pressure slightly above atmospheric.
Run N0.
5. TABLE ln continued glf feazhilfides appear to have the greatest sensltizing G s analyses by vl'wme The runs tabulated in Table II were all D formed at 500 C. and had an initial pressure Percent 5 ofapproximately 400 min. with the exception of 36E 31 5 8 li i l e s those runs marked with an asterisk.
- Table III is a tabulation of the gas analyses by volume per cent of the gases produced in the runs tabulated in Tables I and II. The gas 10 analyses demonstrate that the composition of the gas produced in the cracking operation is fairly uniform, regardless of whether or not a sensitizer is used. The analyses also show that a considerable portion of the butane and pentane charged in the various runs was converted to unsaturated hydrocarbons and that very little hydrogen was produced in these runs, thereby demonstrating that the cracking took place between the carbon bonds rather than between carbon and hydrogen.
In order to demonstrate the efdcacy of sensitizers in accordance with our invention, when used in a continuous type process, a series of runs were made using Stoddards solvent as a charging stock in a flow apparatus. The Stoddards solvent had an A. P. I. gravity of 48.1, an initial boiling point of 395, and an end point of 390. The total sulfur content was .03 and the solvent contained no mercaptan sulfur. The results of these runs are recorded in Tabl IV. In making these runs the Stoddards solvent was preheated in a stainless steel tube of diameter and was then charged to a stainless steel reactor having a diameter of 3" and a length of 9 A". The temperatures of the preheater and reactor were maintained by an external electric heating element.
Runs 415 and 420 are blank runs. Runs 416 and 423 were carried out with hydrogen sulfide as the sensitizer. Run 425 was carried out with Although mercaptans, sulfides, disulfides and methyl sulfide as the sensitizer, The sensitizer hydrogen sulfide all generally accelerated the rate was added to the Stoddards solvent before it was of cracking of normal butane, as shown in Table I, charged to the preheater coil.
TABLE IV Run No 415 416 420 423 425 Reactor:
Top 501 501 475 476 501 Middle. 499 499 476 474 495 Temp, 0.: Bottom. 501 501 475 475 502 Preheater: Temp., 0.- 325 330 301 300 329 Pres. p. s. i. gauge. 500 502 500 500 500 Gal/hr. charged... 1 000 995 0.252 0.25 Wt. per cent sensitizer 0 142 H25 0 122 HES 0 47 Megs Liquid product per gal. charge (lbs) 6. 31 5 6. 26 6.2 Cu. ft. gas pergal. charge. 2.044 3 088 3.038 3. 508 2 749 Wt. per cent liquid prod 96. 9 96 2 96. 4 95. 96 7 Wt. per cent gas. prod 3.1 3 8 3. 6 4. 3 3 3 A. P. I. gravity of liquid 49. 4 49.7 49.2 49. 3 49 1 A. P. I. distillation of liqu B. 132 120 132 128 128 57 243 186 217 197 224 10 297 264 280 256 285 20% 320 310 315 305 315 7 331 322 330 326 331 40% 338 334 337 337 337 50% 344 342 344 345 343 349 347 351 352 349 355 354 357 357 355 362 362 365 366 361 374 375 378 380 2 395 398 394 404 389 E. P 424 437 445 454 428 Per cent recovered 97.0 97 0 98.0 97. 8 97. 5 Per cent residue 0. 0 8 1.0 1. 5 1. 1 Per cent loss 2. 2 2. 2 1.0 0. 7 1. 4 A. S. T. M. octane No 42. 2 43. 6 .49. 0 51.0 47.1 Bromine No 13. 0 17. 2 16. 3 19. 1 14.0 Sulfur compounds in liquid:
Per cent H 0. 010 0.005 None Per cent S as RSH 0.007 0.009 0. 019 Sulfurhcompounds in liquid after caustic soda was Per cent EZS None None Per cent S as RSEL 0. 002 .00 0. 005 Per cent free S None None Per cent S as RQSL. 0 001 None Per cent as RzS..- 0 007 0.056 Percent res. S 0. 009 0.008
From the results tabulated in Table IV it will be seen that sensitizer produced a liquid product which had a lower initial boiling point and a higher octane number than the product prepared without a, sensitizer, thereby definitely showing that higher cracking took place with the sensitizer in the same period of time than without the sensitizer. the greater extent of cracking in the sensitized runs is the bromine number showing a larger proportion of unsaturates in the distillate made in the sensitized runs than in the non-sensitized runs.
The analyses of the liquid product for sulfur compound indicat that by a simple aqueous caustic soda wash of the distillate the amount of sulfur compounds in the distillate can be reduced to a point where they are unobjectionable.
The invention is applicable to cracking of both low boiling and high boiling hydrocarbons within the range of 375 C. to approximately 709 C. The sensitizers are effective in very small amounts and when cracking gasoline or higher boiling hydrocarbons, should be used in amounts below 1 per cent by weight of the charge since larger amounts not only cause corrosion dificulties but deleteriously afiect the quality or the product. Good results are obtained by using from 0.25 to '1 molal per cent of the sensitizer.
The sensitizer may be added to the hydrocarbons under going cracking prior to charging the latter to the heating zone or may be injected directly into the reaction zone either alone or in admixture with a small amount of solvent.
The invention is useful in connection with conventional thermal cracking operations to accelerate the rate of cracking or maybe used in connection with catalytic cracking operations of the A further indication of stationary or moving bed catalyst type, or in conjunction with vapor suspended solid catalyst type of operation, in which solid, comminuted catalytic clays or synthetic alumina-silica or other solid catalysts are used.
What is claimed is: p The method of cracking butane to lower boiling unsaturated hydrocarbons which comprises subjecting it to temperatures above 375 C. in the presence of a small amount of ethyl sulfide.
H. O. FOLKINS. CARLISLE M. THACKER.
REFERENCES CITED Thei'ollowing references are of record in the file of this patent:
UNI'IED STATES PATENTS Number Name Date 1,221,698 Day Apr. 3, 1917 2,1638% Groll Aug. 8, 1939 2,268,994 Russell Dec. 30, 1911 1,925,421 Peski Sept. 5, 1933 2,232,999 Gohr Feb. 25, 1941 2,115,336 Krauch et a1 Apr. 26, 1938 OTHER REFERENCES A. P. C. Application of Woog, Ser. No. 330,613, Published May 18, 1943.
US470304A 1942-12-26 1942-12-26 Conversion of hydrocarbons Expired - Lifetime US2415477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US470304A US2415477A (en) 1942-12-26 1942-12-26 Conversion of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US470304A US2415477A (en) 1942-12-26 1942-12-26 Conversion of hydrocarbons

Publications (1)

Publication Number Publication Date
US2415477A true US2415477A (en) 1947-02-11

Family

ID=23867057

Family Applications (1)

Application Number Title Priority Date Filing Date
US470304A Expired - Lifetime US2415477A (en) 1942-12-26 1942-12-26 Conversion of hydrocarbons

Country Status (1)

Country Link
US (1) US2415477A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530701A (en) * 1948-06-15 1950-11-21 Shell Dev Production of desulfurized gasoline
US3238270A (en) * 1961-12-15 1966-03-01 Sinclair Research Inc Production of isoprene
US3254136A (en) * 1964-02-24 1966-05-31 Goodyear Tire & Rubber Methyl mercaptan promoted pyrolysis of olefins
US3287438A (en) * 1962-09-07 1966-11-22 Goodyear Tire & Rubber Modified cracking process
US3322846A (en) * 1964-04-23 1967-05-30 Mobil Oil Corp Thermal conversion of hydrocarbons
US3480687A (en) * 1966-03-03 1969-11-25 Goodyear Tire & Rubber Promotion of olefin cracking
EP0113657A2 (en) * 1983-01-06 1984-07-18 Phillips Petroleum Company Hydrocarbon cracking process
US4579997A (en) * 1985-07-25 1986-04-01 Phillips Petroleum Company Olefin production over catalytic oxides of Mn and at least one of Nb and a lanthanide
US4613722A (en) * 1985-07-25 1986-09-23 Phillips Petroleum Company Dehydrogenation of C3 and C4 hydrocarbons over an iron-based catalyst
US4620051A (en) * 1985-07-25 1986-10-28 Philips Petroleum Company Dehydrogenation and cracking of C3 and C4 hydrocarbons to less saturated hydrocarbons
US4620052A (en) * 1985-07-25 1986-10-28 Phillips Petroleum Company Dehydrogenation and cracking of C3 and C4 hydrocarbons
US4621163A (en) * 1985-07-25 1986-11-04 Phillips Petroleum Company Conversion of C3 and C4 hydrocarbons to less saturated hydrocarbons
US4621162A (en) * 1985-07-25 1986-11-04 Phillips Petroleum Company Method for conversion of C3 and C4 hydrocarbons to olefinic products
US4658081A (en) * 1985-07-25 1987-04-14 Phillips Petroleum Company Propylene and ethylene selectivity with H2 S

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1221698A (en) * 1917-02-23 1917-04-03 David T Day Process of treating mineral oils for increasing the yield of light-gravity oils.
US1925421A (en) * 1927-12-16 1933-09-05 Bataafsche Petroleum Process for splitting hydrocarbons
US2115336A (en) * 1925-02-14 1938-04-26 Standard Ig Co Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
US2168840A (en) * 1936-07-20 1939-08-08 Shell Dev Inhibiting carbon formation in metal reaction vessels
US2232909A (en) * 1939-06-20 1941-02-25 Standard Ig Co Hydrogenation process
US2268094A (en) * 1939-02-09 1941-12-30 Standard Oil Dev Co Catalytic process for treating hydrocarbon oils

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1221698A (en) * 1917-02-23 1917-04-03 David T Day Process of treating mineral oils for increasing the yield of light-gravity oils.
US2115336A (en) * 1925-02-14 1938-04-26 Standard Ig Co Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
US1925421A (en) * 1927-12-16 1933-09-05 Bataafsche Petroleum Process for splitting hydrocarbons
US2168840A (en) * 1936-07-20 1939-08-08 Shell Dev Inhibiting carbon formation in metal reaction vessels
US2268094A (en) * 1939-02-09 1941-12-30 Standard Oil Dev Co Catalytic process for treating hydrocarbon oils
US2232909A (en) * 1939-06-20 1941-02-25 Standard Ig Co Hydrogenation process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530701A (en) * 1948-06-15 1950-11-21 Shell Dev Production of desulfurized gasoline
US3238270A (en) * 1961-12-15 1966-03-01 Sinclair Research Inc Production of isoprene
US3287438A (en) * 1962-09-07 1966-11-22 Goodyear Tire & Rubber Modified cracking process
US3254136A (en) * 1964-02-24 1966-05-31 Goodyear Tire & Rubber Methyl mercaptan promoted pyrolysis of olefins
US3322846A (en) * 1964-04-23 1967-05-30 Mobil Oil Corp Thermal conversion of hydrocarbons
US3480687A (en) * 1966-03-03 1969-11-25 Goodyear Tire & Rubber Promotion of olefin cracking
EP0113657A3 (en) * 1983-01-06 1985-07-03 Phillips Petroleum Company Hydrocarbon cracking process
US4471151A (en) * 1983-01-06 1984-09-11 Phillips Petroleum Company Hydrocarbon cracking process
EP0113657A2 (en) * 1983-01-06 1984-07-18 Phillips Petroleum Company Hydrocarbon cracking process
US4579997A (en) * 1985-07-25 1986-04-01 Phillips Petroleum Company Olefin production over catalytic oxides of Mn and at least one of Nb and a lanthanide
US4613722A (en) * 1985-07-25 1986-09-23 Phillips Petroleum Company Dehydrogenation of C3 and C4 hydrocarbons over an iron-based catalyst
US4620051A (en) * 1985-07-25 1986-10-28 Philips Petroleum Company Dehydrogenation and cracking of C3 and C4 hydrocarbons to less saturated hydrocarbons
US4620052A (en) * 1985-07-25 1986-10-28 Phillips Petroleum Company Dehydrogenation and cracking of C3 and C4 hydrocarbons
US4621163A (en) * 1985-07-25 1986-11-04 Phillips Petroleum Company Conversion of C3 and C4 hydrocarbons to less saturated hydrocarbons
US4621162A (en) * 1985-07-25 1986-11-04 Phillips Petroleum Company Method for conversion of C3 and C4 hydrocarbons to olefinic products
US4658081A (en) * 1985-07-25 1987-04-14 Phillips Petroleum Company Propylene and ethylene selectivity with H2 S
US4829041A (en) * 1985-07-25 1989-05-09 Phillips Petroleum Company Composition of matter and method for conversion of C3 and C4 hydrocarbons

Similar Documents

Publication Publication Date Title
US2415477A (en) Conversion of hydrocarbons
GB781706A (en) Hydrocracking and hydrodesulfurizing crude petroleum oils containing sulfur
US2051807A (en) Production of thioethers and saturated hydrocarbons from mercaptans
US2433396A (en) Process for production of sulfonic acids
US2358879A (en) Destructive hydrogenation
US3008897A (en) Hydrocarbon demetallization process
US3502741A (en) Method for reduction of polymer formation in a process for converting ethylene to alpha olefins
US1955829A (en) Conversion of carbonaceous materials into useful hydrocarbon products
US3161584A (en) Hydrorefining with decomposed organo-metallic catalyst
US1932369A (en) Removal of sulphur compounds from crude hydrocarbons
JPS6328957B2 (en)
US2035121A (en) Process for mercaptan conversion
US2436257A (en) Conversion of hydrocarbons
US3049414A (en) Color-stable gasoline
US2364203A (en) Alkylation
US3290376A (en) Nu-phenyl-nu'-sec-alkyl-ortho-phenylenediamines
US2345877A (en) Manufacture of liquid hydrocarbons
US1993287A (en) Process for production of thioethers from mercaptans
US2412230A (en) Alkylation of aromatic hydrocarbons
US2578206A (en) Alkenylation of phenols
US2528769A (en) Reaction product of haloalkylthiophenes and hydroxyaryl compounds
US1894770A (en) Improved method for destructive hydrogenation of carbonaceous materials
US2001634A (en) Petroleum product
US3444264A (en) Method for converting ethylene to alpha olefins in the presence of benzothiazole
US2224003A (en) Cracking or pressure hydrogenation of hydrocarbons