US2412496A - Color selective reflector - Google Patents
Color selective reflector Download PDFInfo
- Publication number
- US2412496A US2412496A US602461A US60246145A US2412496A US 2412496 A US2412496 A US 2412496A US 602461 A US602461 A US 602461A US 60246145 A US60246145 A US 60246145A US 2412496 A US2412496 A US 2412496A
- Authority
- US
- United States
- Prior art keywords
- layers
- index
- reflector
- layer
- selective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 13
- 239000011521 glass Substances 0.000 description 10
- 229910001610 cryolite Inorganic materials 0.000 description 8
- 239000005083 Zinc sulfide Substances 0.000 description 7
- 229910052984 zinc sulfide Inorganic materials 0.000 description 7
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 5
- 229910052776 Thorium Inorganic materials 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/28—Interference filters
- G02B5/285—Interference filters comprising deposited thin solid films
- G02B5/288—Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
Definitions
- This invention relates to color selective reectors of the type which bear transparent, substantially non-absorbent interference lms.
- each layer has a thickness of one-quarter of the wavelength of light of a predetermined color; the low index layers tend to reduce reflection from the surface bearing the lm, while the high index layers increase reflection.
- the reflector as a whole is thus given selective characteristics, that is to say, it transmits a. substantial proportion of light of one color, while reflecting a. substantial proportion of light of another color.
- Reectors of the character described are, however, extremely sensitive to the angle which the incident beam makes with the interference lm.
- a reector of this type will transmit 89 percent of light of 5000 Angstrom units when the incident beam is normal to the lm but only 27 percent of light of that color when the incident beam is at an angle-of 45 of the lm.
- a particular object is the provision of an improved blue-transmitting yellow-reflecting selective reector.
- Figure 1A is a greatly enlarged sectional View' of a selective reflector bearing a six-layer lm, according to the invention
- Figure 1B is a graph showing the transmission characteristics of the reflector of Fig. 1A
- Figure 1C is a chart showing the manner of construction of the'device of Fig. 1A,
- Figure 2A is a greatly enlarged sectional view of a selective reflector according to the prior art, of the same materials and in all other respects similar to the reflector of Fig. 1A except that the high index layers are each a quarter-wave instead of half-wave thick,
- Figure 2B is a graph showing the transmission characteristics of the reflector of Fig. 2A
- Figure 2C is a chart showing the manner of construction of the device of Fig. 2A,
- Figure 3A is a greatly enlarged sectional view of a selective reflector bearing a seven-layer lm according to the invention
- Figure 3B is a graph showing the transmission characteristics of the reflector of Fig. 3A.
- Figure 3C is a chart showlng'the manner of construction of the device of Fig. 3A.
- the reflector shown in Fig. 1A is one designed to reflect a substantial proportion of light from the yellow portion of the visible spectrum and to transmit a substantial proportion of light from the blue portion of the spectrum. It includes a support I0 which may be of glass or other transparent 'material and which may be assumed for purposes of illustration to have an index of refraction of the order of 1.5.
- a surface II of the support bears a transparent interference film composed of six successively superimposed layers designated, respectively, by the reference numerals I2, I3, I4, I5, I6 and I7.
- the first, third and fth of these layers each have an effective optical thickness of one quarter of the Wave length of light to be transmitted by the device.
- These three layers may be of cryolite which has an index of approximately 1.3 and are sometimes referred to in this specification and in ⁇ the accompanying claims as low index layers.
- wavelength of light to be transmitted by the device may be of zinc sulfide which has an index of refraction of about 2.1.
- the three layers last mentioned are referred to in this application as high index layers.
- Cryolite and zinc sulfide are mentioned as examples of suitable materials, it being necessary only that the half Wavelength layers shall have a greater index of refraction than the quarter wavelength layers.
- Cryolite is evaporated onto the surface under treatment, and the reflection therefrom becomes progressively less until it is about percent of that from the original untreated glass surface.
- the reection is a minimum and the layer is a quarter-wave thick.
- Zinc sulfide is then evaporated on top of the cryolite layer. The reection increases steadily and reaches a maximum of approximately 750 percent of the original reection.
- the zinc sulfide is a quarter-wave thick, and this is the point at which evaporation of the layer is ordinarily terminated in the prior art. In the present invention, however, the zinc sulfide is further applied, and reiiection now falls to a minimum of about 52 percent, at which the layer is a half-wave thick.
- Fig. 1B Transmission curves for the device of Fig. 1A are given in Fig. 1B. These curves were taken with a spectrophotometer from a device built as shown in Fig. 1C.
- the solid line of Fig. 1B shows the transmission when the incident beam is normal to the lm, and the broken line gives the transmission when the lm is at an angle of 45 degrees to the light path. It will be observed that movement of the incident beam with respect to the film through an angle of 45 degrees shifts the transmission beam fairly constantly by about 140 Angstrom units towards the blue end of the spectrum.
- Fig. 2A is a sectionahview of a selective reflector of the prior art, and Fig. 2B gives transmission curves of that reector for comparison with those of Fig. 1B.
- the device of Fig. 2A is of the same materials and in all other respects similar to that of Fig. 1A except that the high index layers are a quarter-wave instead of halfwave thick, and the device was therefore designed to have maximum reflection at 6000 Angstroms instead of minimum reflection at 4350 Angstroms. Both devices are yellow by reiiection and blue by transmission, but variation of the angle of the incident light shifts the transmission curve of the device of Fig. 2A by as much as 600 Angstrom units.
- this shifting is not near- 1 y as constant as with the reector ofthe present invention.
- the reflector oi the invention is only about one-quarter as responsive to Variations in angle as the reflector' of the prior art. It will also be seen that there are wide variations in the transmission of the prior art reflector at the blue end of the spectrum in the region from 4000 to 5000 Angstrom units.
- Fig. 3A is a sectional view of a seven-layer lm according to the invention composed of alternate half-wave layers of zinc sulfide and quarter-wave layers of material which is believed to be thorium oxi-uoride, with the high index layer in this case next to the glass.
- the material of which the quarter-wave low index layers are composed is that described in my copending application for Reduction in reection from glass, Serial No. 470,583, filed December 30, 1942, and assigned to the same assignee as the instant application.
- This material is believed to be thorium oxi-fluoride with the formula ThOFz, and has an index of refraction (when deposited by evaporation in a high vacuum) of approximately 1.5.
- the difference between the indices of refraction of thorium oxiiiuoride and of zinc sulde is therefore not quite as great as that between cryolite and zinc sulde; to produce the same variation in transmission (from red to blue) as in the case of the device of Fig. 1A, seven layers are needed instead of the six of the embodiment rst described.
- Figs. 3B and 3C give respectively transmission curves and instructions for the production of the device of Fig. 3A. It is apparent from an inspection of the two curves of Fig. 3B that the characteristics before referred to are almost as good in the case of the embodiment of Fig. 3A as in that of Fig. 1A.
- a color-selective reflector comprising a transparent support and a multi-layer lm on a surface of the support, the film being composed of alternate half-wave layers of higher index than the support, and quarter-wave layers of lower index than the halfwave layers.
- the construction is of particular advantage for reflectors required to transmit blue and reflect yellow light, where variation of color with angle, and efciency of transmission at the blue end of the .visible spectrum are factors to be taken into account.
- a color selective reiiector having low response to changes in the angle of incident light comprising a transparent support and a transparent interference film consisting of at least four layers superimposed on a surface of said support, alternate layers of said lm being of a material of higher index of refraction than that of said support and each having an effective optical thickness of one-half the Wavelength of light to be transmitted, the remaining layers of said film Ibeing of a material having an index of refraction at Ileast as low as that of said support, each layer having an effective optical thickness of one-quarter of said wavelength, and the outermost layer of said reector being a one-half wavelength layer of said high index material.
- a selective reflector according to claim 1 UUIII UI l l UV' wherein'one of said high index layers is next adjacent said surface.
- a selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5.
- a selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said low index layers are of cryolite and said high index layers are of zinc sulde.
- a selective reector according to clain 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of six layers whereof the rst, third and fth are of cryolite and the second, fourth and sixth are of Zinc sulde.
- a selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of seven layers whereof the rst, third, fth, and seventh are of zinc sulfide and the second, fourth, and sixth are of thorium oxiuoride.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Filters (AREA)
Description
uuu. u. l v v Dec. l0, 1946. G, L, D|MM|K 2,412,496
-r/ COLOR SELEGTIVE REFLECTOR f 6 Filed June 50, 1945 2 Sheets-Sheet l gyn fa- XH /M aw wai/Y IN VEN TOR. w25/sw .D//v/v/CA www.
T'OPNIY J A. M
QUINDI! UU Dec. 10, 1946. G, D|MM1CK 2,412,496
` COLOR SELECTIVE REFLECTOR Filed June 30, 1945 2 Sheets-Sheet 2 ATTORNEY Patented Dec. 10, 1946 COLOR SELECTIVE REFLECTOR Glenn L. Dmmick, Indianapolis, Ind., assignor to Radio Corporation of America, a corporation of Delaware Application June 30, 1945, Serial No. 602,461
8 Claims.
1 This invention relates to color selective reectors of the type which bear transparent, substantially non-absorbent interference lms.
It has been previously proposed to provide color-selective reflectors which include multilayer interference films, alternate layers being of material of high and low index of refraction, respectively. In reflectors of this type, each layer has a thickness of one-quarter of the wavelength of light of a predetermined color; the low index layers tend to reduce reflection from the surface bearing the lm, while the high index layers increase reflection. The reflector as a whole is thus given selective characteristics, that is to say, it transmits a. substantial proportion of light of one color, while reflecting a. substantial proportion of light of another color.
Reectors of the character described are, however, extremely sensitive to the angle which the incident beam makes with the interference lm. Thus, as may be seen by reference to Figure 2B of the annexed drawings, a reector of this type will transmit 89 percent of light of 5000 Angstrom units when the incident beam is normal to the lm but only 27 percent of light of that color when the incident beam is at an angle-of 45 of the lm.
Another disadvantage of reectors of the type indicated is that they have a peaked characteristic, as may again be seen by reference to Figure 2B. In many applications of selective reflectors (for example in the monitoring device described in my Patent No. 2,314,392) it is desirable that the reflector shall have a high transmission value over a band extending from 4000 Angstroms to 5000 Angstroms, but it is practically impossible to obtain such a wide band characteristic with lms all the layers of which are a quarter of a wave thick.
It is an o bject of the invention to provide an improved multi-layer color selective reector and particularly a reflector which is less subject to variation in color with angle and which may be given a wider band-pass characteristic than similar reflectors of the prior art.
A particular object is the provision of an improved blue-transmitting yellow-reflecting selective reector.
These objects are achieved by the use of an interference nlm consisting of alternate half-Wave high index and quarter-wave low index layers. In my copending application (RCV-8883) for a Dichroic reflector, Serial No. 436,998, filed March 31, 1942, and assigned to the same assignee as the instant application, there is described an interference film comprising a pair of half-wave high-index layers separated by a quarter-wave low-index layer. The advantages of this construction are not limited to a three layer lm nor are they limited to the particular materials employed.
The invention may be better understood from a consideration of the following description of two embodiments thereof when read in conjunction with the annexed drawings in which:
Figure 1A is a greatly enlarged sectional View' of a selective reflector bearing a six-layer lm, according to the invention,
Figure 1B is a graph showing the transmission characteristics of the reflector of Fig. 1A,
Figure 1C is a chart showing the manner of construction of the'device of Fig. 1A,
Figure 2A is a greatly enlarged sectional view of a selective reflector according to the prior art, of the same materials and in all other respects similar to the reflector of Fig. 1A except that the high index layers are each a quarter-wave instead of half-wave thick,
Figure 2B is a graph showing the transmission characteristics of the reflector of Fig. 2A,
Figure 2C is a chart showing the manner of construction of the device of Fig. 2A,
Figure 3A is a greatly enlarged sectional view of a selective reflector bearing a seven-layer lm according to the invention,
Figure 3B is a graph showing the transmission characteristics of the reflector of Fig. 3A, and
Figure 3C is a chart showlng'the manner of construction of the device of Fig. 3A.
The reflector shown in Fig. 1A is one designed to reflect a substantial proportion of light from the yellow portion of the visible spectrum and to transmit a substantial proportion of light from the blue portion of the spectrum. It includes a support I0 which may be of glass or other transparent 'material and which may be assumed for purposes of illustration to have an index of refraction of the order of 1.5.
A surface II of the support bears a transparent interference film composed of six successively superimposed layers designated, respectively, by the reference numerals I2, I3, I4, I5, I6 and I7. The first, third and fth of these layers each have an effective optical thickness of one quarter of the Wave length of light to be transmitted by the device. These three layers may be of cryolite which has an index of approximately 1.3 and are sometimes referred to in this specification and in` the accompanying claims as low index layers.
wavelength of light to be transmitted by the device, and may be of zinc sulfide which has an index of refraction of about 2.1. The three layers last mentioned are referred to in this application as high index layers.
Cryolite and zinc sulfide are mentioned as examples of suitable materials, it being necessary only that the half Wavelength layers shall have a greater index of refraction than the quarter wavelength layers.
The various layers of the interference iilm may be applied, and their thickness controlled in the manner described in myPatentNo.2,338,234- From the data of Fig. 1C it will be seen that in the production of the embodiment of Fig. 1A, a control beam at an angle of 45 degrees to the surface Il and a filter having maximum transmission at 4350 Angstroms were employed. The angle of 45 degrees is not critical.
Cryolite is evaporated onto the surface under treatment, and the reflection therefrom becomes progressively less until it is about percent of that from the original untreated glass surface. At this point, the reection is a minimum and the layer is a quarter-wave thick. Zinc sulfide is then evaporated on top of the cryolite layer. The reection increases steadily and reaches a maximum of approximately 750 percent of the original reection. At this point the zinc sulfide is a quarter-wave thick, and this is the point at which evaporation of the layer is ordinarily terminated in the prior art. In the present invention, however, the zinc sulfide is further applied, and reiiection now falls to a minimum of about 52 percent, at which the layer is a half-wave thick.
Successive layers of cryolite and zinc sulde are applied in accordance with the directions in the chart (Fig. 1C), each low index being applied to a thickness of a quarter-Wave length and each high index layer to a thickness of a half-wave length.
Transmission curves for the device of Fig. 1A are given in Fig. 1B. These curves were taken with a spectrophotometer from a device built as shown in Fig. 1C. The solid line of Fig. 1B shows the transmission when the incident beam is normal to the lm, and the broken line gives the transmission when the lm is at an angle of 45 degrees to the light path. It will be observed that movement of the incident beam with respect to the film through an angle of 45 degrees shifts the transmission beam fairly constantly by about 140 Angstrom units towards the blue end of the spectrum.
It will also be seen that transmission is maintained substantially constant at the blue end of the spectrum between 4000 and 5000 Angstrom units. The desirability of this characteristic in many applications has already been referred to.
Fig. 2A is a sectionahview of a selective reflector of the prior art, and Fig. 2B gives transmission curves of that reector for comparison with those of Fig. 1B. The device of Fig. 2A is of the same materials and in all other respects similar to that of Fig. 1A except that the high index layers are a quarter-wave instead of halfwave thick, and the device was therefore designed to have maximum reflection at 6000 Angstroms instead of minimum reflection at 4350 Angstroms. Both devices are yellow by reiiection and blue by transmission, but variation of the angle of the incident light shifts the transmission curve of the device of Fig. 2A by as much as 600 Angstrom units. Moreover, this shifting is not near- 1 y as constant as with the reector ofthe present invention. In other words, the reflector oi the invention is only about one-quarter as responsive to Variations in angle as the reflector' of the prior art. It will also be seen that there are wide variations in the transmission of the prior art reflector at the blue end of the spectrum in the region from 4000 to 5000 Angstrom units.
The multi-layer lm of the invention is not limited to the precise six-layer lm shown in Fig. 1A, nor to the materials employed in thatl embodiment, nor to cases where the low index layer is next to the glass. Fig. 3A is a sectional view of a seven-layer lm according to the invention composed of alternate half-wave layers of zinc sulfide and quarter-wave layers of material which is believed to be thorium oxi-uoride, with the high index layer in this case next to the glass. The material of which the quarter-wave low index layers are composed is that described in my copending application for Reduction in reection from glass, Serial No. 470,583, filed December 30, 1942, and assigned to the same assignee as the instant application. This material is believed to be thorium oxi-fluoride with the formula ThOFz, and has an index of refraction (when deposited by evaporation in a high vacuum) of approximately 1.5. The difference between the indices of refraction of thorium oxiiiuoride and of zinc sulde is therefore not quite as great as that between cryolite and zinc sulde; to produce the same variation in transmission (from red to blue) as in the case of the device of Fig. 1A, seven layers are needed instead of the six of the embodiment rst described.
Figs. 3B and 3C give respectively transmission curves and instructions for the production of the device of Fig. 3A. It is apparent from an inspection of the two curves of Fig. 3B that the characteristics before referred to are almost as good in the case of the embodiment of Fig. 3A as in that of Fig. 1A.
There has thus been described a color-selective reflector comprising a transparent support and a multi-layer lm on a surface of the support, the film being composed of alternate half-wave layers of higher index than the support, and quarter-wave layers of lower index than the halfwave layers. The construction is of particular advantage for reflectors required to transmit blue and reflect yellow light, where variation of color with angle, and efciency of transmission at the blue end of the .visible spectrum are factors to be taken into account.
I claim as my invention:
1. A color selective reiiector having low response to changes in the angle of incident light, said reector comprising a transparent support and a transparent interference film consisting of at least four layers superimposed on a surface of said support, alternate layers of said lm being of a material of higher index of refraction than that of said support and each having an effective optical thickness of one-half the Wavelength of light to be transmitted, the remaining layers of said film Ibeing of a material having an index of refraction at Ileast as low as that of said support, each layer having an effective optical thickness of one-quarter of said wavelength, and the outermost layer of said reector being a one-half wavelength layer of said high index material.
2. A selective reflector accordingA to claim 1 wherein one of 'said low index layers is next adjacent said surface.
3. A selective reflector according to claim 1 UUIII UI l l UV' wherein'one of said high index layers is next adjacent said surface.
4. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5.
5. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said low index layers are of cryolite and said high index layers are of zinc sulde.
6. A selective reflector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said low index layers are of thorium oxyuoride and said high index layers are of zinc sulde.
7. A selective reector according to clain 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of six layers whereof the rst, third and fth are of cryolite and the second, fourth and sixth are of Zinc sulde.
8. A selective reector according to claim 1 wherein said support is of glass having an index of refraction of the order of 1.5 and said lm consists of seven layers whereof the rst, third, fth, and seventh are of zinc sulfide and the second, fourth, and sixth are of thorium oxiuoride.
GLENN L. DIMMICK.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US602461A US2412496A (en) | 1945-06-30 | 1945-06-30 | Color selective reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US602461A US2412496A (en) | 1945-06-30 | 1945-06-30 | Color selective reflector |
Publications (1)
Publication Number | Publication Date |
---|---|
US2412496A true US2412496A (en) | 1946-12-10 |
Family
ID=24411445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US602461A Expired - Lifetime US2412496A (en) | 1945-06-30 | 1945-06-30 | Color selective reflector |
Country Status (1)
Country | Link |
---|---|
US (1) | US2412496A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2478385A (en) * | 1946-12-07 | 1949-08-09 | Libbey Owens Ford Glass Co | Multilayer low light reflecting film |
US2519722A (en) * | 1946-09-20 | 1950-08-22 | Bausch & Lomb | Metallic mirror and method of making same |
US2589930A (en) * | 1948-03-17 | 1952-03-18 | Rca Corp | Color television light divider |
US2624238A (en) * | 1949-10-29 | 1953-01-06 | Rca Corp | Selectively reflecting interference mirrors |
US2660925A (en) * | 1949-12-01 | 1953-12-01 | Bausch & Lomb | Light reflector which transmits infrared rays |
US2672502A (en) * | 1950-10-19 | 1954-03-16 | Rca Corp | Color-selective optical system |
US2698595A (en) * | 1952-03-29 | 1955-01-04 | Libbey Owens Ford Glass Co | Signaling mirror |
US2700323A (en) * | 1948-12-27 | 1955-01-25 | Fish Schurman Corp | Infrared transmitting mirror |
US2740317A (en) * | 1951-08-13 | 1956-04-03 | Technicolor Motion Picture | Color selective optical interference coatings |
US2761797A (en) * | 1951-03-05 | 1956-09-04 | American Optical Corp | Method of producing conductive coating on a surface and the coated article |
US2770558A (en) * | 1952-12-13 | 1956-11-13 | Libbey Owens Ford Glass Co | Method of producing mirrors |
US2852980A (en) * | 1948-12-27 | 1958-09-23 | Schroder Hubert | Infra-red transmitting mirror |
US2865245A (en) * | 1953-12-08 | 1958-12-23 | Technicolor Corp | Light dividing system |
US2869010A (en) * | 1955-04-28 | 1959-01-13 | Rca Corp | Interference type optical filters utilizing calcium fluoride |
US2871371A (en) * | 1954-05-06 | 1959-01-27 | Rca Corp | Wide-band interference light filter |
US2873397A (en) * | 1955-03-24 | 1959-02-10 | Rca Corp | Color filters |
US2945413A (en) * | 1954-08-10 | 1960-07-19 | Technicolor Corp | Optical beam linking systems |
US2997389A (en) * | 1957-04-12 | 1961-08-22 | Eastman Kodak Co | Exposure control in color printing |
US3225243A (en) * | 1962-10-29 | 1965-12-21 | William C Dauser | Color lamp with spectral filter around filament |
US3279317A (en) * | 1961-06-30 | 1966-10-18 | Zeiss Ikon Ag | Optical filter device with two series of interference layers for transmitting visible light and reflecting heat radiation |
US3331941A (en) * | 1963-12-26 | 1967-07-18 | Monsanto Co | Infrared heater |
US3405262A (en) * | 1966-10-03 | 1968-10-08 | Textron Electronics Inc | Filter darkroom light |
US3523179A (en) * | 1969-03-27 | 1970-08-04 | Monsanto Co | Selective transmitter for infrared heaters |
US3758185A (en) * | 1971-04-01 | 1973-09-11 | Optical Coating Laboratory Inc | Thermal control filter |
DE3538996A1 (en) * | 1985-11-02 | 1987-05-14 | Philips Patentverwaltung | Interference filter |
US4769290A (en) * | 1985-09-04 | 1988-09-06 | Santa Barbara Research Center | High efficiency reflectors and methods for making them |
US4838628A (en) * | 1985-12-12 | 1989-06-13 | Leybold Heraeus Gmbh | Process and apparatus for production of an optical element |
US4854670A (en) * | 1986-12-17 | 1989-08-08 | Gte Products Corporation | Wide angle optical filters |
US5371543A (en) * | 1993-03-03 | 1994-12-06 | Texas Instruments Incorporated | Monolithic color wheel |
US6391400B1 (en) | 1998-04-08 | 2002-05-21 | Thomas A. Russell | Thermal control films suitable for use in glazing |
US10007039B2 (en) | 2012-09-26 | 2018-06-26 | 8797625 Canada Inc. | Multilayer optical interference filter |
-
1945
- 1945-06-30 US US602461A patent/US2412496A/en not_active Expired - Lifetime
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2519722A (en) * | 1946-09-20 | 1950-08-22 | Bausch & Lomb | Metallic mirror and method of making same |
US2478385A (en) * | 1946-12-07 | 1949-08-09 | Libbey Owens Ford Glass Co | Multilayer low light reflecting film |
US2589930A (en) * | 1948-03-17 | 1952-03-18 | Rca Corp | Color television light divider |
US2852980A (en) * | 1948-12-27 | 1958-09-23 | Schroder Hubert | Infra-red transmitting mirror |
US2700323A (en) * | 1948-12-27 | 1955-01-25 | Fish Schurman Corp | Infrared transmitting mirror |
US2624238A (en) * | 1949-10-29 | 1953-01-06 | Rca Corp | Selectively reflecting interference mirrors |
US2660925A (en) * | 1949-12-01 | 1953-12-01 | Bausch & Lomb | Light reflector which transmits infrared rays |
US2672502A (en) * | 1950-10-19 | 1954-03-16 | Rca Corp | Color-selective optical system |
US2761797A (en) * | 1951-03-05 | 1956-09-04 | American Optical Corp | Method of producing conductive coating on a surface and the coated article |
US2740317A (en) * | 1951-08-13 | 1956-04-03 | Technicolor Motion Picture | Color selective optical interference coatings |
US2698595A (en) * | 1952-03-29 | 1955-01-04 | Libbey Owens Ford Glass Co | Signaling mirror |
US2770558A (en) * | 1952-12-13 | 1956-11-13 | Libbey Owens Ford Glass Co | Method of producing mirrors |
US2865245A (en) * | 1953-12-08 | 1958-12-23 | Technicolor Corp | Light dividing system |
US2871371A (en) * | 1954-05-06 | 1959-01-27 | Rca Corp | Wide-band interference light filter |
US2945413A (en) * | 1954-08-10 | 1960-07-19 | Technicolor Corp | Optical beam linking systems |
US2873397A (en) * | 1955-03-24 | 1959-02-10 | Rca Corp | Color filters |
US2869010A (en) * | 1955-04-28 | 1959-01-13 | Rca Corp | Interference type optical filters utilizing calcium fluoride |
US2997389A (en) * | 1957-04-12 | 1961-08-22 | Eastman Kodak Co | Exposure control in color printing |
US3279317A (en) * | 1961-06-30 | 1966-10-18 | Zeiss Ikon Ag | Optical filter device with two series of interference layers for transmitting visible light and reflecting heat radiation |
US3225243A (en) * | 1962-10-29 | 1965-12-21 | William C Dauser | Color lamp with spectral filter around filament |
US3331941A (en) * | 1963-12-26 | 1967-07-18 | Monsanto Co | Infrared heater |
US3405262A (en) * | 1966-10-03 | 1968-10-08 | Textron Electronics Inc | Filter darkroom light |
US3523179A (en) * | 1969-03-27 | 1970-08-04 | Monsanto Co | Selective transmitter for infrared heaters |
US3758185A (en) * | 1971-04-01 | 1973-09-11 | Optical Coating Laboratory Inc | Thermal control filter |
US4769290A (en) * | 1985-09-04 | 1988-09-06 | Santa Barbara Research Center | High efficiency reflectors and methods for making them |
DE3538996A1 (en) * | 1985-11-02 | 1987-05-14 | Philips Patentverwaltung | Interference filter |
US4838628A (en) * | 1985-12-12 | 1989-06-13 | Leybold Heraeus Gmbh | Process and apparatus for production of an optical element |
US4854670A (en) * | 1986-12-17 | 1989-08-08 | Gte Products Corporation | Wide angle optical filters |
US5371543A (en) * | 1993-03-03 | 1994-12-06 | Texas Instruments Incorporated | Monolithic color wheel |
US6391400B1 (en) | 1998-04-08 | 2002-05-21 | Thomas A. Russell | Thermal control films suitable for use in glazing |
US10007039B2 (en) | 2012-09-26 | 2018-06-26 | 8797625 Canada Inc. | Multilayer optical interference filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2412496A (en) | Color selective reflector | |
US4312570A (en) | High reflectivity coated mirror producing 90 degree phase shift | |
US2392978A (en) | Light divider | |
US5400174A (en) | Optical notch or minus filter | |
CA2220291C (en) | Multilayer thin film dielectric bandpass filter | |
US4229066A (en) | Visible transmitting and infrared reflecting filter | |
US4733926A (en) | Infrared polarizing beamsplitter | |
US3565509A (en) | Four layered antireflection coatings | |
US5119232A (en) | Infrared-transmissive optical window | |
US4536063A (en) | Transmissive phase retarder | |
US5460888A (en) | Multi-layered optical film | |
US2700323A (en) | Infrared transmitting mirror | |
US3697153A (en) | Multilayer optical interference filter with wideband spectral transmission region and reduced ripple | |
US2552185A (en) | Illuminator for optical projectors | |
US3463574A (en) | Multilayer antireflection coating for low index materials | |
US3738732A (en) | Multi-layer antireflection coating | |
US2379790A (en) | Dichroic reflector | |
JPS6038681B2 (en) | Ultraviolet multilayer film | |
US2589930A (en) | Color television light divider | |
US2742819A (en) | Long wavelength transmitting optical interference filters | |
US2420168A (en) | Achromatic light reflecting and transmitting film | |
US3737210A (en) | Multilayer filter based on substitution of herpin equivalent layers in a antireflection coating formula | |
US3423147A (en) | Multilayer filter with wide transmittance band | |
US2601806A (en) | Frustrated total reflection interference filter | |
US4057316A (en) | Reflection reducing multilayer system on a highly refractive infrared transmitting substrate |