US2408745A - Variable impedance transformer - Google Patents

Variable impedance transformer Download PDF

Info

Publication number
US2408745A
US2408745A US465143A US46514342A US2408745A US 2408745 A US2408745 A US 2408745A US 465143 A US465143 A US 465143A US 46514342 A US46514342 A US 46514342A US 2408745 A US2408745 A US 2408745A
Authority
US
United States
Prior art keywords
impedance
line
conductors
impedances
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US465143A
Inventor
Espley Dennis Clark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co PLC filed Critical General Electric Co PLC
Application granted granted Critical
Publication of US2408745A publication Critical patent/US2408745A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • This invention relates to impedance transformers of the type in which part at least of the impedance transformation is effected in a transmission line.
  • the proposition upon which the action of such impedance transformers depends is this.
  • the line or lines are said to transform Z to Zn.
  • the object of this invention is to produce a I simple and convenient variable transformer of this type.
  • a variable-impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprises a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that the first value of impedance be transformed by the line to a second value of impedance.
  • the transformer includes modifying means readily slidable along the transmission line in the operative condition thereof to modify the characteristic impedance of at least two substantial parts of the line which parts have positions along the line selectable by movement of the modifying means.
  • a highfrequency impedance-matching device adapted for connection between and for matching at a given frequency a, plurality of impedances having any values within a substantial range of magni-l tude and phase comprises a plurality of substantially parallel .conductors adapted to be connected between the impedances and having a predetermined characteristic impedance within the aforesaid range between a predetermined pair of the aforesaid conductors.
  • the device includes a plurality of means between the conductors and individually adjustable axially therealong, each of the adjustable means 'being of such shape and material as to alter the aforesaid characteristic impedance for matching the resistive components and canceling the reactance components of the aforesaid plurality of impedances over the aforesaid range of values.
  • Fig. 1 is an explanatory diagram of a trasmission line
  • Fig. 2 shows diagrammatically one embodiment of the invention
  • Figs. 3, 4, 5 and 6 show diagrammatically parts of alternative embodiments, given by Way of example.
  • Fig. 1 shows a transmission line which, in the absence of the means for modifying its characteristic impedance, has a characteristic impedance Zu; the wave-length of the oscillations translated by the line, where the characteristic impedance is Zo, is l.
  • the line is shownin conventional manner as being terminated by the complex impedance R14-irl.
  • the portions of the line between the sections B, C and D, E thereof are each modified so that they have characteristic impedance Z1; the lengths of these sections are each A74, where i is .ther wave-length of the oscillations in these sections.
  • Sections C and D are separated by a space of length l1 over which the characteristic impedance of the line is Z0.
  • the impedance ZE looking into the section E towards the left must be Z0.
  • the problem is to determine the conditions under which this condition can be fulfilled by adjusting suitably'the distance l1 between the two modified parts of impedance Z1 of the line and the distance of the section B from the left-hand end of the line.
  • Equation 1 It is a consequence of Equation 1 that some section A can be found, distant a: from the lefthand end of the line shown in Fig. 1, at which the impedance looking to the left is wholly real, say R. It is sufficient therefore to discuss how, if at al1, the distance l between the sections A, B and the distance l1 may be adjusted so as to transform the real impedance R at A into the impedance Zo at E.
  • Equation 1 the impedance at B looking to the left is given by R-i-ZU tan ZnijR tall h
  • Equation l the impedance at C looking to the left is given by Applying Equation 1 to the region between sections C and D
  • the impedance at D looking to the left is given by Zeri-.izo tall li ZDIZWOMZC tan et (4)
  • the range of values of R that could be transformed to Zn would be k2 to 1.
  • the modified sections were each of length i/4, but had diierent characteristic impedances Z1 and Z2, then the said range would be k12lc22 to l, where Again ⁇ the lengths of the two modified sections need not be equal.
  • the line in the absence of the modifying means need not be uniform; it may be modified permanently at certain places, so as tu have a different characteristic impedance at these places; these places may lie between two movable modified sections or outside both of them.
  • a modified section having a length W/2, where A" is the wave-length in the section and n is an integer may obviously be introduced anywhere along the line without substantially modifying the foregoing theory.
  • the characteristic impedance of the line may be modied at adjustable places.
  • the line is concentric and the modifying means are dielectric blocks.
  • I and 2 are inner and outer members of a concentric line, which has the characteristic impedance Z0 in the absence of the blocks.
  • the rectangle marked Z indicates diagrammatically the load impedance connected to one end of the line.
  • 5 and E are similar blocks, each made of the material known commercially as Distrene, which has a dielectric constant K relative to air of about 2.5.
  • the length of each is A74 where A is the 'wave-length of the oscillations in the block; if
  • A is the wave-length in the absence of the block, the length is A/iKl
  • Each block is slidable along the line by means of threaded pins 1 projecting through slits in the member 2 at opposite ends of a diameter. When they are adjusted, the blocks are then clamped in place by means of nuts on the threaded pins 1.
  • Z0 will be 75 ohms and any load resistance between 12 and 470 ohms can be transformed to '75 ohms when the blocks 5 and 8 have the length and composition last described.
  • Figs. 3 to 6 Other methods of modifying the characteristic impedance of the line at adjustable places are shown in Figs. 3 to 6.
  • Fig. 3 shows a metal sleeve 9 slidable along the inside of the outer conductor of a concentric line
  • Fig. 4 shows a metal sleeve I0 slidable along the outside of the inner conductor of a similar line, IDA denoting a shifting and locking member of insulating material. Since such sleeves will decrease the ratio of the inner diameter of the outer conductor to the outer diameter of the inner conductor, the characteristic impedance will be decreased.
  • Fig. 5 shows a parallel line lA, 2A having a metal sleeve I l slidable on one conductor
  • Fig. 6 shows a similar line having a dielectric block l2 slidable on both conductors.
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first yvalue and having a second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and modify ingmeansreadily slidable along said transmission line in the operative condition thereof to modify the characteristic impedance of at least two substantial parts of said line which parts have positions along said line selectable by movement of said modifying means.
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having 'a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a Second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and
  • blocks separately slidable along said line and of a permittivity different from that of the medium intervening between the conductors along the unmodified part of the line, said blocks constituting modifying means whereby the characteristic impedance of at least two substantial parts of said f line may be modified.
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, atransmission line having a first pair 1 of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and metal sleeves slidable along at least one of the conductors constituting said transmission line, said sleevesconstituting modifying means whereby the characteristic impedance of at least two substantial parts of said line may be modified.
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled therei to an impedance of a first value and having a second pair of terminals at which it is desired that said first Value of impedance be transformed by said line to a second value of impedance, and
  • each of said blocks separately slidable along said line and of a permittivity different from that of the medium intervening between the conductors along the unmodified part of the line, the length of each of said blocks being one-quarter of the wavelength, in a modified part of the line, of the oscillations in connection with which the transformer is adapted to be used.
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that said first value of impedance be transformed v:
  • a variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line fl d comprising, a concentric transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that; said first value of impedance be transformed by said line to a second value of impedance, two modifying elements disposed within the outer conductor of said line for modifying the characteristic impedance of two substantial parts of said line, and means extending out of said outer conductor for independently varying the positions of said elements along said line.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and materials as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of Values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to Fbe connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to modify said characteristic impedance over at least one limited distance along said conductors for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and an inner conductor substantially coaxial therewith toprovide a transmission line having a predetermined characteristic impedance within said range and adapted to be connected between said impedances, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and an inner conductor substantially coaxial therewith to provide a transmission line having a predetermined characteristic impedance within said range and adapted to be connected between said impedances, and a plurality of independently axially adjustable means between said conductors surrounding and substan' tially coaxial with said inner conductor, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of conductive annular means between said conductors and individually adjustable axially therealong, each cf said adjustable means being effective to alter said characteristic impedance over a limited distance along said conductors for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of iinpedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and a cylindrical inner conductor substantially coaxial therewith to provide a transmission line having a predetermined charactertistic impedance within said range and adapted to be connected between said impedances, and a plurality of cylindrical conductive means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
  • a high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality ol im pedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality 0I dielectric elements between said conductors and individually adjustable axially therealong, each of said elements being of such shape and having such a dielectric constant as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.

Description

oct. s, 1945. D. c. ESPLEY' '2,408,145
VARIABLE IMPEDANCE TRANSFORMER Filed Nov. 10, 1942 Fig. 2. A7
Fig.v 3.
Fig. 5.
Patented Oct. 8, 1946 VARIABLE IMPEDANCE TRANSFORMER Dennis Clark Espley, North Wembley, England, assignor to The General Electric Company Limited, London, England Application November 10, 1942, Serial No. 465,143 In Great Britain November 11, 1941 13 Claims. l
This invention relates to impedance transformers of the type in which part at least of the impedance transformation is effected in a transmission line. The proposition upon which the action of such impedance transformers depends is this. Let a load impedance Z be connected to given input terminals through a transmission line or a set of transmission lines connected in series; then by a suitable choice of the length and characteristic impedances of the line or lines, the input impedance looking into that end of the transmission line which is connected to the given input terminals can be given any assigned value Zn. When the suitable choice is made, the line or lines are said to transform Z to Zn.
The object of this invention is to produce a I simple and convenient variable transformer of this type.
In accordance with one form of the invention, a variable-impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprises a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that the first value of impedance be transformed by the line to a second value of impedance. The transformer includes modifying means readily slidable along the transmission line in the operative condition thereof to modify the characteristic impedance of at least two substantial parts of the line which parts have positions along the line selectable by movement of the modifying means.
Also in accordance with the invention, a highfrequency impedance-matching device adapted for connection between and for matching at a given frequency a, plurality of impedances having any values within a substantial range of magni-l tude and phase comprises a plurality of substantially parallel .conductors adapted to be connected between the impedances and having a predetermined characteristic impedance within the aforesaid range between a predetermined pair of the aforesaid conductors. The device includes a plurality of means between the conductors and individually adjustable axially therealong, each of the adjustable means 'being of such shape and material as to alter the aforesaid characteristic impedance for matching the resistive components and canceling the reactance components of the aforesaid plurality of impedances over the aforesaid range of values.
In the accompanying drawing:
Fig. 1 is an explanatory diagram of a trasmission line,
Fig. 2 shows diagrammatically one embodiment of the invention, and
Figs. 3, 4, 5 and 6 show diagrammatically parts of alternative embodiments, given by Way of example.
The principle underlying the invention will now be described with reference to Fig. 1, which shows a transmission line which, in the absence of the means for modifying its characteristic impedance, has a characteristic impedance Zu; the wave-length of the oscillations translated by the line, where the characteristic impedance is Zo, is l. At the left hand end the line is shownin conventional manner as being terminated by the complex impedance R14-irl. The portions of the line between the sections B, C and D, E thereof are each modified so that they have characteristic impedance Z1; the lengths of these sections are each A74, where i is .ther wave-length of the oscillations in these sections. Sections C and D are separated by a space of length l1 over which the characteristic impedance of the line is Z0. In order that the line may be matched to an impedance Z0 at the right hand end, the impedance ZE looking into the section E towards the left must be Z0. The problem is to determine the conditions under which this condition can be fulfilled by adjusting suitably'the distance l1 between the two modified parts of impedance Z1 of the line and the distance of the section B from the left-hand end of the line.
The known proposition appropriate to the problem is this. Consider two sections U and V across a uniform transmission line of characteristic impedance Z, these sections being separated by a distance .'12 positive in the direction from U to'V. Then if ZU, Zv are the impedances looking into these sections in the direction in which :c is positive ZV'i'jZ tall x ZZ(Z+jzv' an (1) where =21r/i\ and i is the wave-length of the oscillations along the line,
It is a consequence of Equation 1 that some section A can be found, distant a: from the lefthand end of the line shown in Fig. 1, at which the impedance looking to the left is wholly real, say R. It is sufficient therefore to discuss how, if at al1, the distance l between the sections A, B and the distance l1 may be adjusted so as to transform the real impedance R at A into the impedance Zo at E. Applying Equation 1 to the 3 region between sections A and B, the impedance at B looking to the left is given by R-i-ZU tan ZnijR tall h Applying Equation l to the region between sections B and C, the impedance at C looking to the left is given by Applying Equation 1 to the region between sections C and D, the impedance at D looking to the left is given by Zeri-.izo tall li ZDIZWOMZC tan et (4) Finally for ZE Z Z,.- ZD 5) Putting ZE==Zu, eliminating ZB, Zo and ZD from (2), (3), (4), (5), and writing lc=Zn2/Z12 (6) Equating real parts and imaginary parts,
(ZO- kilt) (R- k2Z0) In order that the desired transformer ratio may be possible, l and Z1 must be real, and the righthand sides of both (7) and (8) must be positive; that is to say (Zu-ICZR) and (R-lc2Zo) must be of the same sign, which implies very complicated and would be of little or no value A in practice. Accordingly only a few other ways of modifying the line will be mentioned specifically. If the modified sections of the line were again two in number and each of the same characteristic impedance, but each of length x78,
the range of values of R that could be transformed to Zn would be k2 to 1. Again if the modified sections were each of length i/4, but had diierent characteristic impedances Z1 and Z2, then the said range would be k12lc22 to l, where Again `the lengths of the two modified sections need not be equal. Again the line in the absence of the modifying means need not be uniform; it may be modified permanently at certain places, so as tu have a different characteristic impedance at these places; these places may lie between two movable modified sections or outside both of them. In particular a modified section having a length W/2, where A" is the wave-length in the section and n is an integer, may obviously be introduced anywhere along the line without substantially modifying the foregoing theory. Indeed the characteristic impedance of the modified line might vary continuously along the line; but no advantage is known in this suggestion Lastly there might be more than two modified sections. By this means the range of the ratio of transformation corresponding to a given 7c can be increased, but the difficulty of adjustment to give a desired ratio increases also. For when there are only two modied sections, two variables l and Z1 have to be adjusted; the adjustment has to be made by double trial and error, ke the adjustment of a bridge to balance for both A. C. and D. C. This is feasible, but the adjustment would be very laborious with (say) three modled sections and three variables.
Those skilled in the art will realise how the characteristic impedance of the line may be modied at adjustable places. One method is to pr=2- vide blocks, slidable along the line, and of a material having a permittivity whose ratio to the perrnittivity of the medium intervening between the conductors on the unmodified part of the line is K, and substantially different from 1. Then, if the dielectric fills all the space occupied by the oscillating eld 7c=K. Suitable materials are known for which K=2.5 relative to air; hence if there are two blocks, each 7\/4 long, the ratio of transformation can be varied over a range (2.5) 4 to l, i. e. about 40 to l.
In the embodiment shown in Fig. 2 the line is concentric and the modifying means are dielectric blocks. I and 2 are inner and outer members of a concentric line, which has the characteristic impedance Z0 in the absence of the blocks. The rectangle marked Z indicates diagrammatically the load impedance connected to one end of the line. 5 and E are similar blocks, each made of the material known commercially as Distrene, which has a dielectric constant K relative to air of about 2.5. The length of each is A74 where A is the 'wave-length of the oscillations in the block; if
A is the wave-length in the absence of the block, the length is A/iKl Each block is slidable along the line by means of threaded pins 1 projecting through slits in the member 2 at opposite ends of a diameter. When they are adjusted, the blocks are then clamped in place by means of nuts on the threaded pins 1.
If the ratio of the internal diameter of the member 2 to the diameter of the member l is 3.5 to 1, Z0 will be 75 ohms and any load resistance between 12 and 470 ohms can be transformed to '75 ohms when the blocks 5 and 8 have the length and composition last described.
Other methods of modifying the characteristic impedance of the line at adjustable places are shown in Figs. 3 to 6. Fig. 3 shows a metal sleeve 9 slidable along the inside of the outer conductor of a concentric line and Fig. 4 shows a metal sleeve I0 slidable along the outside of the inner conductor of a similar line, IDA denoting a shifting and locking member of insulating material. Since such sleeves will decrease the ratio of the inner diameter of the outer conductor to the outer diameter of the inner conductor, the characteristic impedance will be decreased. Fig. 5 shows a parallel line lA, 2A having a metal sleeve I l slidable on one conductor, and Fig. 6 shows a similar line having a dielectric block l2 slidable on both conductors.
I claim:
l. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first yvalue and having a second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and modify ingmeansreadily slidable along said transmission line in the operative condition thereof to modify the characteristic impedance of at least two substantial parts of said line which parts have positions along said line selectable by movement of said modifying means.
2. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having 'a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a Second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and
blocks separately slidable along said line and of a permittivity different from that of the medium intervening between the conductors along the unmodified part of the line, said blocks constituting modifying means whereby the characteristic impedance of at least two substantial parts of said f line may be modified.
3. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, atransmission line having a first pair 1 of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that said first value of impedance be transformed by said line to a second value of impedance, and metal sleeves slidable along at least one of the conductors constituting said transmission line, said sleevesconstituting modifying means whereby the characteristic impedance of at least two substantial parts of said line may be modified.
4. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled therei to an impedance of a first value and having a second pair of terminals at which it is desired that said first Value of impedance be transformed by said line to a second value of impedance, and
two blocks separately slidable along said line and of a permittivity different from that of the medium intervening between the conductors along the unmodified part of the line, the length of each of said blocks being one-quarter of the wavelength, in a modified part of the line, of the oscillations in connection with which the transformer is adapted to be used.
5. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line comprising, a transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that said first value of impedance be transformed v:
by said line to a second value of impedance, and two metal sleeves slidable along at least one of the conductors constituting said line, the length of each of said sleeves being one-quarter or the wave-length, in a modified part of the line, of
the oscillations in connection with which the transformer is adapted to be used.
6. A variable impedance transformer of the type in which part at least of the impedance transformation is effected in a transmission line fl d comprising, a concentric transmission line having a first pair of terminals adapted to have coupled thereto an impedance of a first value and having a second pair of terminals at which it is desired that; said first value of impedance be transformed by said line to a second value of impedance, two modifying elements disposed within the outer conductor of said line for modifying the characteristic impedance of two substantial parts of said line, and means extending out of said outer conductor for independently varying the positions of said elements along said line.
7. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and materials as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of Values.
8. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to Fbe connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to modify said characteristic impedance over at least one limited distance along said conductors for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
9. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and an inner conductor substantially coaxial therewith toprovide a transmission line having a predetermined characteristic impedance within said range and adapted to be connected between said impedances, and a plurality of means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
l0. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and an inner conductor substantially coaxial therewith to provide a transmission line having a predetermined characteristic impedance within said range and adapted to be connected between said impedances, and a plurality of independently axially adjustable means between said conductors surrounding and substan' tially coaxial with said inner conductor, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
l1. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of impedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality of conductive annular means between said conductors and individually adjustable axially therealong, each cf said adjustable means being effective to alter said characteristic impedance over a limited distance along said conductors for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
12. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality of iinpedances having any values within a substantial range of magnitude and phase comprising, a hollow outer conductor and a cylindrical inner conductor substantially coaxial therewith to provide a transmission line having a predetermined charactertistic impedance within said range and adapted to be connected between said impedances, and a plurality of cylindrical conductive means between said conductors and individually adjustable axially therealong, each of said adjustable means being of such shape and material as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
13. A high-frequency impedance-matching device adapted for connection between and for matching at a given frequency a plurality ol im pedances having any values within a substantial range of magnitude and phase comprising, a plurality of substantially parallel conductors adapted to be connected between said impedances and having a predetermined characteristic impedance within said range between a predetermined pair of said conductors, and a plurality 0I dielectric elements between said conductors and individually adjustable axially therealong, each of said elements being of such shape and having such a dielectric constant as to alter said characteristic impedance for matching the resistive components and cancelling the reactance components of said plurality of impedances over said range of values.
DENNIS CLARK ESPLEY.
US465143A 1941-11-11 1942-11-10 Variable impedance transformer Expired - Lifetime US2408745A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2408745X 1941-11-11

Publications (1)

Publication Number Publication Date
US2408745A true US2408745A (en) 1946-10-08

Family

ID=10906111

Family Applications (1)

Application Number Title Priority Date Filing Date
US465143A Expired - Lifetime US2408745A (en) 1941-11-11 1942-11-10 Variable impedance transformer

Country Status (1)

Country Link
US (1) US2408745A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2436427A (en) * 1943-02-18 1948-02-24 Sperry Corp Impedance transformer
US2473262A (en) * 1945-11-01 1949-06-14 Gen Electric Wide band high-frequency transmission line
US2479220A (en) * 1945-08-01 1949-08-16 Harold C Early Wave guide
US2484798A (en) * 1945-12-29 1949-10-11 Philco Corp Signal transmission system
US2490957A (en) * 1945-06-30 1949-12-13 Rca Corp Antenna system
US2538771A (en) * 1944-08-02 1951-01-23 Sperry Corp High-frequency attenuator
US2568281A (en) * 1944-02-15 1951-09-18 Raytheon Mfg Co Coaxial line stub support
US2576186A (en) * 1946-10-22 1951-11-27 Rca Corp Ultrahigh-frequency coupling device
US2603707A (en) * 1944-12-21 1952-07-15 Sperry Corp Coaxial line support
US2627550A (en) * 1949-05-18 1953-02-03 Bell Telephone Labor Inc Adjustable impedance transformer
US2655635A (en) * 1948-12-21 1953-10-13 Rca Corp Transmission line termination
US2656515A (en) * 1942-03-31 1953-10-20 Sperry Corp Wave guide impedance transformer
US2705307A (en) * 1946-02-01 1955-03-29 Nyswander R Edson Double slug tuner
US2707772A (en) * 1949-09-07 1955-05-03 Rca Corp Coaxial transmission line section
US2728051A (en) * 1949-05-18 1955-12-20 Bell Telephone Labor Inc Impedance transformers
FR2500218A1 (en) * 1981-02-19 1982-08-20 Auhfa Hyperfrequency applicator for drying, sterilising etc. - has two dielectric plates spaced in waveguide and axially movable by screw threaded adjuster to vary impedance
EP0097112A1 (en) * 1982-06-04 1983-12-28 BBC Aktiengesellschaft Brown, Boveri & Cie. HF adaptation transformer
US5545949A (en) * 1994-07-29 1996-08-13 Litton Industries, Inc. Coaxial transmissioin line input transformer having externally variable eccentricity and position
US5831490A (en) * 1995-07-03 1998-11-03 Nokia Telecommunications Oy Method and apparatus for tuning a base station summing network having at least two transmitter branches

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2656515A (en) * 1942-03-31 1953-10-20 Sperry Corp Wave guide impedance transformer
US2436427A (en) * 1943-02-18 1948-02-24 Sperry Corp Impedance transformer
US2568281A (en) * 1944-02-15 1951-09-18 Raytheon Mfg Co Coaxial line stub support
US2538771A (en) * 1944-08-02 1951-01-23 Sperry Corp High-frequency attenuator
US2603707A (en) * 1944-12-21 1952-07-15 Sperry Corp Coaxial line support
US2490957A (en) * 1945-06-30 1949-12-13 Rca Corp Antenna system
US2479220A (en) * 1945-08-01 1949-08-16 Harold C Early Wave guide
US2473262A (en) * 1945-11-01 1949-06-14 Gen Electric Wide band high-frequency transmission line
US2484798A (en) * 1945-12-29 1949-10-11 Philco Corp Signal transmission system
US2705307A (en) * 1946-02-01 1955-03-29 Nyswander R Edson Double slug tuner
US2576186A (en) * 1946-10-22 1951-11-27 Rca Corp Ultrahigh-frequency coupling device
US2655635A (en) * 1948-12-21 1953-10-13 Rca Corp Transmission line termination
US2627550A (en) * 1949-05-18 1953-02-03 Bell Telephone Labor Inc Adjustable impedance transformer
US2728051A (en) * 1949-05-18 1955-12-20 Bell Telephone Labor Inc Impedance transformers
US2707772A (en) * 1949-09-07 1955-05-03 Rca Corp Coaxial transmission line section
FR2500218A1 (en) * 1981-02-19 1982-08-20 Auhfa Hyperfrequency applicator for drying, sterilising etc. - has two dielectric plates spaced in waveguide and axially movable by screw threaded adjuster to vary impedance
EP0097112A1 (en) * 1982-06-04 1983-12-28 BBC Aktiengesellschaft Brown, Boveri & Cie. HF adaptation transformer
US4532483A (en) * 1982-06-04 1985-07-30 Bbc Brown, Boveri & Company, Limited Coaxial RF matching transformer having line sections simultaneous adjustable while retaining a fix transformer line length
US5545949A (en) * 1994-07-29 1996-08-13 Litton Industries, Inc. Coaxial transmissioin line input transformer having externally variable eccentricity and position
US5831490A (en) * 1995-07-03 1998-11-03 Nokia Telecommunications Oy Method and apparatus for tuning a base station summing network having at least two transmitter branches

Similar Documents

Publication Publication Date Title
US2408745A (en) Variable impedance transformer
US2155508A (en) Wave guide impedance element and network
US2619537A (en) High-frequency delay device
US2262134A (en) Ultrahigh frequency transmission line termination
US2403252A (en) High-frequency impedance-matching device
US2588103A (en) Wave guide coupling between coaxial lines
US3970969A (en) Device for the electrical protection of a coaxial cable by two connected circuits
US3546636A (en) Microwave phase shifter
US2532993A (en) Band-pass filter
US2567235A (en) Impedance matching arrangement for high-frequency antennae
US3289120A (en) Variable electric attenuator networks
US3694775A (en) Matrix switching system having iteratively terminated transmission line
US2121855A (en) Coupling high-frequency apparatus
US2018320A (en) Radio frequency transmission line
DE831418C (en) Arrangement for amplifying, generating and modulating or demodulating electromagnetic waves of ultra-high frequencies
US2419985A (en) Reactance compensation
US3292075A (en) Stripline filter having coinciding pass bands and stop bands and devices utilizing the same
US2897460A (en) Transmission-line impedance-matching apparatus
US2404832A (en) Switch for high-frequency electrical oscillations
US1759332A (en) Wave transmission circuit
US2395165A (en) High frequency transformer
US3264584A (en) Adjustable impedance matching transformers
US1985042A (en) Wave transmission network
US2475344A (en) Constant resistance coupling arrangement
GB626632A (en) Improvements in or relating to high-frequency attenuating devices