US2404057A - End-cap electrode for discharge lamps - Google Patents

End-cap electrode for discharge lamps Download PDF

Info

Publication number
US2404057A
US2404057A US480304A US48030443A US2404057A US 2404057 A US2404057 A US 2404057A US 480304 A US480304 A US 480304A US 48030443 A US48030443 A US 48030443A US 2404057 A US2404057 A US 2404057A
Authority
US
United States
Prior art keywords
envelope
electrodes
lamp
electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US480304A
Inventor
Daniel S Gustin
Alva L Herman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Priority to US480304A priority Critical patent/US2404057A/en
Application granted granted Critical
Publication of US2404057A publication Critical patent/US2404057A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/04Electrodes; Screens
    • H01J17/06Cathodes
    • H01J17/066Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0064Tubes with cold main electrodes (including cold cathodes)
    • H01J2893/0065Electrode systems
    • H01J2893/0066Construction, material, support, protection and temperature regulation of electrodes; Electrode cups

Definitions

  • This invention relates to discharge lamps and particularly to such lamps for the generation of ultra-violet radiations and wherein the ultraviolet is transmitted directly for use exteriorly of the envelope or utilized to excite a fluorescent coating and convert the invisible ultra-violet into visible radiations.
  • the ultra-violet output of lamps of this type is largely dependent on the area of the envelope through which the ultraviolet is transmitted on the coated area when the ultra-violet is converted into visible light.
  • the electrodes have extended into the glass envelope and since the ensuing discharge is between the electrodes, this has resulted in an appreciable area at each end of the lamp from which no ultra-violet or converted visible radiations emanate, thus decreasing the efficiency of output for a given length of envelope.
  • Another object of the present invention is the provision of an ultra-violet lamp wherein the electrodes are so positioned as to in no way impair the emanation of radiations from substantially the entire envelope of the lamp.
  • Another object of the present invention is the provision of a lamp for generating ultra-violet radiations wherein the electrodes for the lamp constitute a seal for each end of the lamp as well as socket terminals, thus effectively positioning the electrodes at the absolute extremity of the envelope, thereby increasing the area of the latter through which radiations are transmitted.
  • Fig. 1 is a plan view partly in section of an ultra-violet lamp constructed in accordance with the present invention
  • Fig. 2 is a sectional View taken on the line II-II of Fig. 1;
  • Fig. 3 is a sectional view taken on the line III-III of Fig. 1;
  • Fig. 4 is a fragmentary view of one form which a portion of the electrodes as shown in Fig. 1 may take, and
  • Fig. 5 is a fragmentary view similar to Fig. 4 and showing a modification which a portion of the electrodes may take.
  • lamp 5 comprises a vitreous envelope 6 which is permeable to ultra-violet radiations if the latter are desired exteriorly of the envelope, or the envelope may be of ordinary glass provided with a coating 1 on the interior thereof which is excited by the invisible short-wave ultra-violet and fluoresces to produce visible light.
  • An ionizable medium which may comprise an inert gas, such as neon, argon or a mixture thereof at about 15 to 20 millimeters pressure, together with a' small quantity of mercury II, is disposed interiorly of the envelope for the purpose of initiating and supporting a discharge in the customary manner.
  • Electrodes 8 are provided at each end of the envelope 6 and since both are substantially identical, a detailed description of one should suflice.
  • These electrodes are formed of a metal having a coefilcient of expansion simulating that, of the envelope such, for example, as the alloy commercially known as Kovar.
  • such electrodes are sealed directly to virtually the extremity of the envelope 6 with just sufficient of its peripheral edge overlapping the electrode 8 to form an hermetic seal, thus effectively positioning the electrodes substantially beyond the extremity of the envelope so that radiations emanate throughout the entire length of the latter.
  • Such electrodes are of substantially cylindrical configuration with a curved closed end having a recess 9 therein, to enable the lamp 5 to be readily inserted in appropriate sockets.
  • One of these electrodes 8 is provided with an opening ID in the end wall of the recess, which thus communicates with the interior of the envelope after the electrodes are sealed thereto.
  • a glass exhaust tube L2 is sealed in the recess 9 through which the lamp is exhausted and filled with the ionizable medium.
  • the lamp 6 is sealed off by fusion of this exhaust tube until the latter forms a vitreous button l3'filling the recess 9.
  • the thorium I5 is recessed well within the hollow electrode 8, substantially no sputtering of electron-emitting material onto the wall of the envelope -6 occurs during operation of the lamp, thus eliminating end blackening with decrease in radiation efiiciency as has heretofore occurred in such lamps.
  • Fig. a slight modification, is shown which differs from that previously described merely in the provision of a metallic strip I! for the rod M of the preceding modification, with the free end of this strip being crimped around the thorium piece 18.
  • This modification functions in the identical manner as that previously described, and in all other respects the complete electrode is identical to Figs. 1 to 4. 7
  • a discharge occurs therebetween and since the ionizable medium is at a low pressure, such discharge substantially fills the interior of the envelope as distinguished from the pencil discharge attendant high pressure. Moreover, since the electrodes 6 are positioned at the very ends of the envelope, the discharge occurs throughout the entire length of the latter with no portion of the envelope being obstructed. This accordingly enables the radiations generated by the discharge to emanate from the entire area of the envelope, whether such radiations be ultraviolet or visible caused by excitation of a coating on the interior surface of the lamp 5.
  • the lamp of the present invention can be readily installed in existing fixtures having a fixed spacing between its sockets and for the same wattage input, a substantial increase in efficiency is obtained.
  • the electrodes themselves are employed as seals for the envelope and as the socket terminals, thus decreasing the mount of metal formerly employed and at the same. time such electrodes contribute to the construction of a more efiicient lamp.
  • a discharge lamp comprising an envelope containing an ionizable medium, a pair of electrodes between which a, discharge occurs upon the application of a potential therebetween, said electrodes being hermetically sealed to the peripheral edge of the extremities of said envelope to dispose them entirely beyond the longitudinal limits of said envelope to substantially prevent sputtering of the electrode material onto the envelope wall and to increase the effective area of the envelope through which radiations are emitted for a given size envelope, and said electrodes forming a terminal readily engageable with a socket with at least one of said electrodes having a recess therein, and an exhaust stem hermetically sealed to the surface of said electrode both within and outside of said recess and fused thereto to substantially close said recess.
  • a discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, each said electrode being disposed at an extremity of said envelope and forming an hermetic seal therewith and constituting terminals for engagement in a socket, a support projecting upwardly from a surface of said electrode, and an electron emissive material carried by said support entirely within the confines of said electrode and forming a reservoir for replenishment of the electron emissive coating on said electrodes during operation of said discharge lamp.
  • a discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with'an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, each said electrode being disposed at an extremity of said enevelope and forming an hermetic seal therewith and constituting terminals for engagement in a socket, a support projecting upwardly from a surface of said electrode, and a piece of thorium metal carried by said support within the confines of said electrode and disposed substantially concentric therewith and constituting a reservoir for replenishment of the electron emissive coatin on said electrodes during operation of said discharge lamp.
  • a discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, and at least one of said electrodes including a support projectin from the wall of said elec trode and a piece of thorium metal carried by said support entirely within the confines of said electrode and substantially concentric therewith and constituting a reservoir for replenishment of the electron emissive coating on said electrodes during operation of said discharge lamp.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

July W, 1946. D- s GUSTIN ETAL END-CAP ELECTRODE FOR DISCHARGE LAMP Filed March 24, 1943 INVENTORS .D. a GUJr/A/ fl. L. h EEMIq/V BY mu m ATTORNEY Patented July 16, 1946 END-CAP ELECTRODE FOR DISCHARGE LAMPS Daniel S. Gustin, Bloomfield, and Alva L. Herman, East Orange, N. J., assignors to Westinghouse Electric Corporation, East Pittsburgh, -Pa., a corporation of Pennsylvania 7 Application March 24, 1943, Serial No. 480,304
4 Claims.
This invention relates to discharge lamps and particularly to such lamps for the generation of ultra-violet radiations and wherein the ultraviolet is transmitted directly for use exteriorly of the envelope or utilized to excite a fluorescent coating and convert the invisible ultra-violet into visible radiations.
It is recognized that the ultra-violet output of lamps of this type is largely dependent on the area of the envelope through which the ultraviolet is transmitted on the coated area when the ultra-violet is converted into visible light. Heretofore, the electrodes have extended into the glass envelope and since the ensuing discharge is between the electrodes, this has resulted in an appreciable area at each end of the lamp from which no ultra-violet or converted visible radiations emanate, thus decreasing the efficiency of output for a given length of envelope.
It is accordingly an object of the present invention to provide a discharge lamp for the generation of ultra-violet radiations wherein the efiiciency thereof for a given length of envelope is increased.
Another object of the present invention is the provision of an ultra-violet lamp wherein the electrodes are so positioned as to in no way impair the emanation of radiations from substantially the entire envelope of the lamp.
Another object of the present invention is the provision of a lamp for generating ultra-violet radiations wherein the electrodes for the lamp constitute a seal for each end of the lamp as well as socket terminals, thus effectively positioning the electrodes at the absolute extremity of the envelope, thereby increasing the area of the latter through which radiations are transmitted.
Still further objects of the present invention will become obvious to those skilled in the art by reference to the accompanying drawing wherein:
Fig. 1 is a plan view partly in section of an ultra-violet lamp constructed in accordance with the present invention;
Fig. 2 is a sectional View taken on the line II-II of Fig. 1;
Fig. 3 is a sectional view taken on the line III-III of Fig. 1;
Fig. 4 is a fragmentary view of one form which a portion of the electrodes as shown in Fig. 1 may take, and
Fig. 5 is a fragmentary view similar to Fig. 4 and showing a modification which a portion of the electrodes may take.
Referring now to the drawing in detail, the
lamp 5 comprises a vitreous envelope 6 which is permeable to ultra-violet radiations if the latter are desired exteriorly of the envelope, or the envelope may be of ordinary glass provided with a coating 1 on the interior thereof which is excited by the invisible short-wave ultra-violet and fluoresces to produce visible light. An ionizable medium which may comprise an inert gas, such as neon, argon or a mixture thereof at about 15 to 20 millimeters pressure, together with a' small quantity of mercury II, is disposed interiorly of the envelope for the purpose of initiating and supporting a discharge in the customary manner.
At each end of the envelope 6 an electrode 8 is provided and since both are substantially identical, a detailed description of one should suflice. These electrodes are formed of a metal having a coefilcient of expansion simulating that, of the envelope such, for example, as the alloy commercially known as Kovar. As shown, such electrodes are sealed directly to virtually the extremity of the envelope 6 with just sufficient of its peripheral edge overlapping the electrode 8 to form an hermetic seal, thus effectively positioning the electrodes substantially beyond the extremity of the envelope so that radiations emanate throughout the entire length of the latter.
Such electrodes are of substantially cylindrical configuration with a curved closed end having a recess 9 therein, to enable the lamp 5 to be readily inserted in appropriate sockets. One of these electrodes 8 is provided with an opening ID in the end wall of the recess, which thus communicates with the interior of the envelope after the electrodes are sealed thereto. During fabrication of the lampfi, a glass exhaust tube L2 is sealed in the recess 9 through which the lamp is exhausted and filled with the ionizable medium. Upon completion the lamp 6 is sealed off by fusion of this exhaust tube until the latter forms a vitreous button l3'filling the recess 9.
In the form of the electrodes shown in Figs. 1 to 4, a short angularly disposed rod l4 of nickel or nickel-plated iron is welded at one end to the interior of the end wall of the electrode, and its other end is bent upon itself to form a clamp for holding a small piece of electron-emitting material such as thorium [5 substantially concentric with the electrode 8. During the seasoning process, thorium is sputtered from the small piece [5 onto the interior surface of the electrodes, which thus forms an electron-emitting surface [6 that is constantly replenished as need be during the life of the lamp. Moreover, since the thorium I5 is recessed well within the hollow electrode 8, substantially no sputtering of electron-emitting material onto the wall of the envelope -6 occurs during operation of the lamp, thus eliminating end blackening with decrease in radiation efiiciency as has heretofore occurred in such lamps.
In Fig. a slight modification, is shown which differs from that previously described merely in the provision of a metallic strip I! for the rod M of the preceding modification, with the free end of this strip being crimped around the thorium piece 18. This modification functions in the identical manner as that previously described, and in all other respects the complete electrode is identical to Figs. 1 to 4. 7
Upon the application of a suitable potential to the electrodes, a discharge occurs therebetween and since the ionizable medium is at a low pressure, such discharge substantially fills the interior of the envelope as distinguished from the pencil discharge attendant high pressure. Moreover, since the electrodes 6 are positioned at the very ends of the envelope, the discharge occurs throughout the entire length of the latter with no portion of the envelope being obstructed. This accordingly enables the radiations generated by the discharge to emanate from the entire area of the envelope, whether such radiations be ultraviolet or visible caused by excitation of a coating on the interior surface of the lamp 5.
'It thus becomes obvious to those skilled in the art thata discharge lamp is herein provided which has a greater efiiciency for a given length lamp than lamps of similar length heretofore known to the art. In other Words, the lamp of the present invention can be readily installed in existing fixtures having a fixed spacing between its sockets and for the same wattage input, a substantial increase in efficiency is obtained. Moreover, the electrodes themselves are employed as seals for the envelope and as the socket terminals, thus decreasing the mount of metal formerly employed and at the same. time such electrodes contribute to the construction of a more efiicient lamp.
Although several embodiments of the present invention have been shown and described, it is to be understood that still further embodiments thereof may be made without departing from the spirit and scope of the appended claims.
' We claim:
1. A discharge lamp comprising an envelope containing an ionizable medium, a pair of electrodes between which a, discharge occurs upon the application of a potential therebetween, said electrodes being hermetically sealed to the peripheral edge of the extremities of said envelope to dispose them entirely beyond the longitudinal limits of said envelope to substantially prevent sputtering of the electrode material onto the envelope wall and to increase the effective area of the envelope through which radiations are emitted for a given size envelope, and said electrodes forming a terminal readily engageable with a socket with at least one of said electrodes having a recess therein, and an exhaust stem hermetically sealed to the surface of said electrode both within and outside of said recess and fused thereto to substantially close said recess.
2. A discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, each said electrode being disposed at an extremity of said envelope and forming an hermetic seal therewith and constituting terminals for engagement in a socket, a support projecting upwardly from a surface of said electrode, and an electron emissive material carried by said support entirely within the confines of said electrode and forming a reservoir for replenishment of the electron emissive coating on said electrodes during operation of said discharge lamp.
3. A discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with'an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, each said electrode being disposed at an extremity of said enevelope and forming an hermetic seal therewith and constituting terminals for engagement in a socket, a support projecting upwardly from a surface of said electrode, and a piece of thorium metal carried by said support within the confines of said electrode and disposed substantially concentric therewith and constituting a reservoir for replenishment of the electron emissive coatin on said electrodes during operation of said discharge lamp.
4. A discharge lamp comprising an envelope containing an ionizable medium, and a pair of electrodes provided with an electron emissive coating and between which a discharge occurs upon the application of a potential therebetween, and at least one of said electrodes including a support projectin from the wall of said elec trode and a piece of thorium metal carried by said support entirely within the confines of said electrode and substantially concentric therewith and constituting a reservoir for replenishment of the electron emissive coating on said electrodes during operation of said discharge lamp.
DANIEL S. GUSTIN. ALVA L. HERMAN.
US480304A 1943-03-24 1943-03-24 End-cap electrode for discharge lamps Expired - Lifetime US2404057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US480304A US2404057A (en) 1943-03-24 1943-03-24 End-cap electrode for discharge lamps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US480304A US2404057A (en) 1943-03-24 1943-03-24 End-cap electrode for discharge lamps

Publications (1)

Publication Number Publication Date
US2404057A true US2404057A (en) 1946-07-16

Family

ID=23907446

Family Applications (1)

Application Number Title Priority Date Filing Date
US480304A Expired - Lifetime US2404057A (en) 1943-03-24 1943-03-24 End-cap electrode for discharge lamps

Country Status (1)

Country Link
US (1) US2404057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433218A (en) * 1945-06-12 1947-12-23 Herzog Carl Cold cathode fluorescent lamp
US2488716A (en) * 1942-08-13 1949-11-22 Gen Electric Electric high-pressure discharge tube
DE1046773B (en) * 1955-03-31 1958-12-18 Physikalisch Tech Werkstaetten Gas discharge lamp
US2881369A (en) * 1955-03-21 1959-04-07 Pacific Semiconductors Inc Glass sealed crystal rectifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488716A (en) * 1942-08-13 1949-11-22 Gen Electric Electric high-pressure discharge tube
US2433218A (en) * 1945-06-12 1947-12-23 Herzog Carl Cold cathode fluorescent lamp
US2881369A (en) * 1955-03-21 1959-04-07 Pacific Semiconductors Inc Glass sealed crystal rectifier
DE1046773B (en) * 1955-03-31 1958-12-18 Physikalisch Tech Werkstaetten Gas discharge lamp

Similar Documents

Publication Publication Date Title
CA1303117C (en) Arc discharge lamp with ultraviolet radiation starting source
US3121184A (en) Discharge lamp with cathode shields
US2322421A (en) Electric discharge lamp
JPH01134849A (en) Arc discharge lamp with electrodeless ultraviolet starter
US3778662A (en) High intensity fluorescent lamp radiating ionic radiation within the range of 1,600{14 2,300 a.u.
US2530990A (en) Electric discharge device
US3780331A (en) Apparatus and method for eliminating microcracks in alumina ceramic discharge devices
US2765420A (en) Lamp electrode
US2549355A (en) Fluorescent lamp
US2404057A (en) End-cap electrode for discharge lamps
US2438181A (en) Fluorescent and/or cathode glow lamp and method
US2488716A (en) Electric high-pressure discharge tube
US2692347A (en) Metalized stems for low-pressure discharge tubes
US3013175A (en) High output discharge lamp
US2409769A (en) Fluorescent glow lamp
US2479164A (en) Electric glow discharge lamp
US2906905A (en) Fluorescent lamp
US2848641A (en) Vapor electric lamp
US2241345A (en) Electron emissive cathode
US2832912A (en) Electric discharge device
US2164183A (en) Electric lamp
US3521107A (en) Flashtube getter electrode
GB517536A (en) Improvements in and relating to electric lamps
US2080914A (en) Gaseous electric discharge lamp
US3439209A (en) Positive column gas discharge lamp employing an alloy of two metals with impedance-free terminal connections