US2397540A - Ratio circuit - Google Patents
Ratio circuit Download PDFInfo
- Publication number
- US2397540A US2397540A US503304A US50330443A US2397540A US 2397540 A US2397540 A US 2397540A US 503304 A US503304 A US 503304A US 50330443 A US50330443 A US 50330443A US 2397540 A US2397540 A US 2397540A
- Authority
- US
- United States
- Prior art keywords
- voltage
- ratio
- voltages
- time
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/12—Arrangements for performing computing operations, e.g. operational amplifiers
- G06G7/16—Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division
- G06G7/161—Arrangements for performing computing operations, e.g. operational amplifiers for multiplication or division with pulse modulation, e.g. modulation of amplitude, width, frequency, phase or form
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/10—Measuring sum, difference or ratio
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
- G01R27/08—Measuring resistance by measuring both voltage and current
- G01R27/10—Measuring resistance by measuring both voltage and current using two-coil or crossed-coil instruments forming quotient
- G01R27/12—Measuring resistance by measuring both voltage and current using two-coil or crossed-coil instruments forming quotient using hand generators, e.g. meggers
Definitions
- the present invention relates to circuits for measuring the ratio of two voltages.
- An object oi m invention is to provide an improved ratio circuit whi varying voltages.
- a ratio circuit having terminals I, 2 to which are applied the voltages E1, E2 whose ratio is to be determined.
- the terminals E1 are connected across a saw-tooth circuit comprising a resistance 3 and a condenser 4, the condenser being shunted by a discharge device 5 keyed by a pulse generator 6 to short circuit the condenser at intervals determined b the keying pulse repetition rate.
- the condenser and resistance are related to the repetition rate so that the voltage across the condenser starts from zero at the end 01' each keying pulse and increases linearl to a maximum immediately preceding the succeeding keying pulse, thus converting the voltage E1 to a saw-tooth voltage having a magtitude equal to hint.
- the saw-tooth voltage is applied to the control grid 1 of a gaseous discharge device 8 having an anode 9 and a cathode I0 connected in series with resistances II, I2 and a source of constant voltage I3.
- the voltage E2 is connected across a voltage divider I4 having a tap I-5 applying a fraction 162132 of this voltage to the cathode I0.
- A- potentiometer I 5a between the tap I5 and the oathode adjusts the cathode potential to a value such that when both voltages E1 and E2 are zero, the
- the device 8 is on the verge of'firing.
- the net change in bias on the device is, equal to the instantaneous difference of the saw-tooth voltage applied to the grid (kiElt) and the voltage applied to the oathode (kzEz). Since the device 8 is normally nonconducting. it is obvious that, by proper choice of the constants in and 702, for some values of time less than the interval between keying pulses, kiEit will be slightly greater than kzEz and the device 8 will fire due to the net positive change in bias. The time of firing, as apparent from Fig. 2, will be a measure of the ratio of the voltages E1 and E2. Once the device 8 has fired. the
- a device I6 connected across the resistance I2 and the voltage supply I3 and having acontrol grid I1 connected to the keying pulse generator.
- the device I6 is normally biased off and is biased on during each keying pulse, reducing the voltage at terminal I8 below the ionization value.
- the device 8 accordingly conducts only during that part of the interval between keying pulses during which kzEz is equal to or less than kiEit. Since the device 8 when conducting conducts at constant current, an ammeter reading the average current through the device will indicate the ratio of kzEz/lciElt up to the point at which 102% is greater than lciEi.
- the potentiometer lid is adjusted to a value such that the device 8 is on the verge of firing; (2) with a known value of E1 connected to terminals I, and E2 disconnected, the resistance II is adjusted to cause full scale deflection of the ammeter I9; and (3) with a:
- a ratio circuit for measuringthe ratio of two'voltages comprising, a bias controlled de vice, means for converting one of the voltages to be compared to a voltage varying linearly with time and directly with the magnitude of the voltasoasso v ing linearly with time. and directly with age, means for biasing said device in accordance with theinsta'ntaneous diilerence ofsaid time varying voltage and the other voltage to be compared in such a manner that the time said device conducts depends upon the magnitude of said instantaneous diilerence, and means for utilizing the time said deviceconducts to determine the ratio of said two voltages.
- a ratio circuit for measuring the ratio of two voltages comprising, a grid controlled gaseous discharge device normally biased oil, a con stant voltage supply circuit for the device, means for converting one of the voltages to be compared to a voltage varying linearly with time .and' directly with the magnitude of the voltage, means I tude, and means for utilizing the time when the converted voltage and said second voltage have a predetermined relative value as a measure of the ratio of said twoyoltage's.
- a ratio circuit for measuring the ratio oi two voltages comprising, means for converting one of said voltages to a saw-tooth voltage varyinglinearly with time and directly with magnitude, and means responsive to the difference" of said converted voltage and saidsecond voltage for indicating the ratio or said two voltages.
- a ratio circuit for measuring the ratio of two voltages comprising, means for converting one of said voltages to a saw-tooth voltage varying'linearly with time and directly with magni tudefand'means responsive to the time when said i I converted voltage'and said second voltage have a predetermined relative value for indicating the ratio of said two voltages.
- a ratio circuit for measuring the ratio of two voltages comprising, means for. converting one of said voltages to a voltage varying in magnitude in accordance with time and with the lation of said converted voltage to said other volt- Xtion of said converted voltage to said other volt age for determining the age varies with time,-and means responsive to v the time of occurrence of a predetermined relaratio of said voltages.
- ROBERT B DOME- magnimagnitude or said one voltage whereby the re-'
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
April 2, 1946. R. g. DOME 2,397,540
I I RATIO cmcun Filed Sept. 21, 1945 PULSE. GENERATOR INSTANTANEOUS CURRENT THROUG flEV/CE 6 I? AVERAGED OVER A CYCLE BY INTEGRAT/NE FFEC7' 0F AMMETER Z Z I l l Inventor: Robert B. Dome;
His Attorney.
Patented Apr. 2, 19 ,6
5 PATENT FFICE f nA'n'o cmomr Robert B. Dome, Bridgeport, Conn., asslgnor to General Electric Comp New York any, a corporation of- Application September 21, 1943, Serial No. 503,304
6 Claims.
The present invention relates to circuits for measuring the ratio of two voltages.
An object oi m invention is to provide an improved ratio circuit whi varying voltages.
ch will handle rapidly The novel features which I believe to be characteristic of my invention are set forth with particularity in the appended claims. My invention itself, however, both as to its organization and method of operation, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawing in which Fig. l is a circuit diagram and Fig. 2 is a diagram explaining the operation,
Referring to the drawing there is shown a ratio circuit having terminals I, 2 to which are applied the voltages E1, E2 whose ratio is to be determined. The terminals E1 are connected across a saw-tooth circuit comprising a resistance 3 and a condenser 4, the condenser being shunted by a discharge device 5 keyed by a pulse generator 6 to short circuit the condenser at intervals determined b the keying pulse repetition rate. The condenser and resistance are related to the repetition rate so that the voltage across the condenser starts from zero at the end 01' each keying pulse and increases linearl to a maximum immediately preceding the succeeding keying pulse, thus converting the voltage E1 to a saw-tooth voltage having a magtitude equal to hint. The saw-tooth voltage is applied to the control grid 1 of a gaseous discharge device 8 having an anode 9 and a cathode I0 connected in series with resistances II, I2 and a source of constant voltage I3. The voltage E2 is connected across a voltage divider I4 having a tap I-5 applying a fraction 162132 of this voltage to the cathode I0. A- potentiometer I 5a between the tap I5 and the oathode adjusts the cathode potential to a value such that when both voltages E1 and E2 are zero, the
device 8 is on the verge of'firing. When El and E2 have some positive value, the net change in bias on the device is, equal to the instantaneous difference of the saw-tooth voltage applied to the grid (kiElt) and the voltage applied to the oathode (kzEz). Since the device 8 is normally nonconducting. it is obvious that, by proper choice of the constants in and 702, for some values of time less than the interval between keying pulses, kiEit will be slightly greater than kzEz and the device 8 will fire due to the net positive change in bias. The time of firing, as apparent from Fig. 2, will be a measure of the ratio of the voltages E1 and E2. Once the device 8 has fired. the
current through the device is constant and is not subject to control by the grid bias until the current has been reduced below-the ionization value. This is accomplished by a device I6 connected across the resistance I2 and the voltage supply I3 and having acontrol grid I1 connected to the keying pulse generator. The device I6 is normally biased off and is biased on during each keying pulse, reducing the voltage at terminal I8 below the ionization value. The device 8 accordingly conducts only during that part of the interval between keying pulses during which kzEz is equal to or less than kiEit. Since the device 8 when conducting conducts at constant current, an ammeter reading the average current through the device will indicate the ratio of kzEz/lciElt up to the point at which 102% is greater than lciEi.
From this point on, there is an ambiguity since IczEz is never less than k1E1t and the device 8 is always biased oil. This ambiguity can be avoided by interchanging the voltages, i. e., by connecting E2 to terminals I and E1 to terminals 2. lower diagram of Fig. 2 shows the instantaneous current through device 8 by the solid line block and the average of this block over a cycle by the dashed line. Due to the mass of the meter movement, an ammeter will, by its inherent integrating properties, give a reading proportional to the dashed line.
In the use of the ratio circuit, 1) with both E1 and E2 disconnected, the potentiometer lid is adjusted to a value such that the device 8 is on the verge of firing; (2) with a known value of E1 connected to terminals I, and E2 disconnected, the resistance II is adjusted to cause full scale deflection of the ammeter I9; and (3) with a:
interchanging the voltages to obtain (instead of the ratio E2/ E1) the ratio Ei/Ez.
While I have shown particular embodiments of my invention, it will be understood that many modifications ma be made without departing from the spirit thereof, and I contemplate by the appended claims to cover any such modifications as fall within the true spirit and scope of my invention.
The-
i What I claim as new and desire tolsecure by Letters Patent oi the United States is:
1. A ratio circuit for measuringthe ratio of two'voltages comprising, a bias controlled de vice, means for converting one of the voltages to be compared to a voltage varying linearly with time and directly with the magnitude of the voltasoasso v ing linearly with time. and directly with age, means for biasing said device in accordance with theinsta'ntaneous diilerence ofsaid time varying voltage and the other voltage to be compared in such a manner that the time said device conducts depends upon the magnitude of said instantaneous diilerence, and means for utilizing the time said deviceconducts to determine the ratio of said two voltages. I
2. A ratio circuit for measuring the ratio of two voltages comprising, a grid controlled gaseous discharge device normally biased oil, a con stant voltage supply circuit for the device, means for converting one of the voltages to be compared to a voltage varying linearly with time .and' directly with the magnitude of the voltage, means I tude, and means for utilizing the time when the converted voltage and said second voltage have a predetermined relative value as a measure of the ratio of said twoyoltage's.
4. A ratio circuit for measuring the ratio oi two voltages comprising, means for converting one of said voltages to a saw-tooth voltage varyinglinearly with time and directly with magnitude, and means responsive to the difference" of said converted voltage and saidsecond voltage for indicating the ratio or said two voltages.
1 5. A ratio circuit for measuring the ratio of two voltages comprising, means for converting one of said voltages to a saw-tooth voltage varying'linearly with time and directly with magni tudefand'means responsive to the time when said i I converted voltage'and said second voltage have a predetermined relative value for indicating the ratio of said two voltages. 1 6. A ratio circuit for measuring the ratio of two voltages comprising, means for. converting one of said voltages to a voltage varying in magnitude in accordance with time and with the lation of said converted voltage to said other volt- Xtion of said converted voltage to said other volt age for determining the age varies with time,-and means responsive to v the time of occurrence of a predetermined relaratio of said voltages.
ROBERT B. DOME- magnimagnitude or said one voltage whereby the re-'
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US415815A US2397546A (en) | 1941-10-20 | 1941-10-20 | Camera shutter |
US503304A US2397540A (en) | 1943-09-21 | 1943-09-21 | Ratio circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US503304A US2397540A (en) | 1943-09-21 | 1943-09-21 | Ratio circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
US2397540A true US2397540A (en) | 1946-04-02 |
Family
ID=24001533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US503304A Expired - Lifetime US2397540A (en) | 1941-10-20 | 1943-09-21 | Ratio circuit |
Country Status (1)
Country | Link |
---|---|
US (1) | US2397540A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2473457A (en) * | 1945-08-01 | 1949-06-14 | Owen A Tyson | Potential comparator |
US2544531A (en) * | 1946-09-20 | 1951-03-06 | Hazeltine Research Inc | Relaxation type of electrical measuring system |
US2688728A (en) * | 1951-05-24 | 1954-09-07 | Leeds & Northrup Co | Method and arrangement for measuring schedule deviations |
US2763838A (en) * | 1945-09-14 | 1956-09-18 | Robert A Mcconnell | Circuit for obtaining the ratio of two voltages |
US3024999A (en) * | 1959-02-11 | 1962-03-13 | Jr William J Heacock | Electronic divider |
US3278737A (en) * | 1962-08-03 | 1966-10-11 | Gulton Ind Inc | Quotient circuit |
US3343086A (en) * | 1963-03-20 | 1967-09-19 | Monsanto Co | Capacitive signal comparison circuit |
US3456190A (en) * | 1966-05-23 | 1969-07-15 | Mcdonnell Aircraft Corp | Detector circuit employing signal division means |
FR2475215A1 (en) * | 1980-02-04 | 1981-08-07 | Jaeger | LOGOMETER MEASUREMENT INDICATOR AND ELECTRICAL SENSOR |
-
1943
- 1943-09-21 US US503304A patent/US2397540A/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2473457A (en) * | 1945-08-01 | 1949-06-14 | Owen A Tyson | Potential comparator |
US2763838A (en) * | 1945-09-14 | 1956-09-18 | Robert A Mcconnell | Circuit for obtaining the ratio of two voltages |
US2544531A (en) * | 1946-09-20 | 1951-03-06 | Hazeltine Research Inc | Relaxation type of electrical measuring system |
US2688728A (en) * | 1951-05-24 | 1954-09-07 | Leeds & Northrup Co | Method and arrangement for measuring schedule deviations |
US3024999A (en) * | 1959-02-11 | 1962-03-13 | Jr William J Heacock | Electronic divider |
US3278737A (en) * | 1962-08-03 | 1966-10-11 | Gulton Ind Inc | Quotient circuit |
US3343086A (en) * | 1963-03-20 | 1967-09-19 | Monsanto Co | Capacitive signal comparison circuit |
US3456190A (en) * | 1966-05-23 | 1969-07-15 | Mcdonnell Aircraft Corp | Detector circuit employing signal division means |
FR2475215A1 (en) * | 1980-02-04 | 1981-08-07 | Jaeger | LOGOMETER MEASUREMENT INDICATOR AND ELECTRICAL SENSOR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2924769A (en) | Peak reading circuit | |
US2397540A (en) | Ratio circuit | |
US2878448A (en) | Frequency calibration system | |
US2228367A (en) | Frequency meter | |
US3267375A (en) | System for measuring pulse power levels with a plurality of gate controlled pulse level comparator channels | |
US2842740A (en) | Electronic voltmeters | |
US3414807A (en) | Digital voltmeter employing discharge of a large capacitor in steps by a small capacitor | |
US3079556A (en) | Expanded scale electrical indicating instrument | |
US2377757A (en) | Short time interval meter | |
US2915648A (en) | Frequency sensitive circuit | |
US3024999A (en) | Electronic divider | |
US3732492A (en) | Electric fuel injection tester | |
US2563879A (en) | Time characteristic determination of recurrent signals | |
US2506124A (en) | Circuit arrangement for indicating the duration of electrical pulses | |
US2564829A (en) | Electrical apparatus for measuring the rate of change of an input voltage | |
US2493669A (en) | Modulator | |
US2536022A (en) | Resistance testing device | |
US2511671A (en) | Peak comparator circuit | |
US2494352A (en) | Electronic interval timer | |
US3398366A (en) | Highly accurate frequency measuring circuit | |
US2749510A (en) | Rapidly indicating bridge | |
US2932817A (en) | Electrical remote indicating and repeating systems | |
US2525448A (en) | Phase indicating instrument | |
US2824297A (en) | Automatic scale-changing apparatus | |
US2424312A (en) | Average value voltage measuring device |