US2394018A - Vacuum tube oscillator - Google Patents
Vacuum tube oscillator Download PDFInfo
- Publication number
- US2394018A US2394018A US484794A US48479443A US2394018A US 2394018 A US2394018 A US 2394018A US 484794 A US484794 A US 484794A US 48479443 A US48479443 A US 48479443A US 2394018 A US2394018 A US 2394018A
- Authority
- US
- United States
- Prior art keywords
- circuit
- cathode
- anode
- vacuum tube
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101000703464 Homo sapiens SH3 and multiple ankyrin repeat domains protein 2 Proteins 0.000 description 1
- 102100030680 SH3 and multiple ankyrin repeat domains protein 2 Human genes 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B5/00—Generation of oscillations using amplifier with regenerative feedback from output to input
- H03B5/08—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
- H03B5/10—Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being vacuum tube
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L1/00—Stabilisation of generator output against variations of physical values, e.g. power supply
Definitions
- This invention relates to improvements in vacuum tube oscillators, and more particularly to oscillators of the negative resistance type.
- Vacuum tube oscillators of the negative resistance type have long been known forthe generation of relatively low frequencies, for example, audio frequencies up to about 20,000 cycles. It is also known to use a two-stage resistancecapacitance coupled amplifier of this type with positive and negative feedback together with a ballast resistor in the negative feedback circuit for the purpose of stabilizing the amplitude of the oscillations despite changes in input voltage, variable circuit parameters, supply voltage and Such an oscillator has been Proceedings of the I. R. E. (1939). However, none of these oscillators .are adapted for operation at high frequencies and tests have shown that when it is attempted to produce high frequency oscillations with these known circuits they are extremely unstable.
- a further object of this invention is the provision of a high frequency vacuum tube oscillator which is characterized by a high frequency stability despite wide variations in circuit parameters including fluctuations in anode and cathode supply voltages.
- Fig. 1 is a circuit diagram of a preferred form of high frequency vacuum tube oscillator according to the present invention
- Figs. 2 and 3 are graphs illustrating output voltage and frequency stability with respect to fluctuations in anode and cathode supply voltage according to our present invention.
- Fig. 4 is a partial circuit diagram illustrating a modified illustration of our invention.
- Fig, 1 we have illustrated a two-stage resistance coupled amplifier of generally known principles adapted, in accordance with the present invention to produce stable high frequency oscillations.
- the circuit includes a first vacuum tube l0 preferably of the pentode type coupled to a second amplifier tube l2, preferably of the tetrode type.
- the frequency at which the oscillator is adapted to work is determined by the constants of the tank circuit I4 feeding the control grid of the first tube I0 over the coupling condenser Regeneration is obtained by a first positive feedback circuit leading from the anode of the tube l2 back to the grid of the tube [0 through a condenser [6, while a second negative feedback circuit independent of the first feedback is connected from the anode of the tube [2 to the cathode of the tube ID.
- This second negative feedback circuit includes a main condenser l8 shunted by a variable padding con-' denser 20 by which the phase shiftin the negative feedback circuit can beproperly adjusted and the circuit asav whole correlated with-the constants of the tank circuit l4.
- a device 22 such 'as a resistor having a positive temperature coefficient is connected'in the cathode circuit of the tube l0 and works in conjunction with the negative feedback circuit through condensers l8 and 20 in such'a manner that an increase in the amplitude of oscillations raises the current through the negative feedback circuit and through the device 22, resulting in an increase in resistance of the device 22 and thus increases the inverse feedback effect on the tube 12.
- Increase of feedback decreases the voltage amplification of the amplifier and thus tends to reduce the amplitude of oscillations.
- the frequency will-only increase .02% while fora combined anode and cathode voltage deviation of plus 30%, the frequency deviation is only minus..02%.
- the fre quency deviation is even less, as can be seen-fronr i a resistor or other device 26 having .a-negative temperature coefficient is serially inserted in the negative feedback circuit.
- the remaining ele ments of the circuit, including the tank circuit l4, thecondensers 16, I8 and 20, and the second amplifier, willremain the same as in the form of invention illustrated in Fig. l.
- An oscillator including,.in combination, a tank circuit having apredetermined oscillating frequency, a first electron discharge :device having an anode, a cathode and'a grid, means for connecting one side of said tank circuit to the grid of-said electron discharge device, an amplifieriincluding a second electron discharge device For smallerhaving an anode, a cathode and a grid, an output circuit connected to said second amplifier, said output circuit including a lead common to the other side of said tank circuit and the cathode of said first electron discharge device, meanscoupling the anode of said first electron discharge device to: the grid of the second electron discharge device, a.
- first feedback circuit including a first condenser connected between the anode of said second electron discharge device and the grid of said first electron discharge device, a second feedback circuit independent of said first feedback circuit, including condenser means connected between the anode of said second electron discharge device and the cathode of said first electron discharge device, and resistor means having a predetermined temperature coefficient, connected to said cathode and responsive to changes in the amplitude of oscillations in said amplifier, for
- V which .said last means comprises a resistor havfl ing a positive temperature coefflcient, connected between the junction of the second feedback circuit with the cathode of said first electrondischarge device and said common lead.
- said last means comprises a resistor having, a negative temperature coefiicient, serially connected said second feedback circuit.
- said condenser means in which said condenser means-includes afiXed condenser and a variable padder condenser connected in. shunt therewith'for correlatingsaid second-feedback circuit with said tank circuit.
Landscapes
- Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
- Amplifiers (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE476191D BE476191A (d) | 1943-04-24 | ||
US484794A US2394018A (en) | 1943-04-24 | 1943-04-24 | Vacuum tube oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US484794A US2394018A (en) | 1943-04-24 | 1943-04-24 | Vacuum tube oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
US2394018A true US2394018A (en) | 1946-02-05 |
Family
ID=23925627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US484794A Expired - Lifetime US2394018A (en) | 1943-04-24 | 1943-04-24 | Vacuum tube oscillator |
Country Status (2)
Country | Link |
---|---|
US (1) | US2394018A (d) |
BE (1) | BE476191A (d) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2447248A (en) * | 1944-12-23 | 1948-08-17 | Curtiss Wright Corp | Stabilized oscillator |
US2459842A (en) * | 1944-08-19 | 1949-01-25 | Standard Telephones Cables Ltd | Crystal controlled oscillator |
US2468082A (en) * | 1942-09-12 | 1949-04-26 | Int Standard Electric Corp | Thermistor circuit compensating for supply voltage fluctuations |
US2521158A (en) * | 1946-05-04 | 1950-09-05 | Belmont Radio Corp | Sawtooth current generator |
US2547338A (en) * | 1945-11-21 | 1951-04-03 | Morrison Montford | Square-wave generator |
US2568868A (en) * | 1946-11-15 | 1951-09-25 | Rca Corp | Oscillation generator |
US2586167A (en) * | 1945-07-03 | 1952-02-19 | Us Navy | Oscillator |
US2644924A (en) * | 1949-09-03 | 1953-07-07 | Gen Electric | Frequency modulation system |
US2764643A (en) * | 1954-03-23 | 1956-09-25 | Frank H Mcintosh | Oscillators |
US2807720A (en) * | 1953-01-12 | 1957-09-24 | Asea Ab | Regulated oscillator |
US3437920A (en) * | 1965-09-14 | 1969-04-08 | Norman J Anderson | Transducer circuits with frequency-amplitude control |
-
0
- BE BE476191D patent/BE476191A/xx unknown
-
1943
- 1943-04-24 US US484794A patent/US2394018A/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2468082A (en) * | 1942-09-12 | 1949-04-26 | Int Standard Electric Corp | Thermistor circuit compensating for supply voltage fluctuations |
US2459842A (en) * | 1944-08-19 | 1949-01-25 | Standard Telephones Cables Ltd | Crystal controlled oscillator |
US2447248A (en) * | 1944-12-23 | 1948-08-17 | Curtiss Wright Corp | Stabilized oscillator |
US2586167A (en) * | 1945-07-03 | 1952-02-19 | Us Navy | Oscillator |
US2547338A (en) * | 1945-11-21 | 1951-04-03 | Morrison Montford | Square-wave generator |
US2521158A (en) * | 1946-05-04 | 1950-09-05 | Belmont Radio Corp | Sawtooth current generator |
US2568868A (en) * | 1946-11-15 | 1951-09-25 | Rca Corp | Oscillation generator |
US2644924A (en) * | 1949-09-03 | 1953-07-07 | Gen Electric | Frequency modulation system |
US2807720A (en) * | 1953-01-12 | 1957-09-24 | Asea Ab | Regulated oscillator |
US2764643A (en) * | 1954-03-23 | 1956-09-25 | Frank H Mcintosh | Oscillators |
US3437920A (en) * | 1965-09-14 | 1969-04-08 | Norman J Anderson | Transducer circuits with frequency-amplitude control |
Also Published As
Publication number | Publication date |
---|---|
BE476191A (d) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2394018A (en) | Vacuum tube oscillator | |
US2269417A (en) | Cathode-driven oscillator | |
US2303862A (en) | Oscillation generator and amplifier | |
US2419772A (en) | Pulse generator system | |
US2262149A (en) | Volume control circuit for oscillators | |
US2300271A (en) | Oscillator with stabilized feedback | |
US2568868A (en) | Oscillation generator | |
US2792498A (en) | Stabilized two-stage oscillators | |
US2051936A (en) | Oscillation generator | |
US2373437A (en) | Twin-discharge tube oscillator | |
US2396088A (en) | Negative transconductance device and circuit | |
US2623954A (en) | Electron discharge tube amplifier for signal voltages | |
US2369954A (en) | Crystal oscillator circuit | |
US3728645A (en) | High modulation index oscillator-modulator circuit | |
US2742573A (en) | Crystal controlled oscillators | |
US2642530A (en) | Control apparatus | |
US2960666A (en) | Transistor oscillator with impedance transformation in feedback circuit | |
US2438382A (en) | Oscillation generator | |
US2427491A (en) | Thermionic valve oscillator with positive and negative feedback | |
US2740891A (en) | Oscillator | |
US2573523A (en) | Feedback amplifier | |
US2489327A (en) | Crystal controlled oscillator | |
US2162520A (en) | Constant frequency oscillation generator | |
US2149721A (en) | Thermionic oscillation generator | |
GB721106A (en) | Improvements in or relating to frequency-stabilized oscillator circuit arrangements |