US2379952A - Coaxial impedance element - Google Patents

Coaxial impedance element Download PDF

Info

Publication number
US2379952A
US2379952A US474439A US47443943A US2379952A US 2379952 A US2379952 A US 2379952A US 474439 A US474439 A US 474439A US 47443943 A US47443943 A US 47443943A US 2379952 A US2379952 A US 2379952A
Authority
US
United States
Prior art keywords
coaxial
length
radius
minimum
impedance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US474439A
Inventor
Heedene Albert R D
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Bell Telephone Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bell Telephone Laboratories Inc filed Critical Bell Telephone Laboratories Inc
Priority to US474439A priority Critical patent/US2379952A/en
Application granted granted Critical
Publication of US2379952A publication Critical patent/US2379952A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/202Coaxial filters

Description

. July 1945. A. R. DHE'EDENE 2,379,952
GOAXIAL IMPEDANCE ELEMENT Filed Feb. 2; 1943 INVENTOR By A. R D'HEEDENE ATTORNEY Patented July 10, 1945 UNlTED STATES PATENT OFFICE COAXIAL MPEDANCE ELEMENT Albert R. Dheedene, Lynbrook, N. Y., asslg'nor to Bell Telephone Laboratories, Incorporated, NcwYork, N. Y., a corporation of New York Application February 2, 1943, Serial No. 474,439
Claims. ('Cl. 178-45) reactive impedance elements of the coaxial type.
space required for such a coaxial impedance element is materially reduced by minimizing either the volume, the longitudinal cross-section or the length of the element; depending upon the particular space requirements encountered. Assuming the element is to have a given inductance, its volume will be a minimum when the ratio of the inner radius of the outer conductor to the radius of the inner conductor is 5.8, and
its longitudinal cross-section willbe a minimum when this ratio is 9.2. Also, there is presented a formula involving the inductance, the operating frequency and the dissipation factor, for the required value of this ratio to give the minimum length of element for a given ratio of length to diameter forthe outer conductor.
The nature of the invention will be more fully understood from the following detailed description and by reference to the accompanying drawing, the single 'figure of which shows in perspective a longitudinal cross-section. of a coaxial impedance element to which the invention is applicable. i
The element comprises an outer cylindrical conductor l of inner radius b and coaxial there-' with an innerfconductor 2 of circular cross-section and radius a, separated by the spaced insul'ating rings 3 and 4. The inner conductor 2' may either be solid, as shown, or hollow. The
, element may be used as atwo-terminal impedance by making connections to the outer conductor l and to one end of the inner conductor 2, with the other end either left open-circuited, as shown, or short-circuited, depending upon the type of reactance characteristic desired; The
element may also be used as a four-terminal network by making connections to the outer conductor i and to both ends of the inner conductor 2. Such impedances or networks may be used, for example, to urnish reactances for wave filters and transformers. For disclosures of such uses reference is hereby made to United States Patents 2,149,356, 2,183,123 and 2,284,529 to W. P. Mason, issued, respectively, March 7, 1939, December 12, 1939, and May 26, 1942, and to the article by Mason and Sykes entitled The use of coaxial and balanced transmission linesin filters and wide-band transformers for high radio frequencies, in the Bell System Technical Journal, July, 1937, pages 2'75 to 302.
The length 0 of the coaxial element is preferably so limited that -its 'reactance, as measured between the outer conductor l and one end of the inner conductor 2 with the conductors l and 2 short-circuited at the other end, does not depart greatly fromlinearity with frequency. In practice it is found that this condition obtains for all lengths -c which do not materially exceed an eighth wave-length at the operating frequency ,f.
The required length 0 in inches of a coaxial element to furnish an inductance of L microhenries is given by the formula where k is the ratio of b to a. The inside radius b of-the outer conductor I in inches is given by the formula Q( 1.766 f 10g1o It For any particular element the values of f, L and Q will be fixed. The onlyundetermined factor afiectingthe volume V is, therefore, the ratio It.
' In accordance with the inventiomto save mounting space, It may be so chosen that the volume V will be a minimum. This is done by taking-the first derivative of the right-hand side of Equation (3) withrespect to is, setting this equal to zero and solving for k, which is found to be equal to 5.8. Making R: either larger or smaller than 5.8 will increase the volume V. The required length and radius b are found by substituting this value of k in Equations 1 and 2, and the radius a is found from the expression In some cases space may be more effectively conserved by making the longitudinal crosssection S, instead of the volume V,-a minimum. From Equations 1 and 2 the area S is By following the same procedure as outlined above, it is found that the area S will be a minimum when k is equal to 9.2. Again, the dimensions c, b and a are found from Equations 1, 2 and 4. Although for an absolute minimum area It should be 9.2, departures to either side of this optimum value, if not too great, will not unduly increase the area S. For example, for values of is falling anywhere within the range of 5.5 to 19 the area S will not increase over its minimum value by more than per cent. For values or k falling on the lower side of 9.2 down to 5.8, it will be noted, the volume V is also decreasing, and this range of values is, therefore, of particular importance.
Sometimes it is desired to provide a coaxial element of minimum length 0 consistent with satisfactory performance. As Equation lshows, 0 may be decreased by increasing k. But it is seen from Equation 2 that the radius b becomes larger as k is made larger. One, criterion of satisfactory performance is the ratio R of the length 0 to the radius b. Experience shows that, in general, R should not be permitted to become much less than about 8. However, for any chosen value or R' there may be found a value or k which will result in an element oi! minimum length c. From Equations 1 and 2 0 F"o.01170 Q (6) from which k W i (7) In accordance with the invention, therefore,
the procedure for designing a coaxial element of minimum allowable length c is to choose the permissible value of R, find is from Equation 7, substitute this value of k in Equation 1 to find c, find b from the relation and find a from Equation 4.
What is claimed is:
1. A reactive impedance element comprising a section of coaxial transmission line which oomprises an outer cylindrical conductor and coaxial therewith an inner conductor of circular crosssection, the length of said section of line not materially exceeding an eighth wave-length at the operating frequency and the ratio 01' the inner radius of said outer conductor to the radius of said inner conductor being approximately 5.8.
2. A reactive impedance elementin accordance with claim 1 in which said ratio is equal to 5.8.
US474439A 1943-02-02 1943-02-02 Coaxial impedance element Expired - Lifetime US2379952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US474439A US2379952A (en) 1943-02-02 1943-02-02 Coaxial impedance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US474439A US2379952A (en) 1943-02-02 1943-02-02 Coaxial impedance element

Publications (1)

Publication Number Publication Date
US2379952A true US2379952A (en) 1945-07-10

Family

ID=23883533

Family Applications (1)

Application Number Title Priority Date Filing Date
US474439A Expired - Lifetime US2379952A (en) 1943-02-02 1943-02-02 Coaxial impedance element

Country Status (1)

Country Link
US (1) US2379952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633537A (en) * 1945-12-10 1953-03-31 William R Rambo Coaxial line oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633537A (en) * 1945-12-10 1953-03-31 William R Rambo Coaxial line oscillator

Similar Documents

Publication Publication Date Title
US2294881A (en) High frequency impedance unit
US2851666A (en) Microwave filter with a variable band pass range
US3289117A (en) Surge arrestor utilizing quarter wave stubs
US2406945A (en) Insulator for concentric transmission lines
US3936776A (en) Interspersed double winding helical resonator with connections to cavity
US2379952A (en) Coaxial impedance element
US2762017A (en) Ultrahigh frequency filter
US2641646A (en) Coaxial line filter structure
US2267371A (en) Feeder network
US2552707A (en) High-frequency coaxial coupling device
US2443921A (en) Coupling arrangement
US2149356A (en) Wave transmission network
US2519524A (en) Multiple-tuned wave-selector system
US2677809A (en) Electrical wave filter
US2515061A (en) Radio-frequency filter
US3197720A (en) Transmission line having frequency reject band
US3659232A (en) Transmission line filter
US2521843A (en) Coaxial-type filter
US2597867A (en) High-frequency attenuating device
US2790959A (en) Electric filter circuits
US2557567A (en) Coaxial transmission line filter system
US2751557A (en) Tau-connected stub filters for use on very high frequencies
US2666183A (en) Variable attenuator
US2327485A (en) Broad band antenna
US2624844A (en) Broad band antenna