US2373692A - Loud-speaker - Google Patents

Loud-speaker Download PDF

Info

Publication number
US2373692A
US2373692A US460596A US46059642A US2373692A US 2373692 A US2373692 A US 2373692A US 460596 A US460596 A US 460596A US 46059642 A US46059642 A US 46059642A US 2373692 A US2373692 A US 2373692A
Authority
US
United States
Prior art keywords
horn
diaphragm
throat
speaker
air chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US460596A
Inventor
Paul W Klipsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAY L SMITH
Original Assignee
RAY L SMITH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAY L SMITH filed Critical RAY L SMITH
Priority to US460596A priority Critical patent/US2373692A/en
Application granted granted Critical
Publication of US2373692A publication Critical patent/US2373692A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2861Enclosures comprising vibrating or resonating arrangements using a back-loaded horn
    • H04R1/2865Enclosures comprising vibrating or resonating arrangements using a back-loaded horn for loudspeaker transducers

Definitions

  • the invention relates to and broadly comprehends the subject matter of my copending application, Serial No. 31'l',260 led February 5, 1940, and also my disclosures of "A low frequency horn of small dimensions, Journal of the Acoustical Society of America, Vol. 13, No. 2, pp. 137-144, October, 1941, and "Improved low frequency horn," Journal of the Acoustical Society be included and with high fidelity.
  • the reproducing unit or speaker be of such physical dimensions that the unit may be available for residential use, or for use in other environments where space is relatively liimited.
  • the speaker of the present' invention is designed to fulll the foregoing requirements and is of a size comparable with radio consoles, thus making it suitable for home use. Yet, the speaker is so constructed as to possess adequate power Y capacity that it is suitable for use in largerv rooms such as community centers, theaters, etc.
  • the primary object of the invention is to provide a loud speaker of'small dimensions and capable of reproducing with high fidelity the lower range of frequencies of the audio spectrum.
  • Another object is to provide a loud speaker for reproducing the low frequencies of the audio spectrum without harmonic distortion in the reproduced so-unds.
  • Still another object is to provide an improved loud speaker unit of small dimensions which cooperates with proximate surfaces such as of a room or with other loud speaker units so that a maximum nf fidelity in reproduction is attained with a maximum of eiilciency in the speaker itself and of space occupied by the speaker unit.
  • Another and more specific object is to provide a loud speaker unit capable of large scale sound umts in a corner, arranged in side-by-side relation along a wall or grouped about a point so that sound may be radiated in all directions'thererom.
  • a further object is to provide a, speaker of the class described which minimizes the directional effects in the reproduced sound.
  • Another object is to provide a low frequency loud speaker unit for large-scale sound reproduction utillzling a plurality of driving diaphragms.
  • Fig. 1 is an oblique view, partly in section, showing; one embodiment of the invention
  • Fig. 2 is a horizontal sectional view taken on the line 2-2 in Fig. 3;
  • Fig.v 3 is a vertical sectional view taken on line 3 3 in Fig. 2; s.
  • Fig. 4 is a front elevational view in section
  • Fig. 5 is an oblique view similar to that shown in struction
  • Fig. 6 is a plan view illustrating the manner of using a plurality of loud speakers of the invention for radiating the reproduced sounds throughout an angle oi' 360;
  • Fig. 7 is a plan view similar to that shown in Fig. 6, but showing the use of two units in sideby-side relation operating in cooperation with an adjacent plane surface such as a wall;
  • Fig. 8 shows a vertical sectional side view similar to Fig. 3 illustrating a modified form of construction providing for two driving units;
  • Fig. 9 shows graphically the resistive and reactive components of lmpedanceof aloud speaker constructed in accordance with the invention.
  • Fig. 10 is a graphical showing of the variation of eilciency with frequency in the device of the invention.
  • the device illustrated in the drawings, and as best seen in Figs. 1 and 5 thereof, is adapted to t within a corner comprising three mutually perpendicular surfaces such as the side walls yI and 2 and the floor 3 of a room.
  • 'I'he winglike cover l has edges converging rearwardly at 90 to abut walls l and 2 so that the cabinet, of which the cover forms a part, cooperates with the walls vto form terminal horn sections as indicated at 5 and B in Fig. 2.
  • FIG. 6 is a plan view showing the manner of using :four speakers l0, Il, l2 and I3 resting upon the'oor or other surface, or suspended from the ceiling and arranged about a common point lflso that successive units about the point cooperate to form terminal horn sections and the group functions as a .unit to reproduce and to radiate the reproduced sound throughout a-solid .angle of 2'1r or a hemisphere about the point ill..
  • This arrangement is of particular value where a large volume of sound may be desired without distortion or wherever it is desirable that the reproduced sound be radiated in all directions regardless of volume.
  • Fig. 7 is shown a plan view of an installation in which two units I and i6 are used in cooperation proximate a plane surface ll such as the wall of a room or a panel that permits radiation of the reproduced sound throughout a 1r solid angle.
  • a plane surface ll such as the wall of a room or a panel that permits radiation of the reproduced sound throughout a 1r solid angle.
  • the adiacent horns cooperate to form a portion of the outer horn sections of the units while the surface il at opposite sides of the point i8 cooperate with the respective units to form other portions of the outer horn sections.
  • the illustrated embodiment of one of the units that may be used as-shown in Figs. 6 and 7 comprises a front pane1 ⁇ 20 which extends from the cover 4 to the surface 3 and is of such width that side walls 2l connected thereto and rear- ⁇ Spacers 23 are mounted on the rear face of the r panel and are attached 'to an inner panel 2l phragm I9'.
  • the air chamber serves to oset the mass reactance of the throat.
  • Desired rate of flare beyond the openings 28 and 29 is provided by inwardly extending bailes 35 and 36 secured to the top and bottom respectively cf the speaker cabinet. Beyond these inwardly extending baiies the air passages extend about the rearward edge of the side baiiies 22 and thence outwardly into the horn sections 5 and t. In order that this passage shall have Aa relatively uniform flare, the cabinet includes a rear panel i0 described contemplate that the horns Will be in whose edges are also secured to the wall members 2l.
  • spacers comprise central portions 25 and outwardly converging portions A2B so thatl the spacers and the inner and outer panels 20 and 24 form upwardly and downwardly diverging horn sections for initial conduction of the wave generated by the loud speaker driving unit 21 mounted upon the rear face of the inner panel 24 and comprising a driving mechanism I9 and a driven-diaphragm vI9' of which the peripheral portion of the latter surrounds the opening or horn throat 21' inthe-panel 24.
  • the inner panel 24 terminates at its upper and lower ends at a distance from the top and bottom of the cabinet to provide openings 28 and 29 to the succeeding horn section in'which additional flare is provided.
  • the illustrated unit designed for frequencies from 40 to 400 cycles per second may have a throat area 21 of approximately 50 square inches with a driving unit having a moving system ⁇ weighing between 14'and 18 grams.
  • the remainder of the horn, beyond the openings 28A and 29 dares at such a rate-that the area doubles every 16 inches so that n the nominal cutoff is 4'7 cycles per second.
  • IPositive reactance imposed at frequencies between 200 and 400 cycles per second by the multiple taper is overcome by the negative reactance. .introduced by the air chamber between the dia-- phragm I9 of the driving unit 2l and the throat 21 in the panel 24.
  • the driving unit 21 is mounted on the rear side of the front panel 20' and the rear of the cone or diaphragm I9' faces the horn throat. 'I'he front ofthe cone faces opening in the panel. Surrounding this opening is provided a chamber 46 of a size suitable to oiiset the reactive component of throat impedance.
  • the horn passage in this embodiment extends upwardly and downwardly from the driving unit 21 to passage 28' as indicated by the arrows.46. Thence, the passage extends sidewardly as indicated by arrow 41 and enters between spaced side walls 2l' and 2
  • the proper ar'e within this section of the horn is obtained by the relative spacing of the Walls 2
  • the portion of the air passage just described emerges at its rearmost end into the portion 5 as indicated by the arrow 50.
  • Fig. 8 For sound systems can be delivered by a single' driving diaphragm, the embodiment shown in Fig. 8 may be utilized.
  • Fig. 6 For stadium use of the embodiment shown in Fig. 8, the arrangement of Fig. 6 would quadruple the power handling ability. For aerial suspension (as over the stage in a large arena) a pair of groups shown in Fig. 6 may be stacked to give several hundred watts of power capacity. In each of the arrangements described there is a saving in space compared to existing systems. single unit like that of Fig. 1, designed to reproduce down to 40 cycles, will occupy only about 15 cubic feet compared to 120 cubic feet for the customary theater low frequency horns.
  • the resistive component, curve a, and reactive component, curve b were measured with the diaphragm moving freely except for the air loading provided by the horn and air chambers.
  • the motional impedance is the difference between this measured impedance and the impedance of the voice coil with the diaphragm blocked.
  • the blocked impedance was found by turning off the field supply so that the diaphragm motion was reduced to van imperceptible value.
  • the blocked impedancel is shown in curves c and d; curve c is the resistive component and curve dis the reactive component.
  • the difference between curves a and c is the motional resistance which may be used to determine the eillciency.
  • Front is the surface as seen by an observer in the room facing the speaker housing in the corner.
  • Rearwardly is the direction more remote from the observer that is toward the corner.
  • the "front panel is panel 20 or 20 in Figs. l to 5.
  • Rearwardly would mean generally to the left in Fig. 3 or 8 and obliquely to the right and upwards in Figs. 1 and 5.
  • the working side of the diaphragm means the side facing the hornthroat and the non-Working sidemmeans the side facing awayfrom the throat.
  • multiple taper By multiple taper is meant that the expansion rate of the horn near the throat is more rapid than the remainder of the horn. This is explained in applicants aforementioned article in the Journal of the Acoustical Society of Amer- -ica. 'I'he use of such multiplev taper results in a connector between a. low frequency horn and its driving diaphragm aslexplained by Olson in a paper, A horn consisting of manifold exponential section, Journal of the Society of Motion Picture Engineers, vol. 30, page 551 (1938).
  • the "high frequency taper refers to the rapidly flaring portion near the diaphragm
  • low frequency taper refers to the flare rate of the subsequent larger sections of the horn.
  • the volume of the airchambers is determinedin the applicants aforementioned article (October, 1941).
  • the rear air chamber or that on the non-working side of the diaphragm, for an innite horn, should have a volume of 2.9 times the product of the throat area and the flare rate. Where multiple nare is used, the flare rate in this product is that of the loW frequency part of the horn. For practical horns of finite length this air chamber size should 'ne smaller, of the order of half as large as the theoretical value for an innite horn.
  • the front air chamber, or that between the working side of the diaphragm and the throat, is used to overcome the extra mass reactance due to the multiple taper. The short.
  • This front air chamber should be about half the product of the actual throat area (effective at high frequencies) times the taper rate of the rapidly ilaring connector.
  • the area was 50 square inches
  • the initial taper rate was 8 inches
  • the product was 400.
  • a volume of 250 cubic inches was used.
  • This size air chamber is applicable to the design shown herein.
  • the front panel may be 24 inches in width and 38.
  • the width of the top cover 4 maybe 39 inches.
  • the distance from the panel 20 to the corner formed by the intersection of side walls I and 2 may be 27 inches.
  • the invention comprehends a loud speaker of small size capable of reproducing with high fidelity the lower range of the audio spectrum.
  • a cabinet comprising a front panel, said panel being of a-width to provide open spaces ⁇ between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly of said front panel and having a throat opening therein, side panels extending'convergingly rearwardly of said front and inner panels and spaced from A the proximate surfaces to form outer horn sections therewith, means forming flaring passages between said opening and said' outer horn sections, and a driving unit mounted rearwardly of said opening to reproduce and transmit sound through said opening and the horn sections therebeyond.
  • a cabinet comprising a front panel, said panel being of a width to provide open spaces between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly o f said frontI panel and having a throat opening therein, side panels extending. convergingly rearwardly ofsaid front and inner panelsand spaced from the proximate surfaces to form outer horn sections therewith.
  • a cabinet comprising a frontl panel, said panel being of a width to provide-open spaces between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly of said front panel and having a throat opening there- 65 in, side panels extending convergingly rearwardly of said front and inner panels and spaced from the proximate surfaces to form outer horn sections' therewith, means forming two flaring pas- ⁇ sages between said opening and said outer horn sections, and a driving unit mounted rearwardly of said opening to reproduce and transmit sound through said opening and the horn sections therebeyond, said driving unit including a diaphragm spaced rearwardly fromsaid opening to form an air chamber therebetween, said means also forming a closed air chamber at the non-working side of the ⁇ driving unit whereby the mass reactance an inner panel spaced rearwardly of said front panel and having a throat opening therein, side
  • a cabinet comprising a front panel, a second panel spaced rearwardly therefrom and having a throat opening therein, rear; wardly converging panels attached to said front and second panels adapted with the proximate surfaces to form terminal horn'sections, a cover,
  • barangiies within said cabinet forming a flaring passage from said opening to the terminal horn sections, certain of said bacludes forming an air chamber rearwardly of said second panel, and a. driv the proximate surfaces, baves within the cabinet forming multiple taper horn sections, certain of said bacludes forming -an air chamber within the cabinet, and a driving unit mounted within said chamber and forming a closure, for said opening.
  • InV a horn loudspeaker adapted to be operated in the corner formed by three mutually perpendicular surfaces, a plurality of articless in sealed relation to form a substantially pyramidal air chamber, an aperture in one. of said baffles, said aperture being adapted to be closed by a, vibratile diaphragm, a second plurality of bacludes defining an air column which expands from said aperture and which folds around the said air chamber, and further baservers partially dening a further length of air column, the definition of said further length of air column being completed by said three surfaces when the assembly of bailies is placed in the corner formed by said surfaces.
  • a horn loudspeaker comprising a sealed air chamber defined by baiiies, one of said baiiies being apertured and adapted to support a loudspeaker driving unit with its diaphragm in operating relation to said aperture, additional baboards defining an expanding air column from said .aperture and arranged to fold said air columnA over said air chamber successively in opposite directions, the baflles comprising the last fold being adapted to cooperate with three mutually 'perpendicular surfaces to complete the terminal section of the air column.
  • a horn loudspeaker comprising a sealed air chamber defined by baiies, one of said baiiies being apertured and adapted to support a loudvide open spaces ing said bailles having its largest dimension of the order of V6 to I/r the wave length of the acoustic cut-off of the expanding air column.
  • a loud speaker horn including a cabinet having bailies therein forming an air passage comprising multiple taper horn sections, said air passage having a throat at its smaller end, an'
  • a driving unit including a diaphragm mounted within said enclosure toform an air chamber on the non-working side of the diaphragm, said air chamber having a volume of from one to three times the product of the eiective throat area at low frequencies and the low frequency taper rate.
  • a loud speaker horn including a cabinet having baillesv therein forming an air passa/ge comprising multiple'taper horn sections, said air passage having a throat at its smaller end, an enclosure within the cabinet communicating with said throat, a driving unit including a diaphragm mounted within said enclosure to form an air chamber on the Iworking side of the diaphragm,
  • said air chamber having a volume of approxi-l mately one-half the product of theactual throat area times the taper rate of the portion of the horn proximate the throat.l
  • a cabinet comprising a front panel, rearwardly converging side panels attached to said front panel and adapted with vthe proximate wallsurfaces to form a terminal horn section, a.
  • a cabinet comprising a front panel of a width to provide open spaces between its side edges and the proximate wall surfaces, side panels abutting the side edges of said front panel and extending convergingly rearward therefrom and spaced from the proximate wall surfaces to form outer horn sections therewith, means forming liaring passages between said side panels terminating in the outer sections of the horn at one end and in a horn throat at the other end, an apertured member at the throat termination of said passageways with its aperture communicating with said throat, battles defining an air chamber attached to the apertured member opposite the throat, and a driving unit mounted with its diaphragm closing said aperture.
  • a folded horn loudspeaker comprising an acoustic chamber coupled to one side of vibratile air column coupled to the other side thereof, characterized by an arrangement of baffles dening said air chamber and air column such that the air column is divided and folded over two opposite sides of said air chamber, then folded back over the other two sides, the whole horn being so arranged that when side panels and extending outwardly to abut the f proximate surfaces, a pair of barangly located within the cabinet so that they, together with the front and side panels, comprise an air chamber and a. pair of horn sections which horn sections communicate with said terminal horn sections, throat apertures in each of said diagonal bailles connecting the horn sections with the air chamber, and loud speaker driving units mounted so that their diaphragms close said throat apertures.
  • a cabinet comprising an apertured front panel. said panel being of the width to probetween its side edges and the proximate surfaces, side panels extending convergingly rearward of said front panel and spaced from the proximate surfaces to form outer horn sections therewith, means forming ilaring passages between the aperture and said front panel and said outer horn sections, said aring passages comprising a horn throat terminated by the aperture in said panel, ba'writers deiining an air chamber -in front of the aperture in said front panel and a driving unit mounted so that its diaphragm closes said aperture whereby the nonworking side of said diaphragm is loaded by the air chamber and the Working side of said diaphragm is loaded by the throat of the horn formed rearwardly of said aperture.
  • said structure comprising a vibrating diaphragm, coupled on one side to an air chamber and on the other side to an expanding air column, characterized by baffles dening said acoustic elements and arranged so that the air column rst expands within a substantially unitary structure, and finally expands outside said structure and between said structureand said surfaces, said air column having at least one rate of expansion which is substantially continuous from the diaphragm to the region where it emerges from the mouth formed by the structure and said surfaces, the mouth size, rate of expansion and air chamber size being coordinated pled to an air column with a vibratile diaphragm therebetween, said consumers donnine said air columnbe
  • a horn loudspeaker comprisin a cabinet having an air chamber therein, there being an aperture in -said chamber, a loudspeaker driving unit including a diaphragm mounted in obturating relation with said aperture and forming of the airchamber a sealed acoustic chamber on one side of said diaphragm, and baille means extendina from said aperture outside said chamber and cooperating with three mutually perpendicularsuriaces to form an expanding air column for transmission of vibrations from said diaphragm to the exterior of the cabinet.

Description

April 17, 1945. P. w. KLlPscH LOUD SPEAKER Filed Oct. 3. 194? 2 Sheets-Sheet 1 INVENTOR. BY @j ro/P/vfr April 17, 1945.
LOUD SPEAKER Filed `Oct. 5. 1942 2 Sheets-Sheet 2 ffii/P5 CH' INVENTOR.
l- Patented Apr. 17, 1945 LOUD-SPEAKER Paul W. Klipsch, Hope,
' Pcrcenttoltaylcs Ark., assignor of twenty mith, Houston, Tex.
Application October 3, 1942, No. 460,588 22 Claims. (Cl. 179-1) production by superposition of a plurality of such This invention relates to an acoustical device and more particularly to a sound reproducing device, or loud speaker, for reproducing low irequency sound vibrations with high ildelity.
The invention relates to and broadly comprehends the subject matter of my copending application, Serial No. 31'l',260 led February 5, 1940, and also my disclosures of "A low frequency horn of small dimensions, Journal of the Acoustical Society of America, Vol. 13, No. 2, pp. 137-144, October, 1941, and "Improved low frequency horn," Journal of the Acoustical Society be included and with high fidelity. At the same time it is desirable that the reproducing unit or speaker be of such physical dimensions that the unit may be available for residential use, or for use in other environments where space is relatively liimited.
The speaker of the present' invention is designed to fulll the foregoing requirements and is of a size comparable with radio consoles, thus making it suitable for home use. Yet, the speaker is so constructed as to possess adequate power Y capacity that it is suitable for use in largerv rooms such as community centers, theaters, etc.
The primary object of the invention is to provide a loud speaker of'small dimensions and capable of reproducing with high fidelity the lower range of frequencies of the audio spectrum.
Another object is to provide a loud speaker for reproducing the low frequencies of the audio spectrum without harmonic distortion in the reproduced so-unds.
Still another object is to provide an improved loud speaker unit of small dimensions which cooperates with proximate surfaces such as of a room or with other loud speaker units so that a maximum nf fidelity in reproduction is attained with a maximum of eiilciency in the speaker itself and of space occupied by the speaker unit.
Another and more specific object is to provide a loud speaker unit capable of large scale sound umts in a corner, arranged in side-by-side relation along a wall or grouped about a point so that sound may be radiated in all directions'thererom.
A further object is to provide a, speaker of the class described which minimizes the directional effects in the reproduced sound.
Another object is to provide a low frequency loud speaker unit for large-scale sound reproduction utillzling a plurality of driving diaphragms.
The foregoing objects, together with further and additional objects, will be more fully apparent from the following description considered in connection with the accompanying drawings in which:
Fig. 1 is an oblique view, partly in section, showing; one embodiment of the invention;
Fig. 2 is a horizontal sectional view taken on the line 2-2 in Fig. 3;
Fig.v 3 is a vertical sectional view taken on line 3 3 in Fig. 2; s.
Fig. 4 is a front elevational view in section;
Fig. 5 is an oblique view similar to that shown in struction;
Fig. 6 is a plan view illustrating the manner of using a plurality of loud speakers of the invention for radiating the reproduced sounds throughout an angle oi' 360;
Fig. 7 is a plan view similar to that shown in Fig. 6, but showing the use of two units in sideby-side relation operating in cooperation with an adjacent plane surface such as a wall;
Fig. 8 shows a vertical sectional side view similar to Fig. 3 illustrating a modified form of construction providing for two driving units;
Fig. 9 shows graphically the resistive and reactive components of lmpedanceof aloud speaker constructed in accordance with the invention;
Fig. 10 is a graphical showing of the variation of eilciency with frequency in the device of the invention.
The device illustrated in the drawings, and as best seen in Figs. 1 and 5 thereof, is adapted to t within a corner comprising three mutually perpendicular surfaces such as the side walls yI and 2 and the floor 3 of a room. 'I'he winglike cover l has edges converging rearwardly at 90 to abut walls l and 2 so that the cabinet, of which the cover forms a part, cooperates with the walls vto form terminal horn sections as indicated at 5 and B in Fig. 2.
In view of the general form of structure just u described, and inaccordance with the invention,
Fig. 1, but illustrating a modined form of con a plurality of loud speaker unitsmay be used in cooperative relation in the manner shown in Figs. 6 and 7. Fig. 6 is a plan view showing the manner of using :four speakers l0, Il, l2 and I3 resting upon the'oor or other surface, or suspended from the ceiling and arranged about a common point lflso that successive units about the point cooperate to form terminal horn sections and the group functions as a .unit to reproduce and to radiate the reproduced sound throughout a-solid .angle of 2'1r or a hemisphere about the point ill.. This arrangement is of particular value where a large volume of sound may be desired without distortion or wherever it is desirable that the reproduced sound be radiated in all directions regardless of volume.
In Fig. 7 is shown a plan view of an installation in whichtwo units I and i6 are used in cooperation proximate a plane surface ll such as the wall of a room or a panel that permits radiation of the reproduced sound throughout a 1r solid angle. In this arrangement the adiacent horns cooperate to form a portion of the outer horn sections of the units while the surface il at opposite sides of the point i8 cooperate with the respective units to form other portions of the outer horn sections.
It should be noted that the arrangements just proximity'to a iioor and/or wall o r other reflecting surface. ToA provide for spherical radiation (4 1r solid angle) in the absence of any reflecting surface, the arrangement of plan view of Fig. 6 may be used, and a second set of four; units stacked on top of the first four to provide the necessary acoustical mouth impedance which would have been furnished by the mirror image of the single set of four units in proximity to the wall or door.
Referring more specifically to Figs. 1 t0 4, inelusive, the illustrated embodiment of one of the units that may be used as-shown in Figs. 6 and 7 comprises a front pane1`20 which extends from the cover 4 to the surface 3 and is of such width that side walls 2l connected thereto and rear-` Spacers 23 are mounted on the rear face of the r panel and are attached 'to an inner panel 2l phragm I9'. As will more fully appear. the air chamber serves to oset the mass reactance of the throat.
Desired rate of flare beyond the openings 28 and 29 is provided by inwardly extending bailes 35 and 36 secured to the top and bottom respectively cf the speaker cabinet. Beyond these inwardly extending baiies the air passages extend about the rearward edge of the side baiiies 22 and thence outwardly into the horn sections 5 and t. In order that this passage shall have Aa relatively uniform flare, the cabinet includes a rear panel i0 described contemplate that the horns Will be in whose edges are also secured to the wall members 2l. These spacers comprise central portions 25 and outwardly converging portions A2B so thatl the spacers and the inner and outer panels 20 and 24 form upwardly and downwardly diverging horn sections for initial conduction of the wave generated by the loud speaker driving unit 21 mounted upon the rear face of the inner panel 24 and comprising a driving mechanism I9 and a driven-diaphragm vI9' of which the peripheral portion of the latter surrounds the opening or horn throat 21' inthe-panel 24.
The inner panel 24 terminates at its upper and lower ends at a distance from the top and bottom of the cabinet to provide openings 28 and 29 to the succeeding horn section in'which additional flare is provided.
Extending rearwardly from the upper and lower edges of the inner panel 24 are rearwardly converging bailles 30 and 3| which join at their side edges with converging side panels 22 (Fig. 2) to form' an enclosure 32 for the driving unit 21. This structure serves not only to form a location for the driving unit within thejspeaker, but also provides an air chamber rearwardly of the diaextending from the top to the bottom thereof at a desired distance rearwardly from the edges of side bafes 22. To assist in providing adequate support for the bames 22 and the rear panel it and hence avoid undesirable vibration thereof and, as well, to enhance distribution of the reproduced sound, horizontal baiiies li, 62 and i3 are attached to rear panel and to the converging side baffles 22.'
By way of illustration, but not in a limiting sense, the illustrated unit designed for frequencies from 40 to 400 cycles per second may have a throat area 21 of approximately 50 square inches with a driving unit having a moving system` weighing between 14'and 18 grams. The initial taper ofthe horn area, between front panel 20 and inner panel 2) and above and below opening 27, doubles in a length of about eight inches, corresponding to a cut-oi of approximately 100 cycles per second. The remainder of the horn, beyond the openings 28A and 29 dares at such a rate-that the area doubles every 16 inches so that n the nominal cutoff is 4'7 cycles per second. IPositive reactance imposed at frequencies between 200 and 400 cycles per second by the multiple taper is overcome by the negative reactance. .introduced by the air chamber between the dia-- phragm I9 of the driving unit 2l and the throat 21 in the panel 24.
In the modified lconstruction shown in Fig. 5 the driving unit 21 is mounted on the rear side of the front panel 20' and the rear of the cone or diaphragm I9' faces the horn throat. 'I'he front ofthe cone faces opening in the panel. Surrounding this opening is provided a chamber 46 of a size suitable to oiiset the reactive component of throat impedance.
The horn passage in this embodiment extends upwardly and downwardly from the driving unit 21 to passage 28' as indicated by the arrows.46. Thence, the passage extends sidewardly as indicated by arrow 41 and enters between spaced side walls 2l' and 2|". The proper ar'e within this section of the horn is obtained by the relative spacing of the Walls 2|' and 2l" and suitable diverging spacers 48 and 49 therebetween. The portion of the air passage just described emerges at its rearmost end into the portion 5 as indicated by the arrow 50.
For sound systems can be delivered by a single' driving diaphragm, the embodiment shown in Fig. 8 may be utilized.
requiring more power than' asvaeoa 5 which reference has been made. By grouping such units as in Fig. 7, the power handling capacity of four driving units can be achieved.
For stadium use of the embodiment shown in Fig. 8, the arrangement of Fig. 6 would quadruple the power handling ability. For aerial suspension (as over the stage in a large arena) a pair of groups shown in Fig. 6 may be stacked to give several hundred watts of power capacity. In each of the arrangements described there is a saving in space compared to existing systems. single unit like that of Fig. 1, designed to reproduce down to 40 cycles, will occupy only about 15 cubic feet compared to 120 cubic feet for the customary theater low frequency horns.
In a loud speaker as depicted in Figs. 1 to 4 and utlizing a. 12" driving unit with about 1000 cm. Y
of voice coil conductor operating in a eld of approximately 13,000'gausses, the voice coil impedance was measured with a unity-ratio impedance bridge. 'I'he impedance at various frequencies is shown in Fig. 9.
The resistive component, curve a, and reactive component, curve b, were measured with the diaphragm moving freely except for the air loading provided by the horn and air chambers. The motional impedance is the difference between this measured impedance and the impedance of the voice coil with the diaphragm blocked. The blocked impedance was found by turning off the field supply so that the diaphragm motion was reduced to van imperceptible value. The blocked impedancel is shown in curves c and d; curve c is the resistive component and curve dis the reactive component. Thus the difference between curves a and c is the motional resistance which may be used to determine the eillciency. ,Probably the best method of computing efficiency is that offered by Bostwick (Journal of the Acoustical Society of America, vol. 2, page 243, 1930). Using the measured impedances and the Bostwick equation, the efficiency was computed and is shown in Fig. 10.
The efficiency was also computed from the horn dimensions and the constants of the driving unit,
and shown in applicants article in Journal of the Acoustical Society of America, vol. 13, No. 2, page 137 (October 1941) in Fig. 8 of that article. 'I'he differences between the efliciencies computed from the measured data and computed from the horn dimensions are of little cr no practical signicance. The article entitled, .fImproved low frequency horn in Journal of the Acoustical Society of America, to which reference has already been made, describes some of the theoretical aspects of the speaker unit, together with explanations of minor discrepancies between theoretical and actual performance.
For the purpose of simplicity in the specification and claims, the terms, front and rearwardly are intended to have the following meanings: Front is the surface as seen by an observer in the room facing the speaker housing in the corner. Rearwardly is the direction more remote from the observer that is toward the corner. Thus, the "front panel is panel 20 or 20 in Figs. l to 5. Rearwardly would mean generally to the left in Fig. 3 or 8 and obliquely to the right and upwards in Figs. 1 and 5. Also, the working side of the diaphragm means the side facing the hornthroat and the non-Working sidemmeans the side facing awayfrom the throat.
By multiple taper is meant that the expansion rate of the horn near the throat is more rapid than the remainder of the horn. This is explained in applicants aforementioned article in the Journal of the Acoustical Society of Amer- -ica. 'I'he use of such multiplev taper results in a connector between a. low frequency horn and its driving diaphragm aslexplained by Olson in a paper, A horn consisting of manifold exponential section, Journal of the Society of Motion Picture Engineers, vol. 30, page 551 (1938). Thus, where different tapers are referred to, the "high frequency taper refers to the rapidly flaring portion near the diaphragm, and"low frequency taper refers to the flare rate of the subsequent larger sections of the horn.
The volume of the airchambers is determinedin the applicants aforementioned article (October, 1941). The rear air chamber or that on the non-working side of the diaphragm, for an innite horn, should have a volume of 2.9 times the product of the throat area and the flare rate. Where multiple nare is used, the flare rate in this product is that of the loW frequency part of the horn. For practical horns of finite length this air chamber size should 'ne smaller, of the order of half as large as the theoretical value for an innite horn. The front air chamber, or that between the working side of the diaphragm and the throat, is used to overcome the extra mass reactance due to the multiple taper. The short. rapidly flaring, initial horn section introduces a mass reactance` in the higher frequency range. This front air chamber should be about half the product of the actual throat area (effective at high frequencies) times the taper rate of the rapidly ilaring connector. Thus, for the horn as constructed, the area was 50 square inches, the initial taper rate was 8 inches, and the product was 400. A volume of 250 cubic inches was used.
This size air chamber is applicable to the design shown herein.
For a speaker unit with a wider range of frequencies the 'general requirement for a front air chamber is that its reactance should be roughly equal numerically to the throat impedance and the diaphragm mass reactance at the highest frequency which the horn must transmit. This is explained in Olsons Elements of Acoustical Engineering, Van Nostrand 1940. A
Elsewhere herein have been given certain dimensions. For the purpose of further showing the overall size of the speaker giving results shown in Figs. 9 and 10, and hence further illustrating the advantages of the invention, the following additional dimensions are given: In Fig. l
the front panel may be 24 inches in width and 38.
inches in height. The width of the top cover 4 maybe 39 inches. The distance from the panel 20 to the corner formed by the intersection of side walls I and 2 may be 27 inches.
If 30 cycles is taken as the effective cut-off (Fig. 10), the longest wave length is about 440 inches. Hence, a speaker having the approximate dimensions just indicated has a maximum dimension-that is of the order of 9i; of awave length. This condition may be achieved by the present invention and with a minimum loss in delity of the low frequency tones approximate the cut-off frequency.
Naturally, the specific dimensions given are for illustration only, and should not be interpreted as limitations. l
Broadly, the invention comprehends a loud speaker of small size capable of reproducing with high fidelity the lower range of the audio spectrum.
What is claimed is:
1. In a horn type loud speaker wherein proximate surfaces cooperate 'to form horn portions of the speaker, a cabinet comprising a front panel, said panel being of a-width to provide open spaces `between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly of said front panel and having a throat opening therein, side panels extending'convergingly rearwardly of said front and inner panels and spaced from A the proximate surfaces to form outer horn sections therewith, means forming flaring passages between said opening and said' outer horn sections, and a driving unit mounted rearwardly of said opening to reproduce and transmit sound through said opening and the horn sections therebeyond.
2. In a horn type loud speaker wherein proximate surfaces cooperate to form horn portions ofthe speaker, a cabinet comprising a front panel, said panel being of a width to provide open spaces between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly o f said frontI panel and having a throat opening therein, side panels extending. convergingly rearwardly ofsaid front and inner panelsand spaced from the proximate surfaces to form outer horn sections therewith. means forming flaring passages between said opening and said outer horn sections, and a driving unit mounted rearwardly of said opening to reproduce and transmit'l sound through said opening and the horn sections d3 therebeyond, said driving unit including a diaphragm spaced rearwardly from said opening to form an air chamber therebetween.
3. In a horn type loud speaker wherein proximate surfaces cooperate to form horn portions of the speaker, a cabinet comprising a frontl panel, said panel being of a width to provide-open spaces between its side edges and the proximate surfaces, a cover, an inner panel spaced rearwardly of said front panel and having a throat opening there- 65 in, side panels extending convergingly rearwardly of said front and inner panels and spaced from the proximate surfaces to form outer horn sections' therewith, means forming two flaring pas- `sages between said opening and said outer horn sections, and a driving unit mounted rearwardly of said opening to reproduce and transmit sound through said opening and the horn sections therebeyond, said driving unit including a diaphragm spaced rearwardly fromsaid opening to form an air chamber therebetween, said means also forming a closed air chamber at the non-working side of the` driving unit whereby the mass reactance an inner panel spaced rearwardly of said front panel and having a throat opening therein, side panels extending convergingly rearwardly of said front and inner panels and spaced from the proximate surfaces to form outer horn sections,said .cover extending sidewardly beyond said side panels to form one side of said outer horn section, means forming flaring passages between said opening and said outer horn sections, and a driving unit including a diaphragm extending rearwardly therefrom to form an air chamber between the diaphragm and said throat opening, said means including baiiies cooperating with said diaphragm to form a closed air chamber at the side thereof opposite said throat.
5. In a, horn type loud speaker wherein proximate surfaces cooperate to form horn portions of the speaker, a cabinet comprising a front panel, a second panel spaced rearwardly therefrom and having a throat opening therein, rear; wardly converging panels attached to said front and second panels adapted with the proximate surfaces to form terminal horn'sections, a cover,
baiiies within said cabinet forming a flaring passage from said opening to the terminal horn sections, certain of said baiiles forming an air chamber rearwardly of said second panel, and a. driv the proximate surfaces, baiiles within the cabinet forming multiple taper horn sections, certain of said baiiles forming -an air chamber within the cabinet, and a driving unit mounted within said chamber and forming a closure, for said opening.
.7. InV a horn loudspeaker adapted to be operated in the corner formed by three mutually perpendicular surfaces, a plurality of baies in sealed relation to form a substantially pyramidal air chamber, an aperture in one. of said baffles, said aperture being adapted to be closed by a, vibratile diaphragm, a second plurality of baiiles defining an air column which expands from said aperture and which folds around the said air chamber, and further baiiles partially dening a further length of air column, the definition of said further length of air column being completed by said three surfaces when the assembly of bailies is placed in the corner formed by said surfaces.
8. A horn loudspeaker comprising a sealed air chamber defined by baiiies, one of said baiiies being apertured and adapted to support a loudspeaker driving unit with its diaphragm in operating relation to said aperture, additional baiiles defining an expanding air column from said .aperture and arranged to fold said air columnA over said air chamber successively in opposite directions, the baflles comprising the last fold being adapted to cooperate with three mutually 'perpendicular surfaces to complete the terminal section of the air column.
9. A horn loudspeaker comprising a sealed air chamber defined by baiies, one of said baiiies being apertured and adapted to support a loudvide open spaces ing said bailles having its largest dimension of the order of V6 to I/r the wave length of the acoustic cut-off of the expanding air column.
10. A loud speaker horn including a cabinet having bailies therein forming an air passage comprising multiple taper horn sections, said air passage having a throat at its smaller end, an'
enclosure within the cabinet communicating with said throat, a driving unit including a diaphragm mounted within said enclosure toform an air chamber on the non-working side of the diaphragm, said air chamber having a volume of from one to three times the product of the eiective throat area at low frequencies and the low frequency taper rate.
11. A loud speaker horn including a cabinet having baillesv therein forming an air passa/ge comprising multiple'taper horn sections, said air passage having a throat at its smaller end, an enclosure within the cabinet communicating with said throat, a driving unit including a diaphragm mounted within said enclosure to form an air chamber on the Iworking side of the diaphragm,
said air chamber having a volume of approxi-l mately one-half the product of theactual throat area times the taper rate of the portion of the horn proximate the throat.l
i2. In a horn type loud speaker wherein proximate wall surfaces cooperate to form horn portions of the speaker, a cabinet comprising a front panel, rearwardly converging side panels attached to said front panel and adapted with vthe proximate wallsurfaces to form a terminal horn section, a. cover abutting an end of said front and said f diaphragm and an mate wall surfaces cooperate to form horn portions of the speaker, a cabinet comprising a front panel of a width to provide open spaces between its side edges and the proximate wall surfaces, side panels abutting the side edges of said front panel and extending convergingly rearward therefrom and spaced from the proximate wall surfaces to form outer horn sections therewith, means forming liaring passages between said side panels terminating in the outer sections of the horn at one end and in a horn throat at the other end, an apertured member at the throat termination of said passageways with its aperture communicating with said throat, baiiles defining an air chamber attached to the apertured member opposite the throat, and a driving unit mounted with its diaphragm closing said aperture.
15. 'Ihe combination comprising a pair of hom units in accordance with claim 14, arranged side by side in mutual abutting relation and in abutting relation with a proximate plane surface whereby the reproduced sound is radiated into a 1r solid angle.
16. The combination comprising a cluster of four horn units in accordance with claim 14, arranged in symmetrical abutting arrangement for radiation into a 2 zr solid angle.
17. The combination comprising a cluster of eight horn units in accordance with claim 14, one set of four units being superposed upon the other set of four units, for spherical radiation or radiation into a 4 1r solid angle. f
18. A folded horn loudspeaker comprising an acoustic chamber coupled to one side of vibratile air column coupled to the other side thereof, characterized by an arrangement of baffles dening said air chamber and air column such that the air column is divided and folded over two opposite sides of said air chamber, then folded back over the other two sides, the whole horn being so arranged that when side panels and extending outwardly to abut the f proximate surfaces, a pair of baiiles diagonally located within the cabinet so that they, together with the front and side panels, denne an air chamber and a. pair of horn sections which horn sections communicate with said terminal horn sections, throat apertures in each of said diagonal bailles connecting the horn sections with the air chamber, and loud speaker driving units mounted so that their diaphragms close said throat apertures.
13. In a horn type loud speaker wherein proximate surfaces cooperate to form horn portions of the speaker, a cabinet comprising an apertured front panel. said panel being of the width to probetween its side edges and the proximate surfaces, side panels extending convergingly rearward of said front panel and spaced from the proximate surfaces to form outer horn sections therewith, means forming ilaring passages between the aperture and said front panel and said outer horn sections, said aring passages comprising a horn throat terminated by the aperture in said panel, ba'iiles deiining an air chamber -in front of the aperture in said front panel and a driving unit mounted so that its diaphragm closes said aperture whereby the nonworking side of said diaphragm is loaded by the air chamber and the Working side of said diaphragm is loaded by the throat of the horn formed rearwardly of said aperture.
14. In a horn type loud speaker wherein proxioperated in a corner formed by three mutually perpendicular wall surfaces the last fold consists of two air columns defined by the recited structure and by said surfaces. l
19. A horn loudspeaker structure of insuicient size to radiate efllciently the longest wave length to be propagated but adapted to be operated in the corner formed by three mutually perpendicular surfaces whereby the reilections from said surfaces produce images which, together with the structure, form a radiator of sufficient size for eicient radiation, said structure comprising a vibrating diaphragm, coupled on one side to an air chamber and on the other side to an expanding air column, characterized by baffles dening said acoustic elements and arranged so that the air column rst expands within a substantially unitary structure, and finally expands outside said structure and between said structureand said surfaces, said air column having at least one rate of expansion which is substantially continuous from the diaphragm to the region where it emerges from the mouth formed by the structure and said surfaces, the mouth size, rate of expansion and air chamber size being coordinated pled to an air column with a vibratile diaphragm therebetween, said haines donnine said air columnbeins'arranaedtocontainapartoftheair column within the unitary structure and the remainder of the air column external thereto, the t definition of the said air-column remainder bein! adapted to be completed bythree mutually perpendicular surfaces when the dened structure is operated in the corner termed by said surfaces.
22. A horn loudspeaker comprisin a cabinet having an air chamber therein, there being an aperture in -said chamber, a loudspeaker driving unit including a diaphragm mounted in obturating relation with said aperture and forming of the airchamber a sealed acoustic chamber on one side of said diaphragm, and baille means extendina from said aperture outside said chamber and cooperating with three mutually perpendicularsuriaces to form an expanding air column for transmission of vibrations from said diaphragm to the exterior of the cabinet.
PAUL W. miIPsCH.
US460596A 1942-10-03 1942-10-03 Loud-speaker Expired - Lifetime US2373692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US460596A US2373692A (en) 1942-10-03 1942-10-03 Loud-speaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US460596A US2373692A (en) 1942-10-03 1942-10-03 Loud-speaker

Publications (1)

Publication Number Publication Date
US2373692A true US2373692A (en) 1945-04-17

Family

ID=23829343

Family Applications (1)

Application Number Title Priority Date Filing Date
US460596A Expired - Lifetime US2373692A (en) 1942-10-03 1942-10-03 Loud-speaker

Country Status (1)

Country Link
US (1) US2373692A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491982A (en) * 1946-09-12 1949-12-20 Stanley M Kincart Reflex type loud-speaker cabinet
US2544742A (en) * 1946-12-31 1951-03-13 Vibra Sonic Inc Cubic loud-speaker cabinet
US2623606A (en) * 1948-06-30 1952-12-30 Corke Alfred James Sound reproduction apparatus
US2632055A (en) * 1949-04-18 1953-03-17 John E Parker Loud speaker system
US2646851A (en) * 1947-09-10 1953-07-28 Int Standard Electric Corp Loud-speaker baffle with elongated aperture for the egress of sound
US2694462A (en) * 1951-09-19 1954-11-16 Robbins Frank Acoustic system for loud-speakers
US2694463A (en) * 1952-04-07 1954-11-16 Robbins Frank Acoustic system for loud-speakers
US2731101A (en) * 1952-06-06 1956-01-17 Paul W Klipsch Loud speaker
US2754926A (en) * 1954-11-26 1956-07-17 Asa M Stackhouse Corner horn
US2787332A (en) * 1952-09-06 1957-04-02 Norman C Fulmer Loud-speaker system
US2816619A (en) * 1951-12-04 1957-12-17 John E Karlson Acoustic transducers
US2819772A (en) * 1954-12-14 1958-01-14 Lab Of Electronic Engineering Wide range loudspeaker
US2979149A (en) * 1953-10-02 1961-04-11 Carlsson Stig Loudspeaker apparatus
US2994399A (en) * 1958-07-17 1961-08-01 Samuel P Zimmerman Loud speaker system
US3032137A (en) * 1957-09-03 1962-05-01 Carl E Grebe Folded speaker enclosure
US3912866A (en) * 1974-01-30 1975-10-14 Showsound Inc Folded bass horn speaker
US4031318A (en) * 1975-11-21 1977-06-21 Innovative Electronics, Inc. High fidelity loudspeaker system
US4171734A (en) * 1977-11-10 1979-10-23 Beta Sound, Incorporated Exponential horn speaker
EP0217278A2 (en) * 1985-09-26 1987-04-08 Mario Curth Arrangement of a bass loudspeaker with a horn
US4790408A (en) * 1988-01-25 1988-12-13 Adair John F Coiled exponential bass/midrange horn loudspeakers
US5266752A (en) * 1992-12-14 1993-11-30 Cussans Rick C Reflex folded horn speaker enclosure
US20080302595A1 (en) * 2007-06-08 2008-12-11 Moore Dana A Horizontally folded reflex-ported bass horn enclosure
US20090065293A1 (en) * 2007-09-12 2009-03-12 Moore Dana A Convertible folded horn enclosure with improved compactness
US8064627B2 (en) 2007-10-22 2011-11-22 David Maeshiba Acoustic system

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2491982A (en) * 1946-09-12 1949-12-20 Stanley M Kincart Reflex type loud-speaker cabinet
US2544742A (en) * 1946-12-31 1951-03-13 Vibra Sonic Inc Cubic loud-speaker cabinet
US2646851A (en) * 1947-09-10 1953-07-28 Int Standard Electric Corp Loud-speaker baffle with elongated aperture for the egress of sound
US2623606A (en) * 1948-06-30 1952-12-30 Corke Alfred James Sound reproduction apparatus
US2632055A (en) * 1949-04-18 1953-03-17 John E Parker Loud speaker system
US2694462A (en) * 1951-09-19 1954-11-16 Robbins Frank Acoustic system for loud-speakers
US2816619A (en) * 1951-12-04 1957-12-17 John E Karlson Acoustic transducers
US2694463A (en) * 1952-04-07 1954-11-16 Robbins Frank Acoustic system for loud-speakers
US2731101A (en) * 1952-06-06 1956-01-17 Paul W Klipsch Loud speaker
US2787332A (en) * 1952-09-06 1957-04-02 Norman C Fulmer Loud-speaker system
US2979149A (en) * 1953-10-02 1961-04-11 Carlsson Stig Loudspeaker apparatus
US2754926A (en) * 1954-11-26 1956-07-17 Asa M Stackhouse Corner horn
US2819772A (en) * 1954-12-14 1958-01-14 Lab Of Electronic Engineering Wide range loudspeaker
US3032137A (en) * 1957-09-03 1962-05-01 Carl E Grebe Folded speaker enclosure
US2994399A (en) * 1958-07-17 1961-08-01 Samuel P Zimmerman Loud speaker system
US3912866A (en) * 1974-01-30 1975-10-14 Showsound Inc Folded bass horn speaker
US4031318A (en) * 1975-11-21 1977-06-21 Innovative Electronics, Inc. High fidelity loudspeaker system
US4171734A (en) * 1977-11-10 1979-10-23 Beta Sound, Incorporated Exponential horn speaker
EP0217278A3 (en) * 1985-09-26 1989-01-04 Mario Curth Arrangement of a bass loudspeaker with a horn
EP0217278A2 (en) * 1985-09-26 1987-04-08 Mario Curth Arrangement of a bass loudspeaker with a horn
US4790408A (en) * 1988-01-25 1988-12-13 Adair John F Coiled exponential bass/midrange horn loudspeakers
US5266752A (en) * 1992-12-14 1993-11-30 Cussans Rick C Reflex folded horn speaker enclosure
WO1994014305A1 (en) * 1992-12-14 1994-06-23 Cussans Rick C Reflex folded horn speaker enclosure
US20080302595A1 (en) * 2007-06-08 2008-12-11 Moore Dana A Horizontally folded reflex-ported bass horn enclosure
US7520368B2 (en) * 2007-06-08 2009-04-21 Moore Dana A Horizontally folded reflex-ported bass horn enclosure
US20090065293A1 (en) * 2007-09-12 2009-03-12 Moore Dana A Convertible folded horn enclosure with improved compactness
US7513332B2 (en) * 2007-09-12 2009-04-07 Moore Dana A Convertible folded horn enclosure with improved compactness
US8064627B2 (en) 2007-10-22 2011-11-22 David Maeshiba Acoustic system
US20120061174A1 (en) * 2007-10-22 2012-03-15 David Maeshiba Acoustic system

Similar Documents

Publication Publication Date Title
US2373692A (en) Loud-speaker
US2310243A (en) Horn for loud-speaker
US3976838A (en) High fidelity sound reproduction system
US1943499A (en) Sound amplifier
US4969196A (en) Speaker and horn array
US3138667A (en) Loudspeaker system
US4031318A (en) High fidelity loudspeaker system
US2224919A (en) Loud-speaker
CN105407431B (en) The loudspeaker of direction behavior and reduced acoustic interference with improvement
US4790408A (en) Coiled exponential bass/midrange horn loudspeakers
US6343134B1 (en) Loudspeaker and horn with an additional transducer
US3329235A (en) Loudspeaker system
US3918551A (en) Speaker system
US3356179A (en) High fidelity speaker enclosure
JPH02260899A (en) Nondirectional acoustic transducer and speaker system
US2915588A (en) Pressure wave generation
US5875255A (en) High power electroacoustic speaker system having wide band frequency response
US4593784A (en) Loudspeaker enclosure
US2986229A (en) Loudspeaker enclosures
US6038326A (en) Loudspeaker and horn with an additional transducer
US3028927A (en) Dual coaxial speaker
US2731101A (en) Loud speaker
US4083426A (en) Loud speaker apparatus
US3892288A (en) Speaker enclosure
US3842203A (en) Public address system with horn speakers arrayed around and facing inward toward a common point