US2362816A - Electrical discharge device - Google Patents
Electrical discharge device Download PDFInfo
- Publication number
- US2362816A US2362816A US483157A US48315743A US2362816A US 2362816 A US2362816 A US 2362816A US 483157 A US483157 A US 483157A US 48315743 A US48315743 A US 48315743A US 2362816 A US2362816 A US 2362816A
- Authority
- US
- United States
- Prior art keywords
- discharge
- gas
- cathode
- electrode
- tubular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 208000028659 discharge Diseases 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 7
- 238000007789 sealing Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000012809 cooling fluid Substances 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- QVRVXSZKCXFBTE-UHFFFAOYSA-N n-[4-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)butyl]-2-(2-fluoroethoxy)-5-methylbenzamide Chemical compound C1C=2C=C(OC)C(OC)=CC=2CCN1CCCCNC(=O)C1=CC(C)=CC=C1OCCF QVRVXSZKCXFBTE-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21H—MAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
- B21H3/00—Making helical bodies or bodies having parts of helical shape
- B21H3/02—Making helical bodies or bodies having parts of helical shape external screw-threads ; Making dies for thread rolling
- B21H3/06—Making by means of profiled members other than rolls, e.g. reciprocating flat dies or jaws, moved longitudinally or curvilinearly with respect to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/32—Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity
Definitions
- Thepresent invention relates to electrical" dis charge devices operating by-virtue of; the ioniza- Qn' i a h s lve tenua eda n inp s ar Pro de an impr Xdar dev c t is n of th 'ebies b mr nvention t r vide an X ray' tube a tubulareirtension of v Smell he e el stone-fourth inch am te satani e ih fill i bumpers intore tr c ss cbas t e na meat o th ad n e n e ev shqu uman restricted to the medical field nor infacttp the weld.
- cathode seaihousing 3. contains an-insul atingzone the remote end. of this housing being at cathode potential.
- ConduitQsupplies coolin fluid as; for example, oil or water.
- Tubes 9 and I0 pass through a plate 25130 which; they are joined bya watertight solder joint.
- Theplate-25 is held ii place by, the thneadedring 2w and'the washer 26.
- This particular: form of cathode is shown for illusil 1 Qcatedr tstheiremoterend of the tubucylinder l5 which is in turn sealed into a glass cylinder 16'.
- a second thin metal cylinder I1 is sealed into the opposite (right-hand) end of H3;
- Lhis metal cylinder I! isjoine dto'a'heavy ring [8 l hese cathode seal partsare mounted on a metal, tube l91constituting an extension of' the anode supporting tube.
- a ring 20 is fastened by a vacuum-tight solder joint to the anode'supporting tube.
- a gas-tight seal is provided by pressing a suitable washer. 22- against the interstice between rings 20 and H3 by means of the ring '2! and the heavy threaded ring 23.
- The'opposite end of the oathodechamber isrendered gas-tight by a solder joint. between cathode stem 8 and plate l4.
- a guard ring 21 protects thecathocle seal from damage by the discharge, the spacings between the 'adjacent partsbeing so close that a discharge does not ocour betweenparts charged to unlike potentials.
- the space within the hollow structure may be exhausted;andfcharged' with a suitable gas, as
- the anode 6 may comprise a target 3.5; which is: backed. by a heat-absorbing plate" 35;.
- X-rays may leave the tubular chamber 5.1 by passing. through a thin-walled window 31 which may consist of beryllium or other'suitable" material, or; the; electronbeam may be utilizedin other-desired manner.
- the interior: ofithe device is kept at a low ga pressure by any: suitable well known means, as for-instance a pumpand leak valve.
- suitable well known means as for-instance a pumpand leak valve.
- Theinterion geometry ofithe tube is-such-that the resultant electrostatic-field constrains; electrons leaving the tubular enclosure totravel at right anglesto its surface under the influence of the impressed x ray producing potential: When the electrode- 'l'functions as anode".
- an electron has a mean free path of several centimeters so that electrons leaving the,
- the cathode plate H During the glow discharge period positive ions bombard the cathode plate H, thereby heating it and increasing its electron emission. These electrons travel perpendicularly outward from the cathode plate ll, ionizing the gas molecules with which they collide and forming a cloud of positive ions in the discharge space, the positive field of which constrains the discharge to pass down the center of the tubular housing 5.
- this cloud of ions focuses or constricts the electron stream into a .fine beam which is coaxial with the anode housing, the discharge traversing the tubular extension 5 and impinging on the target 35.
- the tubular extension 5 may be made of smaller diameter than in X-ray tubes heretofore provided forsimilar purposes.
- an X-ray device embodying my invention is the field of medicine and surgery, it is advantageous in other fields, for example in X-ray diffraction apparatus, as it permits bringing material to be examined close to the source of X-rays where the intensity of X-ray radiation is maximum.
- An electron discharge device comprising an the electrons do not travel farther than about 5 charged, the field of the positive ions resulting from said discharge through said gas causing enclosed within said tubular electrode remote envelope adapted to function as an anode, a
- non-thermionic cathode enclosed thereby, means for insulating said electrodes from one another, a charge of gas at a pressure in the range of about 1 to 100 microns contained in said envelope and filling the space between said electrodes, the
- An X-ray device comprising a metallic housing which functions also as anelectrode, a second electrode enclosed by said housing, an outwardly projecting tubular extension for said housing having a diameter less than the diameter of said housing, an X-ray target located near the outer extremity of said extension, means for sealing and insulating said housing and a charge of gas at a pressure within the limits of 1 to 100 microns in said housing, the spacing and alignment of the electrodes being favorable to the conduction therebetween of a gas ionization discharge only when the enclosing electrode is positively from said target, sealing and insulating means between said electrodes, and a charge of gas at a pressure of between 1 and 100 microns in the discharge space between said electrodes, said tubular anode having a configuration and spacing which constrains an electronic discharge between said electrodes to pass in a direction substantially perpendicular to the face of said cathode. through said gas and positive ions generated in said gas will causesuch electronic discharge between said electrodes to assume the form of a constric
- An X-ray device comprising a tubular electrode, a second electrode enclosed by said tubular electrode and located remote from one end thereof, means for hermetically sealing said tubular electrode, means for insulating said electrodes from one another, an attenuated gas in said tubular electrode at a pressure of about ten microns, the geometry of said electrodes and the pressure of said gas being so correlated that by ionization of said gas a self-sustaining discharge can occur therebetween which traverses longitudinally said tubular electrode, such discharge being constricted by the field of the positive ion column created in said gas by said, discharge, the pressure Of the gas contained in said tubular electrode being too low to permit of an ionization discharge in the space between'juxtaposed parts of said electrodes and an X-ray target located at the extremity of said tubular electrode in position to have said constricted discharge impinge thereon.
- An X-ray device comprising a tubular metal container which also functions as an electrode, a charge of gas therein at a pressure of about 10 microns, a non-thermionic cathode mounted therein, means for insulating and sealing said cathode from said container, the distance between said container and said cathode being shorter than the mean free path of an electron discharge therebetween a metal tube of lesser diameter extending longitudinally from said container, an X-ray target at the extremity of said container, and an X-ray transmitting window sealed into the wall of said tube adjacent said window.
- An electron discharge device comprising a main tubular sealed metal envelope which functions as an electrode, a non-thermionic electrode within said tubular container, means for insulating;.said electrodes from one another, a gas at a pressure of about ten microns of mercury contained in said envelope, and a tubular extension of lesser diameter than said envelope aligned normal to said interior electrode and projecting outwardly from said envelope, said electrodes being constructed and spaced so closely as to permit passage of a gas ionization discharge through said gas only when said enclosed electrode is functioning as cathode,'the field of the positive ions generated in said gas by such discharge focusing the discharge into a fine beam which traverses said tube.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- X-Ray Techniques (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US483157A US2362816A (en) | 1943-04-15 | 1943-04-15 | Electrical discharge device |
FR938859D FR938859A (fr) | 1943-04-15 | 1946-11-29 | Perfectionnements aux tubes à décharge électrique |
BE475255D BE475255A (en(2012)) | 1943-04-15 | 1947-08-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US483157A US2362816A (en) | 1943-04-15 | 1943-04-15 | Electrical discharge device |
Publications (1)
Publication Number | Publication Date |
---|---|
US2362816A true US2362816A (en) | 1944-11-14 |
Family
ID=23918892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US483157A Expired - Lifetime US2362816A (en) | 1943-04-15 | 1943-04-15 | Electrical discharge device |
Country Status (3)
Country | Link |
---|---|
US (1) | US2362816A (en(2012)) |
BE (1) | BE475255A (en(2012)) |
FR (1) | FR938859A (en(2012)) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2482275A (en) * | 1945-11-26 | 1949-09-20 | Machlett Lab Inc | Electrical discharge device |
US2488200A (en) * | 1946-07-01 | 1949-11-15 | Gen Electric X Ray Corp | Rotating vacuum seal |
US2497755A (en) * | 1941-06-19 | 1950-02-14 | Hartford Nat Bank & Trust Co | X-ray tube with movable directing cone |
US2900542A (en) * | 1954-09-22 | 1959-08-18 | Harry B Mceuen | X-ray apparatus |
US3043972A (en) * | 1960-04-21 | 1962-07-10 | Avco Corp | High temperature implement |
US3107311A (en) * | 1960-04-08 | 1963-10-15 | Ass Elect Ind | X-ray tube with focusing means at the cathode |
US3143679A (en) * | 1959-06-11 | 1964-08-04 | Hilger & Watts Ltd | Focussing arrangement for X-ray tubes |
US3243624A (en) * | 1963-06-14 | 1966-03-29 | Varian Associates | Electron tube and socket |
US3344298A (en) * | 1964-05-29 | 1967-09-26 | Atomic Energy Authority Uk | Flash x-ray tube with gas focusing of beam |
US3510713A (en) * | 1966-07-19 | 1970-05-05 | Willard H Bennett | Method of and appparatus for producing a highly concentrated beam of electrons |
US4126805A (en) * | 1975-10-18 | 1978-11-21 | Emi Limited | X-ray tubes |
WO1995020241A1 (en) * | 1994-01-21 | 1995-07-27 | Photolelectron Corporation | X-ray source with shaped radiation pattern |
US5528652A (en) * | 1990-09-05 | 1996-06-18 | Photoelectron Corporation | Method for treating brain tumors |
USRE35383E (en) * | 1992-03-23 | 1996-11-26 | The Titan Corporation | Interstitial X-ray needle |
EP1217642A1 (en) * | 2000-12-22 | 2002-06-26 | Radi Medical Technologies AB | Active cooling of a miniature x-ray tube |
-
1943
- 1943-04-15 US US483157A patent/US2362816A/en not_active Expired - Lifetime
-
1946
- 1946-11-29 FR FR938859D patent/FR938859A/fr not_active Expired
-
1947
- 1947-08-07 BE BE475255D patent/BE475255A/xx unknown
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2497755A (en) * | 1941-06-19 | 1950-02-14 | Hartford Nat Bank & Trust Co | X-ray tube with movable directing cone |
US2482275A (en) * | 1945-11-26 | 1949-09-20 | Machlett Lab Inc | Electrical discharge device |
US2488200A (en) * | 1946-07-01 | 1949-11-15 | Gen Electric X Ray Corp | Rotating vacuum seal |
US2900542A (en) * | 1954-09-22 | 1959-08-18 | Harry B Mceuen | X-ray apparatus |
US3143679A (en) * | 1959-06-11 | 1964-08-04 | Hilger & Watts Ltd | Focussing arrangement for X-ray tubes |
US3107311A (en) * | 1960-04-08 | 1963-10-15 | Ass Elect Ind | X-ray tube with focusing means at the cathode |
US3043972A (en) * | 1960-04-21 | 1962-07-10 | Avco Corp | High temperature implement |
US3243624A (en) * | 1963-06-14 | 1966-03-29 | Varian Associates | Electron tube and socket |
US3344298A (en) * | 1964-05-29 | 1967-09-26 | Atomic Energy Authority Uk | Flash x-ray tube with gas focusing of beam |
US3510713A (en) * | 1966-07-19 | 1970-05-05 | Willard H Bennett | Method of and appparatus for producing a highly concentrated beam of electrons |
US4126805A (en) * | 1975-10-18 | 1978-11-21 | Emi Limited | X-ray tubes |
US5442678A (en) * | 1990-09-05 | 1995-08-15 | Photoelectron Corporation | X-ray source with improved beam steering |
US5528652A (en) * | 1990-09-05 | 1996-06-18 | Photoelectron Corporation | Method for treating brain tumors |
USRE35383E (en) * | 1992-03-23 | 1996-11-26 | The Titan Corporation | Interstitial X-ray needle |
WO1995020241A1 (en) * | 1994-01-21 | 1995-07-27 | Photolelectron Corporation | X-ray source with shaped radiation pattern |
RU2155413C2 (ru) * | 1994-01-21 | 2000-08-27 | Фотоэлектрон Корпорейшн | Источник рентгеновского излучения с сформированной радиационной картиной |
EP1217642A1 (en) * | 2000-12-22 | 2002-06-26 | Radi Medical Technologies AB | Active cooling of a miniature x-ray tube |
Also Published As
Publication number | Publication date |
---|---|
FR938859A (fr) | 1948-10-27 |
BE475255A (en(2012)) | 1947-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2362816A (en) | Electrical discharge device | |
US1917099A (en) | x-ray tube | |
US1907507A (en) | Electron discharge device | |
US2559526A (en) | Anode target for high-voltage highvacuum uniform-field acceleration tube | |
US3138729A (en) | Ultra-soft X-ray source | |
US3051868A (en) | Ionization vacuum gauges | |
US3309523A (en) | X-ray tube having field emission cathode and evaporative anode in combination with electrical pulser means | |
US2182751A (en) | Electronic pump | |
US2482275A (en) | Electrical discharge device | |
US2345723A (en) | X-ray tube | |
US1920601A (en) | Electron discharge device | |
US3344298A (en) | Flash x-ray tube with gas focusing of beam | |
US2189501A (en) | Short wave generator | |
US2925504A (en) | High-vacuum pumps for high-voltage acceleration tubes | |
US3141975A (en) | Pulsed neutron generator with high vacuum and control grid between ion source and target | |
US2679017A (en) | X-ray tube | |
US3426233A (en) | Plasma stabilization by rotation of arc discharge tube | |
US2946910A (en) | Infrared image converter tubes | |
US2167275A (en) | High voltage x-ray tube | |
US2323560A (en) | Electron discharge apparatus | |
US1735302A (en) | Lenard ray tube | |
US2206710A (en) | Pool-type X-ray tube | |
US2347424A (en) | X-ray tube | |
US2677061A (en) | Ion source | |
US3549931A (en) | X-ray transmissive window assembly |