US2356134A - Liquid fuel injection system for multicylinder internal - combustion engines - Google Patents

Liquid fuel injection system for multicylinder internal - combustion engines Download PDF

Info

Publication number
US2356134A
US2356134A US348782A US34878240A US2356134A US 2356134 A US2356134 A US 2356134A US 348782 A US348782 A US 348782A US 34878240 A US34878240 A US 34878240A US 2356134 A US2356134 A US 2356134A
Authority
US
United States
Prior art keywords
injection system
combustion engines
liquid fuel
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US348782A
Inventor
Voit Willy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2356134A publication Critical patent/US2356134A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves

Definitions

  • This invention relates to an injection system for multicylinder internal combustion engines in which the distribution of fuel is electromagnetically control1ed.
  • an injection pump can 5 be adjusted to deliverdifferent amountsof-fuel to a pressure piping common toa plurality of injection nozzles, and the fuel passes from this piping through one of the nozzles, successively electromagneticallycontrolled by a distributor, into the associated cylinder.
  • the distributor preselects a nozzle independently of the amount to be injected, and this nozzle is kept; open by its associated magnet at least during the injecting period.
  • ⁇ Figure 1 is a diagrammatic view of the total arrangement of an injection system according to the invention in an internal combustion engine
  • Fig. 2 is a view of a slide valve arranged in the fuel supply piping
  • Fig. 3 is a wiring diagram of the electrical mem-I bers of the system; and I Fig. 4 is a view, partly in section, of an injection nozzle provided with locking means for the needle.
  • I designates a four cylinder four stroke cycle internal combustion engine whose crankshaft 2 drives an injection pump 3 by means of a pair of 30 gears 4 in such manner that the shaft 5 of the pump 3 rotates at half the speed of the crankshaft 2.
  • a cam 6 disposed on the shaft 5 has four elevations, not shown, so that the :piston I, shown in broken lines, of the pump 3 carries out four 35 delivery strokes at each rotation of the shaft 5.
  • the amount of fuel supplied at each stroke to a, pressure-piping 8 communicating with the pump outlet is regulated in known manner by the displacement of a rod l9.
  • the piping 8 has branches 40 I is an electric distributor I2 whose revolving 45 finger I3 is driven from the pump shaft 5 and passes over four contacts I4 at each revolution. From each of these contacts I4 an electric conductor I5 leads to ⁇ one end of the winding of a ileld' coil I 6 provided in each shut-off member 50 II, the other end of the winding being earthed.
  • each coil I6 controlled by the distributor I 2 is closed at least during the injecting period so as to permit the flow of fuel to each nozzle I0.
  • Fig. 3 indicates the connections and the control of the coils for the shut-oil' members of the various nozzles I0.
  • the quantity and the beginning 24 is guided, and a spring ze tends to hold the' needle 24 in its closed position shown.
  • a pin 25 guided in the nozzle body 23 is pushed vertically to .the needle by a spring 28, and fuel entering at this position through a channel 21 in response to the pressure of the injection pump 3 is therefore unable to lift the needle 24.
  • the other end ofthe pin 25 is placed in' a field coil 28.
  • the pin 25 acting as a magnet core is drawn into the coil against the vaction of the spring 26, and an impulse coming from the pump can now lift the' needle 24.
  • the control of the current impulses for thecoils of each nozzle is eifected also by the distributor I2.
  • cam surface adapted to cooperate with said caml portion to control the sliding oi' said valve needle from one extreme positionto the other thereby to controlthe discharge of fuel through said valve opening
  • solenoid-spring unit operatively associated with said cam pin to slide said pin between two extreme positions whereby the energization of the solenoid moves said cam pin to ..oneV
  • valve needle has its axis coincident with the axis of said cylindrical member and wherein said cam pin has its axis extending radially with respect to the axis ot 4said valve needle,
  • valve needle operating to move said valve needle' toward its position closing said valve opening, said valve needle having adjacent said valve opening a surface which is subjected to the pressure of the fuel whereby a force is exerted against the action of said spring thereby to tend to move said valve needle away from said valve opening.
  • valve needle slidably mounted in said cylindrical member to move axially to and from a position closing said valve opening
  • said valve needle carrying a cam portion
  • a cam pin slidably mounted and positioned radially with respect to the axis of said valve needle and adapted to cooperate with said cam portion to control the sliding of said valve needle from one extreme position to the other thereby to control the discharge of fuel through said valve opening
  • a spring operative to move said valve needle toward its position closing said valve opening
  • said valve needle having adjacent said valve opening a surface substantially transverse to the axis of the valve needle which is subjected to the pressure of the fuel whereby a force is exerted against the action of said spring thereby to tend to move said valve needle away from said valve opening
  • a solenoid-spring unit operatively associated with said cam pin to slide said cam pin between two extreme positions whereby ⁇ the energization of said solenoid moves said cam pin to one extreme position and the deenergization of the solenoid permits the spring to move the cam pin to

Description

- Aug. 22, 1944. w. von
-LIQUID FUEL INJECTION SYSTEM FOR MULTICYLINDER INTERNAh-COMBUSTION ENGINES K Filed July 5l, 1940 /n venfor Patented Aug. 22, 1944 LIQUID FUEL INJECTION SYSTEM FOR MULTICYLINDER INTERNAL COMBUS- TIoN ENGINES Willy Voit, Stuttgart, Germany; vested in the Alien Property Custodian Application July 31, 1940, serial No. 348,782
In Germany August 21, 1939 s claims. (ci. 29e-107.4)
This invention relates to an injection system for multicylinder internal combustion engines in which the distribution of fuel is electromagnetically control1ed. Y
In engines of this class an injection pump can 5 be adjusted to deliverdifferent amountsof-fuel to a pressure piping common toa plurality of injection nozzles, and the fuel passes from this piping through one of the nozzles, successively electromagneticallycontrolled by a distributor, into the associated cylinder.
According to the invention, the distributor preselects a nozzle independently of the amount to be injected, and this nozzle is kept; open by its associated magnet at least during the injecting period.
Two embodiments of the invention are illustrated in the accompanying drawing, in which `Figure 1 is a diagrammatic view of the total arrangement of an injection system according to the invention in an internal combustion engine;
Fig. 2 is a view of a slide valve arranged in the fuel supply piping;
, Fig. 3 is a wiring diagram of the electrical mem-I bers of the system; and I Fig. 4 is a view, partly in section, of an injection nozzle provided with locking means for the needle.
I designates a four cylinder four stroke cycle internal combustion engine whose crankshaft 2 drives an injection pump 3 by means of a pair of 30 gears 4 in such manner that the shaft 5 of the pump 3 rotates at half the speed of the crankshaft 2. A cam 6 disposed on the shaft 5 has four elevations, not shown, so that the :piston I, shown in broken lines, of the pump 3 carries out four 35 delivery strokes at each rotation of the shaft 5. The amount of fuel supplied at each stroke to a, pressure-piping 8 communicating with the pump outlet is regulated in known manner by the displacement of a rod l9. lThe piping 8 has branches 40 I is an electric distributor I2 whose revolving 45 finger I3 is driven from the pump shaft 5 and passes over four contacts I4 at each revolution. From each of these contacts I4 an electric conductor I5 leads to` one end of the winding of a ileld' coil I 6 provided in each shut-off member 50 II, the other end of the winding being earthed.
The shut-off member,clearly visible in Fig. 2,'
comprises a casing I1 made of magnetizable material and provided with a blind-bore I8 in which bore 20. A spring 22 tends to force the slide I9, also made of magnetizable material, upon the bottom of the blind bore I8. An extension of the bore I8 accommodates the coil I6 whose core 2| is firmly united with the slide I9. When current flows through the coil I6, its core 2I is lifted and the slide I9 firmly connected thereto passes into a position at which its cross-boreY 20 vis on a level witha continuous transverse bore of the casing I 1, with'which the branch of the pressure piping V8 interrupted by the shut-oil' member is in communication, so that fuel can enter the nozzle III connecting with the end of this branch.
'I'he circuit of each coil I6 controlled by the distributor I 2 is closed at least during the injecting period so as to permit the flow of fuel to each nozzle I0.
Fig. 3 indicates the connections and the control of the coils for the shut-oil' members of the various nozzles I0. The quantity and the beginning 24 is guided, and a spring ze tends to hold the' needle 24 in its closed position shown. Over the upper end of the needle 24 a pin 25 guided in the nozzle body 23 is pushed vertically to .the needle by a spring 28, and fuel entering at this position through a channel 21 in response to the pressure of the injection pump 3 is therefore unable to lift the needle 24. The other end ofthe pin 25 is placed in' a field coil 28. When lcurrent flows through the coil 28, the pin 25 acting as a magnet core is drawn into the coil against the vaction of the spring 26, and an impulse coming from the pump can now lift the' needle 24. The control of the current impulses for thecoils of each nozzle is eifected also by the distributor I2.
In the examples shown only one coil is excited, namely that whose nozzle is selected for injection, and the coils of the other' nozzles rema'in currentless. It is possible, however, to reverse conditions by utilizing the excitation of the coils for locking their associated nozzles and interrupting the ex-` citing current only for the coil through whose nozzle an injection i's to be made. 'In this case,
vthe consumption of current would, however, be
materially greater than in the constructions a slide valve I8 is guided possessing a transverse 55 shown. Y
cam surface adapted to cooperate with said caml portion to control the sliding oi' said valve needle from one extreme positionto the other thereby to controlthe discharge of fuel through said valve opening, and a solenoid-spring unit operatively associated with said cam pin to slide said pin between two extreme positions whereby the energization of the solenoid moves said cam pin to ..oneV
extreme position and the de-energization of the solenoid permits the spring to move the cam pin to the other extreme position.
2. A fuel injecting unit as described in claim 1 wherein said valve needle has its axis coincident with the axis of said cylindrical member and wherein said cam pin has its axis extending radially with respect to the axis ot 4said valve needle,
a spring operating to move said valve needle' toward its position closing said valve opening, said valve needle having adjacent said valve opening a surface which is subjected to the pressure of the fuel whereby a force is exerted against the action of said spring thereby to tend to move said valve needle away from said valve opening.
3. In an injection valve construction of the character described, the combination of, a cylindrical member having at one end a valve opening,
va. valve needle slidably mounted in said cylindrical member to move axially to and from a position closing said valve opening, said valve needle carrying a cam portion, a cam pin slidably mounted and positioned radially with respect to the axis of said valve needle and adapted to cooperate with said cam portion to control the sliding of said valve needle from one extreme position to the other thereby to control the discharge of fuel through said valve opening, a spring operative to move said valve needle toward its position closing said valve opening, said valve needle having adjacent said valve opening a surface substantially transverse to the axis of the valve needle which is subjected to the pressure of the fuel whereby a force is exerted against the action of said spring thereby to tend to move said valve needle away from said valve opening, and a solenoid-spring unit operatively associated with said cam pin to slide said cam pin between two extreme positions whereby` the energization of said solenoid moves said cam pin to one extreme position and the deenergization of the solenoid permits the spring to move the cam pin to the other extreme position. WILLY VOIT.
US348782A 1939-08-21 1940-07-31 Liquid fuel injection system for multicylinder internal - combustion engines Expired - Lifetime US2356134A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2356134X 1939-08-21

Publications (1)

Publication Number Publication Date
US2356134A true US2356134A (en) 1944-08-22

Family

ID=7995406

Family Applications (1)

Application Number Title Priority Date Filing Date
US348782A Expired - Lifetime US2356134A (en) 1939-08-21 1940-07-31 Liquid fuel injection system for multicylinder internal - combustion engines

Country Status (1)

Country Link
US (1) US2356134A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543277A (en) * 1947-08-07 1951-02-27 Copeman Lab Co Method and apparatus for the manufacture of cigarettes
US2736600A (en) * 1952-09-23 1956-02-28 Arthur J Carlson Crane hook with reaction jet orienting means
US2863437A (en) * 1956-01-31 1958-12-09 Bessiere Pierre Etienne Fuel injection devices for multicylinder engines
US3113757A (en) * 1961-01-18 1963-12-10 Nixon Phillip Solenoid-operated gate valve
US3116047A (en) * 1960-03-16 1963-12-31 Baier John F Solenoid actuated control valve
US3259323A (en) * 1964-03-23 1966-07-05 Paper Converting Machine Co Adhesive-applying apparatus
US3274984A (en) * 1963-05-17 1966-09-27 Sr James J Dolfi Automatic vacuum spoiler for internal combustion engines
US4187987A (en) * 1977-11-17 1980-02-12 Klockner-Humboldt-Deutz Aktiengesellschaft Fuel injector
US20100006679A1 (en) * 2008-07-08 2010-01-14 Caterpillar Inc. Decoupled valve assembly and fuel injector using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543277A (en) * 1947-08-07 1951-02-27 Copeman Lab Co Method and apparatus for the manufacture of cigarettes
US2736600A (en) * 1952-09-23 1956-02-28 Arthur J Carlson Crane hook with reaction jet orienting means
US2863437A (en) * 1956-01-31 1958-12-09 Bessiere Pierre Etienne Fuel injection devices for multicylinder engines
US3116047A (en) * 1960-03-16 1963-12-31 Baier John F Solenoid actuated control valve
US3113757A (en) * 1961-01-18 1963-12-10 Nixon Phillip Solenoid-operated gate valve
US3274984A (en) * 1963-05-17 1966-09-27 Sr James J Dolfi Automatic vacuum spoiler for internal combustion engines
US3259323A (en) * 1964-03-23 1966-07-05 Paper Converting Machine Co Adhesive-applying apparatus
US4187987A (en) * 1977-11-17 1980-02-12 Klockner-Humboldt-Deutz Aktiengesellschaft Fuel injector
US20100006679A1 (en) * 2008-07-08 2010-01-14 Caterpillar Inc. Decoupled valve assembly and fuel injector using same
US8459577B2 (en) * 2008-07-08 2013-06-11 Caterpillar Inc. Decoupled valve assembly and fuel injector using same

Similar Documents

Publication Publication Date Title
US3880131A (en) Fuel injection system for an internal combustion engine
US3464627A (en) Electromagnetic fuel-injection valve
US2356134A (en) Liquid fuel injection system for multicylinder internal - combustion engines
GB1366048A (en) Fuel injection pump for multi-cylinder internal combustion engines
US4583509A (en) Diesel fuel injection system
US2521224A (en) Pilot fuel injector
US2018159A (en) Electrical fuel injection system for internal combustion engines
US2332909A (en) Fuel injection valve apparatus
US2077259A (en) Fuel injecting device for internal combustion engines
US3348488A (en) Distributor fuel injection pump with precharging and pilot injection
GB1475338A (en) Common rail fuel injection system
US2458294A (en) Oil distributing system
US2863437A (en) Fuel injection devices for multicylinder engines
US2391174A (en) Fluid feeding and distributing apparatus
US2590575A (en) Fuel injector
GB1470506A (en) Fuel injection pumping apparatus
JPH04502502A (en) Solenoid valves, especially solenoid valves for fuel injection pumps
US3859972A (en) Fuel injection system for an internal combustion engine
US3320892A (en) Fuel injection system
US2417137A (en) Fuel pump injection
US2382000A (en) Fuel injection pump
US3371610A (en) Auxiliary filling means for fuel injection pumps
US2019103A (en) Pump
US4497299A (en) Plunger type fuel injection pump
US1288439A (en) Electrically-controlled gas-engine fuel system.