US2348986A - Resonant cavity magnetron - Google Patents
Resonant cavity magnetron Download PDFInfo
- Publication number
- US2348986A US2348986A US362487A US36248740A US2348986A US 2348986 A US2348986 A US 2348986A US 362487 A US362487 A US 362487A US 36248740 A US36248740 A US 36248740A US 2348986 A US2348986 A US 2348986A
- Authority
- US
- United States
- Prior art keywords
- anode
- cavity
- members
- slits
- resonant cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011797 cavity material Substances 0.000 description 51
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 241001453450 Carya illinoinensis Species 0.000 description 1
- 208000030452 Transient pseudohypoaldosteronism Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/50—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
- H01J25/52—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
- H01J25/58—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
- H01J25/587—Multi-cavity magnetrons
Definitions
- This invention relates to magnetrons and particularly to resonant cavity magnetrons in which the cavity acts as a tank circuit.
- Magnetrons using a plurality of arcuate shape anodes, are well known.
- the arcuate shape anodes are usually connected to tank circuits or in some devices the anodes themselves form the tank circuit as shown in Ernest G. Linders U. S. Patent No. 2,233,482 granted on March 4, 1941, for Anode tank circuit oscillators.
- electrons under the influence of a magnetic field, travel along curved paths toward the anode. Some of the electrons give up their energy to initiate or reinforce oscillatory currents inthe tank circuit.
- the anode electrode of a magnetron includes a slit or a plurality of slits.
- a resonant cavity member also including a slit is attached to the anode so that a slit in the anode substantially coincides with the slit in the resonant cavity member.
- some of the electrons deliver energy to reinforce or, establish within the cavity standing electromagnetic waves.
- Fig. l is a perspective view of one embodiment of the invention
- Figures 2a and 2b are plan and elevational views, respectively, of the anode and resonant cavity members employed in said one embodiment
- Figure 3 is a graph illustrating the field distribution of the device of Fig. 1
- Figure 4 is a schematic diagram of the circuit of the invention as applied to a detector
- Figure 5 is a plan view of the electrode and cavity portion including phasing means
- a substantially cylindrical anode 3 within an evacuated envelope l are mounted a substantially cylindrical anode 3 and a pair of substantially cylindrical members 5, i which each include a resonant cavity.
- the anode includes longitudinal slits 9, ll;
- anode and cavity members may be fabricated in any desired manner, and
- a cathode 17 extends along the axis of the anode.
- a magnetic field is established by a permanent magnet l5, eiectromagnet, or solenoid. If a permanent magnet is used, cylindrical or conical polepieces may be attached to increase the :dux which surrounds and is substantially parallel to the cathode.
- the circuit connections are as follows:
- the cathode is connected to a battery 25 and rheostat 23.
- the anode is connected to the positive terminalof a battery 25 whose negative terminal is connected to the cathode circuit.
- a pickup loop 21 is inserted through a suitable aperture 29 in one of the resonant cavities.
- the pickup loop may be terminated in a load circuit, such as a dipole antenna.
- the device may be used as a detector by means of the circuit shown in Fig. 4.
- the pickup loop 3! is connected through a transmission line 33 to a dipole antenna 35.
- the anode is connected through a. transformer primary 3l and battery 39 to the cathode circuit ll.
- the secondary of the transformer is connected to a signal indi-v cator, such as telephone receivers 43.
- the slitted anode arrangement may be used with a plurality of resonant cavity members as shownin Fig. 5.
- the anode electrode includes four slits 41. While the resonant cavities may be of any suitable shape, such as a rectangle cav ity, cuneiform members 49 may be used. The apex of each member is slitted so that the memby a coupling loop.
- bers may be Jointed to the anode so that each of the slits of the anode coincide with aslit in the apex of an attached resonant cavity member.
- the resonant cavity members may be coupled.
- the foregoing formula applies to a rectangular cavity in which the height has a'negligible eifect on wave length.
- The'formula applies approximately to a wedge shape cavity in which the wedge angle is small.
- the anode electrode is connected to the wedge shape cavity and effects its resonant wave length. In practice waves of varying length are applied to the cavity and their eflect determined by a p'robe inserted within the cavity.
- the probe is connected to a resonance indicator.
- the resonant wave length, or frequency may be thus determined accurately. Since the foregoing formula does not apply to cavities of other shapes, such as a cylindrical cavity, the probe method of determining resonance is preferred. In any event the calculations are only a guide; the exact resonance is determined by any desired method of measurement.
- the invention has been described as a magnetron in which the anode includes longitudinal slits.
- Resonant cavity members opening into the anode slits, are attached to the anode.
- the out-of-phase electrons moving past the slits give up energy to establish and maintain within the resonant cavities standing electromagnetic waves.
- the waves may be applied to a coupling loop, if the device is used as an oscillator or the currents in a load cricuit may be used to establish electric waves within the cavity. These waves are amplified or detected by the electrons spiralling within the anode electrode.
- the waves in a plurality of cavities may be phased
- the invention is not limited to any precise number of resonant cavities of any specific shape.
- the resonant cavity may be adjusted to respond to any desired frequency by employing means for adjusting the size or shape of the cavity as disclosed in U. S. Patent No.
- An ultra high frequency device including a cathode, a substantially cylindrical anode surrounding saici cathode and including longitudinal slits, a pair of members including in each a cylindraceous cavity resonator closed at its ends, said cavity resonator being effectively entirely closed to standing waves which are to be established therein, each of said members including a longitudinal slit opening into said cavity resonators respectively, and each of said members secured to said anode with one of said anode slits and one of the slits in said members substantially coinciding and said cavity resonator members mounted eccentrically with respect to said anode, and means adjacent said anode for creating a magnetic field having its lines of force substantially parallel to and surrounding the axis of said cylindrical anode.
- An ultra high frequency device including a cathode, a substantially cylindrical anode surrounding said cathode and including longitudinal slits, a pair of cylindrical members including in each a cylind'raceous cavity resonator closed at its ends, said cavity resonator being effectively entirely closed to ultra high frequency standing waves which are to be established therein, each of said members including a longitudinal slit opening into said cavity resonator, and each of said members secured to said anode with one of said anode slits and one of the slits in said members coinciding and said anode and members mounted eccentrically, and means adjacent said anode for creating a magnetic field having its lines of force substantially parallel to and surrounding the axis of said cylindrical anode.
- An ultra high frequency device including a cathode, a substantially cylindrical anode surrounding said cathode and including two diametrically opposed longitudinal slits, a pair of cylindrical members including in each a cylindraceous cavity resonator closed at its ends, said cavity resonator being effectively entirely closed to ultra high frequency standing waves
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL63088D NL63088C (en, 2012) | 1940-10-24 | ||
US362487A US2348986A (en) | 1940-10-24 | 1940-10-24 | Resonant cavity magnetron |
US508348A US2415253A (en) | 1940-10-24 | 1943-10-30 | Cavity resonator magnetron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US362487A US2348986A (en) | 1940-10-24 | 1940-10-24 | Resonant cavity magnetron |
Publications (1)
Publication Number | Publication Date |
---|---|
US2348986A true US2348986A (en) | 1944-05-16 |
Family
ID=23426309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US362487A Expired - Lifetime US2348986A (en) | 1940-10-24 | 1940-10-24 | Resonant cavity magnetron |
Country Status (2)
Country | Link |
---|---|
US (1) | US2348986A (en, 2012) |
NL (1) | NL63088C (en, 2012) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2415253A (en) * | 1940-10-24 | 1947-02-04 | Rca Corp | Cavity resonator magnetron |
US2415470A (en) * | 1943-04-21 | 1947-02-11 | Rca Corp | Magnetron |
US2416899A (en) * | 1943-09-24 | 1947-03-04 | Raytheon Mfg Co | Electronic discharge device of the magnetron type |
US2417789A (en) * | 1941-12-01 | 1947-03-18 | Raytheon Mfg Co | Magnetron anode structure |
US2419572A (en) * | 1944-04-05 | 1947-04-29 | Bell Telephone Labor Inc | Electron discharge device |
US2422465A (en) * | 1943-02-02 | 1947-06-17 | Gen Electric | High-frequency magnetrons |
US2429291A (en) * | 1943-07-01 | 1947-10-21 | Westinghouse Electric Corp | Magnetron |
US2433481A (en) * | 1943-07-01 | 1947-12-30 | Westinghouse Electric Corp | Magnetron |
US2434517A (en) * | 1944-05-11 | 1948-01-13 | Westinghouse Electric Corp | Method of activating cathodes |
US2444418A (en) * | 1942-10-15 | 1948-07-06 | Gen Electric | High-frequency electronic device |
US2452032A (en) * | 1944-06-10 | 1948-10-26 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2452056A (en) * | 1944-07-20 | 1948-10-26 | Raytheon Mfg Co | Electrical discharge device |
US2452077A (en) * | 1944-01-19 | 1948-10-26 | Raytheon Mfg Co | Electric discharge device |
US2459195A (en) * | 1945-03-03 | 1949-01-18 | Raytheon Mfg Co | Electron discharge device |
US2462496A (en) * | 1942-04-24 | 1949-02-22 | Rca Corp | Electron discharge device |
US2463524A (en) * | 1945-03-10 | 1949-03-08 | Raytheon Mfg Co | Electron discharge device |
US2474898A (en) * | 1944-04-05 | 1949-07-05 | Bell Telephone Labor Inc | Electromagnetic resonator of the magnetron type |
US2476130A (en) * | 1945-01-11 | 1949-07-12 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2481171A (en) * | 1945-08-20 | 1949-09-06 | Raytheon Mfg Co | Electron discharge device |
US2482541A (en) * | 1945-05-12 | 1949-09-20 | Gen Electric | High-frequency electrical apparatus |
US2497831A (en) * | 1945-08-22 | 1950-02-14 | Rca Corp | Electron discharge device employing cavity resonators |
US2508280A (en) * | 1944-02-01 | 1950-05-16 | "Patelhold" Patentverwertungs- & Elektro-Holding A.-G. | Electron tube |
US2530172A (en) * | 1945-02-17 | 1950-11-14 | Westinghouse Electric Corp | Ultra high frequency generator |
US2539337A (en) * | 1945-03-07 | 1951-01-23 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2542899A (en) * | 1944-11-30 | 1951-02-20 | Raytheon Mfg Co | Cavity resonator electron discharge device |
US2548808A (en) * | 1945-11-06 | 1951-04-10 | Nathan P Nichols | Continuous-strip anode for magnetrons |
US2564005A (en) * | 1945-06-23 | 1951-08-14 | Halpern Julius | Automatic frequency control system |
US2591976A (en) * | 1945-03-22 | 1952-04-08 | Rca Corp | Electron discharge device utilizing cavity resonators |
US2595652A (en) * | 1944-04-05 | 1952-05-06 | Bell Telephone Labor Inc | Coupled cavity resonator |
US2617079A (en) * | 1944-08-08 | 1952-11-04 | Westinghouse Electric Corp | Tunable magnetron |
US2624862A (en) * | 1945-05-09 | 1953-01-06 | Everhart Edgar | Tunable strapped magnetron |
US2639403A (en) * | 1945-02-27 | 1953-05-19 | Us Sec War | Strapped multicavity magnetron |
US2747137A (en) * | 1945-05-12 | 1956-05-22 | Gen Electric | High frequency electrical apparatus |
US2762944A (en) * | 1945-10-30 | 1956-09-11 | Albert M Clogston | Magnetic triode |
US2831148A (en) * | 1952-08-19 | 1958-04-15 | M O Valve Co Ltd | Resonant cavity magnetrons |
US2832050A (en) * | 1945-03-22 | 1958-04-22 | Rca Corp | Electron discharge devices |
-
0
- NL NL63088D patent/NL63088C/xx active
-
1940
- 1940-10-24 US US362487A patent/US2348986A/en not_active Expired - Lifetime
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2415253A (en) * | 1940-10-24 | 1947-02-04 | Rca Corp | Cavity resonator magnetron |
US2417789A (en) * | 1941-12-01 | 1947-03-18 | Raytheon Mfg Co | Magnetron anode structure |
US2462496A (en) * | 1942-04-24 | 1949-02-22 | Rca Corp | Electron discharge device |
US2444418A (en) * | 1942-10-15 | 1948-07-06 | Gen Electric | High-frequency electronic device |
US2422465A (en) * | 1943-02-02 | 1947-06-17 | Gen Electric | High-frequency magnetrons |
US2415470A (en) * | 1943-04-21 | 1947-02-11 | Rca Corp | Magnetron |
US2429291A (en) * | 1943-07-01 | 1947-10-21 | Westinghouse Electric Corp | Magnetron |
US2433481A (en) * | 1943-07-01 | 1947-12-30 | Westinghouse Electric Corp | Magnetron |
US2416899A (en) * | 1943-09-24 | 1947-03-04 | Raytheon Mfg Co | Electronic discharge device of the magnetron type |
US2452077A (en) * | 1944-01-19 | 1948-10-26 | Raytheon Mfg Co | Electric discharge device |
US2508280A (en) * | 1944-02-01 | 1950-05-16 | "Patelhold" Patentverwertungs- & Elektro-Holding A.-G. | Electron tube |
US2419572A (en) * | 1944-04-05 | 1947-04-29 | Bell Telephone Labor Inc | Electron discharge device |
US2595652A (en) * | 1944-04-05 | 1952-05-06 | Bell Telephone Labor Inc | Coupled cavity resonator |
US2474898A (en) * | 1944-04-05 | 1949-07-05 | Bell Telephone Labor Inc | Electromagnetic resonator of the magnetron type |
US2434517A (en) * | 1944-05-11 | 1948-01-13 | Westinghouse Electric Corp | Method of activating cathodes |
US2452032A (en) * | 1944-06-10 | 1948-10-26 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2452056A (en) * | 1944-07-20 | 1948-10-26 | Raytheon Mfg Co | Electrical discharge device |
US2617079A (en) * | 1944-08-08 | 1952-11-04 | Westinghouse Electric Corp | Tunable magnetron |
US2542899A (en) * | 1944-11-30 | 1951-02-20 | Raytheon Mfg Co | Cavity resonator electron discharge device |
US2476130A (en) * | 1945-01-11 | 1949-07-12 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2530172A (en) * | 1945-02-17 | 1950-11-14 | Westinghouse Electric Corp | Ultra high frequency generator |
US2639403A (en) * | 1945-02-27 | 1953-05-19 | Us Sec War | Strapped multicavity magnetron |
US2459195A (en) * | 1945-03-03 | 1949-01-18 | Raytheon Mfg Co | Electron discharge device |
US2539337A (en) * | 1945-03-07 | 1951-01-23 | Raytheon Mfg Co | Electron discharge device of the magnetron type |
US2463524A (en) * | 1945-03-10 | 1949-03-08 | Raytheon Mfg Co | Electron discharge device |
US2591976A (en) * | 1945-03-22 | 1952-04-08 | Rca Corp | Electron discharge device utilizing cavity resonators |
US2832050A (en) * | 1945-03-22 | 1958-04-22 | Rca Corp | Electron discharge devices |
US2624862A (en) * | 1945-05-09 | 1953-01-06 | Everhart Edgar | Tunable strapped magnetron |
US2482541A (en) * | 1945-05-12 | 1949-09-20 | Gen Electric | High-frequency electrical apparatus |
US2747137A (en) * | 1945-05-12 | 1956-05-22 | Gen Electric | High frequency electrical apparatus |
US2564005A (en) * | 1945-06-23 | 1951-08-14 | Halpern Julius | Automatic frequency control system |
US2481171A (en) * | 1945-08-20 | 1949-09-06 | Raytheon Mfg Co | Electron discharge device |
US2497831A (en) * | 1945-08-22 | 1950-02-14 | Rca Corp | Electron discharge device employing cavity resonators |
US2762944A (en) * | 1945-10-30 | 1956-09-11 | Albert M Clogston | Magnetic triode |
US2548808A (en) * | 1945-11-06 | 1951-04-10 | Nathan P Nichols | Continuous-strip anode for magnetrons |
US2831148A (en) * | 1952-08-19 | 1958-04-15 | M O Valve Co Ltd | Resonant cavity magnetrons |
Also Published As
Publication number | Publication date |
---|---|
NL63088C (en, 2012) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2348986A (en) | Resonant cavity magnetron | |
US2293151A (en) | Resonant cavity device | |
US2261130A (en) | High frequency radio apparatus | |
EP0162534A1 (en) | Coil arrangements | |
US2505534A (en) | Device for controlling the propagation of energy in a wave guide | |
US2128234A (en) | Electron tube | |
US2415253A (en) | Cavity resonator magnetron | |
US2128231A (en) | High frequency oscillator tube | |
US4395655A (en) | High power gyrotron (OSC) or gyrotron type amplifier using light weight focusing for millimeter wave tubes | |
US3104305A (en) | Microwave frequency heating apparatus | |
US3334267A (en) | Ferrite tuned cavity stabilized magnetron | |
US2450619A (en) | Tunable magnetron | |
US2454094A (en) | Electron discharge device for producing electric oscillations | |
US2500430A (en) | Cavity resonator oscillator device | |
US2863998A (en) | Frequency converter comprising resonant cavity having thin supraconductive walls and direct magnetic field | |
US2444418A (en) | High-frequency electronic device | |
US2462510A (en) | Electron discharge device and associated circuit | |
US2523286A (en) | High-frequency electrical apparatus | |
US2435804A (en) | Cavity resonator magnetron device | |
US3250985A (en) | Microwave cavity resonator | |
US2660667A (en) | Ultrahigh frequency resonator | |
US3376463A (en) | Crossed field microwave tube having toroidal helical slow wave structure formed by a plurality of spaced slots | |
US3046443A (en) | Traveling wave tubes | |
US2452272A (en) | Magnetron | |
US2209923A (en) | Magnetron |