US2327485A - Broad band antenna - Google Patents
Broad band antenna Download PDFInfo
- Publication number
- US2327485A US2327485A US388246A US38824641A US2327485A US 2327485 A US2327485 A US 2327485A US 388246 A US388246 A US 388246A US 38824641 A US38824641 A US 38824641A US 2327485 A US2327485 A US 2327485A
- Authority
- US
- United States
- Prior art keywords
- loop
- line
- elements
- impedance
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H2/00—Networks using elements or techniques not provided for in groups H03H3/00 - H03H21/00
- H03H2/005—Coupling circuits between transmission lines or antennas and transmitters, receivers or amplifiers
Definitions
- This invention relates to antenna systems and more particularly to highfrequency loop antenna having a broad frequency response characteristic.
- the need for an antenna of simple design having substantially equal response characteristics over wide high frequency band has been realized for some time.
- it has been diflicult to achieve the desired response characteristic; and compromise systems giving response over a narrower band have of necessity been used.
- These systems were generally rather complicated in nature and required considerable additional elements to achieve even this partial solution.
- This loop antenna may be useful in many fields and finds particular application for a receiving antenna to be used in instrument navigation of aircraft.
- a better understanding of my invention and the objects and features thereof may be had from the particular description thereof made with reference to the accompanying drawing, the single figure of which is a diagrammatic illustration of a loop incorporating the features of my invention.
- a relatively simple receiver loop is disclosed.
- This loop comprises two radiant acting section which are short relative to the wavelengths, these sections being fed at one end and provided at the other end with a terminating transmission line section.
- This loop presents the difficulty that voltage increases toward the ends of the loop and further, that the loop cannot readily be tuned for response to a wide frequency band.
- the radiation characteristic in the plane of the loop is not circular but is slightly elliptical with the major axis passing through the two current maxima.
- I provide a loop made up of four radiant acting sections i, 2, 3, d, sections 2 and 4 being in the order of twice the length of sections I and 3, respectively, and being respectively coupled in series with condensers 5 and t.
- a further condenser E is provided in series between sections 2 and 4.
- a tieline comprising conductors 8 and 9 is connected between the remote end of sections I and 3, and the condenser 1.
- this loop is variable, it may be circular, elliptical, rectangular, square or an airfoil form.
- This antenna may thus be considered as a reentrant circuit consisting of radiant acting elements l, 2, 3,4, and a non-radiating tie-line 8, 9.
- the translating device is coupled by means of a coupling transmission lin H to a point intermediate the ends of the tie-line,
- Current distributlon controlling means 5, 6 and I, are provided along the radiant acting elements whereby the impedance at the point of Junction of H and 8, 9 is made substantially constant and resistive over a substantial range of radio frequencies.
- the loop had a shape of a square with rounded corners, the radiant acting members consistin of copper tubing 1% in diameter, the sides of the square were 16" long, condenser I had a capacity of approximately 7 micro-micro-farads, and condensers and 6 each had a, capacity of the order of 2 or 3 micro-micro farads. However, the ends of the tubes were close together being separated only about so that there was added capacity between the pipes in addition to the lump capacity of the condensers in parallel with this natural capacity.
- the tie-line 8, 9 had a surge impedance of 214 ohms and a propagation velocity of .9. Line I!
- the purpose of the quarter-wave section of 300 ohm line was to more nearly match the impedance at junction'l5 to the 21% ohm line. This was necessary because the impedance at junotion l5 was too high in comparison with 214 ohms and the quarter-wave step-down transformer was used to do the matching. Since the quarter-wave transformer had to be desighed for mean frequency of the band, it is clear that this transformer in itself can produce the band limitation. A somewhat broader band presumably would have been obtained with a high impedance line all the day down to the receiver or with a transformer more aperiodic than the quarter-wave line.
- the loop antenna consisted of 2 /2" pipes arranged in a square approximately 18 on the sides.
- capacity l was approximately 11 micro-micro farads, condensers 5 and 6 of the order of 3 micro-micro-farads. This time, as before, there was capacity between the ends of the pipes which were separated about one inch in addition to the capacity of condensers 5 and 6.
- the measured radiation resistance of the first loop was approximately 19 ohms at mega-
- the radiation resistance of the second loop was approximately 32 ohms at 110 megacycles.
- a re-entrant circuit consisting of radiant acting elements and a, non-radiating two conductor tie-line connected between said elements,
- a translating device and a coupling transmission line coupling said translating device to said reentrantcircuit at a point intermediate the ends of said tie-line, and means including. reactive coupling units between said elements for controlling the current distribution along said radiant acting elements to producecurrent loops intermediate the ends of at least some of said elements, whereby the impedance at the point of junction of said coupling transmission line and said tie-line is made substantially constant and resistive over a substantial range of radio frequencies.
- a broad band high frequency antenna comprising two pairs of radiant acting elements arranged in a substantially closed figure, the elements of one pair being substantially twice the length of the elements of the second pair, one end of each of the longer elements being coupled together through a condenser, the two shorter elements being connected in series with the other ends of the longer elements through substantially equal series condensers, a balanced transmission line interconnecting the free ends of the shorter elements with the ends of the longer elements connected to said first named condenser, said transmission line being transposed, and a feeder transmission line coupled intermediate the ends of said balanced transmission line.
- a broad band antenna comprising a loop having a plurality of radiant acting sections coupled together with impedance elements including reactance to secure substantially uniform current distribution throughout the loop and a two-conductor tie-line interconnecting certain of the radiant acting elements and means for supplying energy across a point in the tie-line whereby substantial impedance matching over a broad band frequency is obtained.
- a re-entrant circuit accozding to claim 1, in which said reactive coupling units include capacitive reactance.
Landscapes
- Details Of Aerials (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL66798D NL66798C (xx) | 1941-04-12 | ||
NL136891D NL136891B (xx) | 1941-04-12 | ||
BE465288D BE465288A (xx) | 1941-04-12 | ||
US388246A US2327485A (en) | 1941-04-12 | 1941-04-12 | Broad band antenna |
GB8145/42A GB557942A (en) | 1941-04-12 | 1942-06-15 | Broad band antenna |
FR939092D FR939092A (fr) | 1941-04-12 | 1946-04-01 | Dispositifs d'antennes à cadre à haute fréquence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US388246A US2327485A (en) | 1941-04-12 | 1941-04-12 | Broad band antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
US2327485A true US2327485A (en) | 1943-08-24 |
Family
ID=23533291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US388246A Expired - Lifetime US2327485A (en) | 1941-04-12 | 1941-04-12 | Broad band antenna |
Country Status (5)
Country | Link |
---|---|
US (1) | US2327485A (xx) |
BE (1) | BE465288A (xx) |
FR (1) | FR939092A (xx) |
GB (1) | GB557942A (xx) |
NL (2) | NL136891B (xx) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2576748A (en) * | 1948-05-15 | 1951-11-27 | Gershom N Carmichael | Antenna structure |
US2825061A (en) * | 1951-11-21 | 1958-02-25 | Gabriel Co | Wave radiator |
US3317839A (en) * | 1963-03-20 | 1967-05-02 | Research Corp | Closed-circular annular tank circuit for spark gap transmitter |
US4342999A (en) * | 1980-11-25 | 1982-08-03 | Rca Corporation | Loop antenna arrangements for inclusion in a television receiver |
US4380011A (en) * | 1980-11-25 | 1983-04-12 | Rca Corporation | Loop antenna arrangement for inclusion in a television receiver |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK507584A (da) * | 1984-10-24 | 1986-04-25 | Electronic Identification Syst | Anlaeg til transmission af hoejfrekvente, eletromagnetiske signaler |
-
0
- NL NL66798D patent/NL66798C/xx active
- NL NL136891D patent/NL136891B/xx unknown
- BE BE465288D patent/BE465288A/xx unknown
-
1941
- 1941-04-12 US US388246A patent/US2327485A/en not_active Expired - Lifetime
-
1942
- 1942-06-15 GB GB8145/42A patent/GB557942A/en not_active Expired
-
1946
- 1946-04-01 FR FR939092D patent/FR939092A/fr not_active Expired
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2576748A (en) * | 1948-05-15 | 1951-11-27 | Gershom N Carmichael | Antenna structure |
US2825061A (en) * | 1951-11-21 | 1958-02-25 | Gabriel Co | Wave radiator |
US3317839A (en) * | 1963-03-20 | 1967-05-02 | Research Corp | Closed-circular annular tank circuit for spark gap transmitter |
US4342999A (en) * | 1980-11-25 | 1982-08-03 | Rca Corporation | Loop antenna arrangements for inclusion in a television receiver |
US4380011A (en) * | 1980-11-25 | 1983-04-12 | Rca Corporation | Loop antenna arrangement for inclusion in a television receiver |
Also Published As
Publication number | Publication date |
---|---|
BE465288A (xx) | |
FR939092A (fr) | 1948-11-03 |
NL136891B (xx) | |
NL66798C (xx) | |
GB557942A (en) | 1943-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2283914A (en) | Antenna | |
US2223835A (en) | Ultra high frequency device | |
US2438795A (en) | Wave-guide system | |
US2359620A (en) | Short wave antenna | |
US2311364A (en) | Broad-band antenna | |
US2292496A (en) | Transmission line circuit | |
US2267951A (en) | Antenna | |
GB464443A (en) | Improvements in or relating to aerial systems | |
US2327485A (en) | Broad band antenna | |
USRE20189E (en) | Oscillation circuit for electric | |
US2184771A (en) | Antenna coupling means | |
US3262121A (en) | Antenna feed point crossover | |
US2636122A (en) | Antenna system | |
US2241582A (en) | Arrangement for matching antennae for wide frequency bands | |
US2422160A (en) | Variable reactance device for coaxial lines | |
US2913722A (en) | Broad band vertical antenna | |
US2543085A (en) | Wide frequency band antenna | |
US2558749A (en) | High-frequency impedance transformer | |
US2275342A (en) | High frequency antenna | |
US2920323A (en) | Broad-band impedance matching | |
US2193859A (en) | Ultra short wave antenna | |
US2769169A (en) | Dipole impedance matching device | |
US2866197A (en) | Tuned antenna system | |
US2201326A (en) | Electrical wave filter | |
US2404745A (en) | Ultra high frequency electron discharge device system |