US2322154A - Engine starting mechanism - Google Patents

Engine starting mechanism Download PDF

Info

Publication number
US2322154A
US2322154A US408531A US40853141A US2322154A US 2322154 A US2322154 A US 2322154A US 408531 A US408531 A US 408531A US 40853141 A US40853141 A US 40853141A US 2322154 A US2322154 A US 2322154A
Authority
US
United States
Prior art keywords
flywheel
motor
clutch
rod
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US408531A
Inventor
Romeo M Nardone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bendix Aviation Corp
Original Assignee
Bendix Aviation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bendix Aviation Corp filed Critical Bendix Aviation Corp
Priority to US408531A priority Critical patent/US2322154A/en
Priority to US467145A priority patent/US2353317A/en
Application granted granted Critical
Publication of US2322154A publication Critical patent/US2322154A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/001Arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N5/00Starting apparatus having mechanical power storage
    • F02N5/04Starting apparatus having mechanical power storage of inertia type

Definitions

  • 2,068,462 shows an inertia starter having an 10 are not designed as a definition of the limits of inertia element in the [crm of a iiywheel which the invention, reference being had to the apmay be accelerated manually or by use of an pended claims for this purpose.
  • Fig. 1 is a View, partly in elevation, partly in clutch which overruns when the manual accell5 section, and partly schematic, of. an inertia erating means is employed-the motor thus remaining at rest, Wherefore its commutator and brushes do not act as a drag on the iiywheel during the accelerating process.
  • a second object is to provide an improved brush lifting mechanism operative to remove the drag of the motor brushesassuming that one of the alternative accelerating means is an electric motorwhenever it is desired to add tothe inertia eiiect by leaving the motor connected for acceleration with the main inertia element (flywheel), as by operation of the alternative (handrotated, for example) accelerating means.
  • a third object is to provide novel interlocking means operative upon both the disconnecting and the brush lifting controls whereby the former can not be moved to the disconnecting position so long as the brushes remain lifted, thus assuring that the operator will get the beneiit of the addedA inertia eiiect of the motor armature, withstarter to which the present invention may be applied as hereinafter described;
  • Fig. 2 is a view of the disconnecting means above referred to, as seen along the line 2-2 of Fig. l;
  • Fig. 3 is another View of the disconnecting means, as seen along line 3 3 of Fig. 1;
  • Fig. 4 is a view of the motor shown in Fig. 1 but with a diiierent portion of the housing broken away, to show the brush lifting mechanism;
  • Fig. 5 is a View in perspective of both the brush lifting and disconnecting controls, with the interlocking. mechanism applied thereto;
  • Fig. 6 is aY transverse sectional View along the line 6-6 of Fig. 4;
  • Fig. '7 is an end View of the motor of Figs. 1, 4, and 5;
  • Fig. ⁇ 8 is a view in elevation of the brush lifting cam.
  • Movement of the clutch member 9 into engagement with corresponding clutch'mernber lil of the engine is under the control of axially movable rod I6 passing centrally and slidably through clutch barrel I3 and connecting with clutch member l0 through yieldable means, as in the aforesaid Lansing patent, or directly, as indicated.
  • the rod is normally restrained in the clutch-retracting position shown, by suitable means such as coiled torsion spring
  • suitable means such as coiled torsion spring
  • the winding (not shown) of this meshing solenoid may be interposed in a circuit from battery 25, which circuit may contain a hand-switch 26 and a second solenoid 21 (Fig. 5), the latter having a plunger-carried switch element 28 controlling low of current to motor 8.
  • the starter may be operated by accelerating the iiywheel by hand through the hand-cranking shaft 33 connecting with the starter gear train as indicated at 34, 35.
  • and the flywheel 5 takes the form of an externally splined sleeve or clutch element 42 normally meshing with two internally splined elements 43 and 44, the former being integrated with the flywheel, as by screws 46, and the latter being integrated with the armature shaft 4
  • a coiled compression spring 41 bears at one end against the base of the socketed part of armature shaft 4
  • a rod 49 slidably extends through armature shaft 4I and operatively connects with clutch 42 by means of a lock ring embedded in a circumferential groove located near the end of rod 49, whereby rearward sliding of said rod will draw clutch 42 to the right and interrupt driving relationship between armature shaft 4
  • a bifurcated lever 52 straddling said rod 49 and abutting a collar 53 fixed by suitable means to the rear end of said rod, Where it protrudes beyond the bearing and retainer assembly 1li at the rear of armature shaft 4
  • Supports 54 provide pivotal mounting for lever 52, and a rocking thereof about pivot bearing 56 is effected by reciprocation of a bar 51.
  • this bar 51 is slidably received in the upper portion 58 of the sub-housing 59 at the rear of the motor, and includes a notch 6
  • the brush lifting mechanism is shown in Figs. 4 and 6 as including a ring 66 (see also Fig. 8') having support upon an inner ring 61 of insulating material surrounding bearing assembly 1
  • the outer surface of ring 66 is cut to form a plurality of cam elements corresponding in number and spacing to the number of brushesI engageable with the commutator 69 of the motor, and said cam elements being adapted to cooperate with the brush carriages 8l (shown best in Fig.
  • a spring-pressed detent 16 registerable with a depression 11 located in the end portion 18 of the housing in such position as to assure feeding of current to the commutator by way of the brushes 82 unless and until the cam ring 66 is shifted by actuation of the bell-crank 14 whereupon pin 1
  • an additional detent similar to the detent 16 may be provided to engage with the depression 11 when the pin 1
  • the interlocking means whereby shifting of the clutch element 42 to the disengaged position is rendered impossible while the brushes are in the disengaged position, is shown in Fig, 5 as taking the form of a bar 86 slidable in a guide block 81 to which is anchored a spring 88 normally holding bar 86 in the position shown, in which position its cam-surfaced end registers with the correspondingly shaped cam-surfaced notch 89 in manually operated rod 9

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

June 15, 1943. R. M.v NARDONE ENGINE STRTING MECHANISM Original Filed May 5. 1939 3. Sheets-Sheet 1 T0 SOLENO/D INVENTOR. l Romeo M Nardo/7e BY June 15, 1943. R. M. NARDONE ENGINE STARTNG MEcHNIsM Original Filed May 5, 1939 3 Sheets-Sheet 2 INVENTOR. Efo/neo /l/. Nardo/7e d (a/M June l5, 1943. R M. NARDONE ENGINE STARTING MECHANISM Original Filed May 5, 1939 3 Sheets-Sheet 3 mvENToR. E50/neo ,M Nardo/7e M/UgORNE-X Patented June i5, 1943 TAT E S Romeo M. Nardone, Westwood, N. J., assigner to Bendix Aviation Corporation, South Bend, Ind., a cerpcration of Delaware Unirse riginal application May 5, 1939, Serial No.
272,029. Divided and this appiication Augustv 27, 1941, Serial No. 408,531
(Cl. 12S-179) 3 Claims.
out brush drag, in the event that conditions render such added inertia effect desirable.
These and other uobjects of the invention will become apparent from inspection of the following specication when read with reference to the accompanying drawings wherein is illustrated the preferred embodiment of the invention. It is to be expressly understood, however, that the drawings are for the purpose of illustration only, and
2,068,462 shows an inertia starter having an 10 are not designed as a definition of the limits of inertia element in the [crm of a iiywheel which the invention, reference being had to the apmay be accelerated manually or by use of an pended claims for this purpose.
electric motor; the connections between the In the drawings: y motor and flywheel involving a uni-directional Fig. 1 is a View, partly in elevation, partly in clutch which overruns when the manual accell5 section, and partly schematic, of. an inertia erating means is employed-the motor thus remaining at rest, Wherefore its commutator and brushes do not act as a drag on the iiywheel during the accelerating process.
While this elimination of brush drag is desirable under these conditions of manual acceleration, there are occasions when the addition oi the mass of the motorarmature, to that of the Iiywheel, would provide a desirable increase in the total inertia effect, which increase would be even more substantial if the brush drag were to be removed. On other occasions where this added inertia effect is not necessary, it is of course preferable to relieve the operator of the necessity of accelerating the additional mass of the motor armature, or of raising the brushes from their commutator engaging positions.
It is accordingly one of the objects of the present invention to provide, in an inertia type starter having alternative means for acceleration of the inertia element, a novel control for disconnecting one of said alternative accelerating means when use of the other is contemplated.
A second object is to provide an improved brush lifting mechanism operative to remove the drag of the motor brushesassuming that one of the alternative accelerating means is an electric motorwhenever it is desired to add tothe inertia eiiect by leaving the motor connected for acceleration with the main inertia element (flywheel), as by operation of the alternative (handrotated, for example) accelerating means.
A third object is to provide novel interlocking means operative upon both the disconnecting and the brush lifting controls whereby the former can not be moved to the disconnecting position so long as the brushes remain lifted, thus assuring that the operator will get the beneiit of the addedA inertia eiiect of the motor armature, withstarter to which the present invention may be applied as hereinafter described;
Fig. 2 is a view of the disconnecting means above referred to, as seen along the line 2-2 of Fig. l;
Fig. 3 is another View of the disconnecting means, as seen along line 3 3 of Fig. 1;
Fig. 4 is a view of the motor shown in Fig. 1 but with a diiierent portion of the housing broken away, to show the brush lifting mechanism;
Fig. 5 is a View in perspective of both the brush lifting and disconnecting controls, with the interlocking. mechanism applied thereto;
Fig. 6 is aY transverse sectional View along the line 6-6 of Fig. 4;
Fig. '7 is an end View of the motor of Figs. 1, 4, and 5; and
Fig. `8 is a view in elevation of the brush lifting cam.
In the drawings there is shown a representation, mainly diagrammatic, of one type of engine starting mechanism to which the present invention is applicable. IAs shown therein the flywheel 5 is disposed in alignment with the electric motor 8 constituting one of alternative accelerating means referred to above. interposed between the engine engaging clutch member S and the flywheel 5 are the usual gear train` and capacity controlling pre-set. clutch, the former being shown as having at one end a high speed pinion I I rotatable with iiywheel 5, and at the low speed end a gear I2 to rotate the barrel Iii housing thev said pre-set clutch in the usual manner (as illustrated in detail in Lansing Patent No. 1,833,948), whereby rotation is imparted to the engine engaging clutch element 9. Movement of the clutch member 9 into engagement with corresponding clutch'mernber lil of the engine is under the control of axially movable rod I6 passing centrally and slidably through clutch barrel I3 and connecting with clutch member l0 through yieldable means, as in the aforesaid Lansing patent, or directly, as indicated. The rod is normally restrained in the clutch-retracting position shown, by suitable means such as coiled torsion spring |1 corresponding to the coiled torsion spring |06 of the aforesaid Lansing patent, and is movable into the clutch meshing position by manual means |8 or by energization of a solenoid whose plunger 2| connects with rod I6 by way of the intervening levers 22 and 23 and the rockshaft 24 about which the spring |1 is coiled.
The winding (not shown) of this meshing solenoid may be interposed in a circuit from battery 25, which circuit may contain a hand-switch 26 and a second solenoid 21 (Fig. 5), the latter having a plunger-carried switch element 28 controlling low of current to motor 8.
In case of motor failure (or if the battery charge is weak) the starter may be operated by accelerating the iiywheel by hand through the hand-cranking shaft 33 connecting with the starter gear train as indicated at 34, 35.
As shown in Fig. 1, the connection between the motor armature shaft 4| and the flywheel 5 takes the form of an externally splined sleeve or clutch element 42 normally meshing with two internally splined elements 43 and 44, the former being integrated with the flywheel, as by screws 46, and the latter being integrated with the armature shaft 4|. A coiled compression spring 41 bears at one end against the base of the socketed part of armature shaft 4|, and at its opposite end exerts pressure upon clutch element 42 to hold the latter in the meshed position shown. A rod 49 slidably extends through armature shaft 4I and operatively connects with clutch 42 by means of a lock ring embedded in a circumferential groove located near the end of rod 49, whereby rearward sliding of said rod will draw clutch 42 to the right and interrupt driving relationship between armature shaft 4| and flywheel 5.
To effect such rearward movement of rod 49 there is provided a bifurcated lever 52 straddling said rod 49 and abutting a collar 53 fixed by suitable means to the rear end of said rod, Where it protrudes beyond the bearing and retainer assembly 1li at the rear of armature shaft 4|. Supports 54 provide pivotal mounting for lever 52, and a rocking thereof about pivot bearing 56 is effected by reciprocation of a bar 51. As shown in Figs. 1, 2, 3, 5 and '1, this bar 51 is slidably received in the upper portion 58 of the sub-housing 59 at the rear of the motor, and includes a notch 6| having a cam edge 62 (Fig. 2) engageable with the upper end 63 of lever 52 to rock the latter in response to a pull exerted upon the bar actuating cable 84 in the direction of the arrows in Figs. 2, 3 and 5. The means shown in Fig. 5 for controlling cable movement are described more fully hereinafter. y
The brush lifting mechanism is shown in Figs. 4 and 6 as including a ring 66 (see also Fig. 8') having support upon an inner ring 61 of insulating material surrounding bearing assembly 1|); said ring 66 being shiftable about said supporting ring 61 to a limited extent, as determined by the length of arcuate slot 68 (Fig. 7) at the rear of housing 8, which slot receives a pin 1| secured at its inner end to the ring 66 and at its outer end receives a fitting 12 (Fig. 5) serving as anchorage for one end of a link 13 whose outer end is received in a bell-crank 14 operable from the panel 15 (in the operators 75 compartment of the vehicle on which the engine to be started is installed) by the interlocking operating means hereinafter described more fully. The outer surface of ring 66 is cut to form a plurality of cam elements corresponding in number and spacing to the number of brushesI engageable with the commutator 69 of the motor, and said cam elements being adapted to cooperate with the brush carriages 8l (shown best in Fig. 6) in such manner as to raise the brushes 82 to positions of disengagement with respect to the commutator 69 when the high or outer portions of the cam surfaces are brought into engagement with the projecting arms 84 extending from the brush carriages 8| into the path of rotation of the cam ring 66. The cam ring is normally restrained from movement from the position in which the brushes are engaged by suitable means, as indicated in Fig. 4, and takes the form of a spring-pressed detent 16 registerable with a depression 11 located in the end portion 18 of the housing in such position as to assure feeding of current to the commutator by way of the brushes 82 unless and until the cam ring 66 is shifted by actuation of the bell-crank 14 whereupon pin 1| rides along slot 68 to the opposite end thereof and thereby rotates cam ring 66 in a counter-clockwise direction as viewed in Fig. 6 to produce a lifting of the brush carriages 8| and hence the brushes 82 mounted therein, against the opposition of the opposing springs 19. If desired, an additional detent similar to the detent 16 may be provided to engage with the depression 11 when the pin 1| has reached the opposite limit of its arcuate stroke, to assure retention of the brushes in the disengaged position during the full cycle of flywheel acceleration.
The interlocking means, whereby shifting of the clutch element 42 to the disengaged position is rendered impossible while the brushes are in the disengaged position, is shown in Fig, 5 as taking the form of a bar 86 slidable in a guide block 81 to which is anchored a spring 88 normally holding bar 86 in the position shown, in which position its cam-surfaced end registers with the correspondingly shaped cam-surfaced notch 89 in manually operated rod 9| whose outer end projects through panel 15 to receive a knob or handle 92, and whose inner end is received in the brush lifting bell-crank 14. The end of bar 86 opposite rod 9| is engageable with a notch 93 in rod 94 whose outer end projects through panel 15 to receive a knob or handle 96, and whose inner end receives the end of the clutch shifting cable 64. Also mounted on rod 94 (but insulated therefrom) is a switch bar 91 normally bridging contacts 98 in the circuit to relay 21.
With the arrangement illustrated, outward movement of rod 9| will slide bar 86 into locking engagement with rod 94, thus making it impossible to disengage clutch 42 so long as the said rod 9| remains in the outer (brush lifted) position. Thus, there is automatic assurance that, during manual acceleration of flywheel 5, with the brushes raised to eliminate friction drag, the inertia of the motor armature will be available to supplement that of the flywheel. If, on the other hand, the operator finds that, under existing conditions in a given instance, he does not require this added inertia effect, he may relieve himself of the burden of manual acceleration of the additional Weight constituted by the motor armature. This he will do by pulling outwardly on member 94, to disengage clutch 42. This action, incidentally, will lock the brushes against being raised; but this is immaterial, since there can be no energization of the motor 8, as the outward pull of rod 94 causes the motor energizing relay circuit to be held open at the switch 91. Thus accidental energization of the motor, during use of the manual means 33 for flywheel acceleration, is precluded.
This application is a division of my copending application No. 272,029, filed May 5, 1939, now Patent No. 2,261,402.
What I claim is:
1. The combination, with a flywheel, of alternative accelerating means including a gear train on one side of the flywheel and an electric motor on the opposite side thereof, means including a clutch element drivably connecting the motor armature and flywheel, resilient means constantly biasing said clutch element to connecting position, and means including a part shiitable independently of said armature but extending through the motor for disconnecting the clutch element from the iiywheel, said means also including a cooperating part for holding said disconnecting means in the disconnecting position during use of said gear train to accelerate the flywheel.
2. The combination, in an engine starter, of a reduction gear train, a flywheel rotatable with the high speed end of the gear train, an engineengaging member rotatable with the low speed end of the gear train, means for energizing the flywheel, said energizing means including an electric motor having a ywheel-engaging member rotatable therewith, resilient means constantly biasing said flywheel-engaging member to flywheel-engaging position, means including a part extending through the motor for moving said flywheel-engaging member to the disengaged position, and means including a part extending through said gear train for moving said engine-engaging member to the engine-engaging position, whereby the engine may be rotated by the previously energized flywheel, either with or without corresponding rotation of the electric motor, depending upon whether the flywheelengaging member is in the engaged or the disengaged position, Y
3. The combination, in an engine starter, of a reduction gear train, a fly-wheel rotatable with the high speed end of the gear train, an engine-engaging member rotatable with the low speed end of the gear train, means for energizing the ywheel, said energizing means including an electric motor having a ilywheel-engaging member rotatable therewith, resilient means constantly biasing said flywheel-engaging member to flywheel-engaging position, and means including a part extending through said motor for moving said flywheel engaging member to the disengaged position, whereby the engine may be rotated by the previously energized flywheel, but Without corresponding rotation of the electric motor.
ROME() M. NARDONE.
US408531A 1939-05-05 1941-08-27 Engine starting mechanism Expired - Lifetime US2322154A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US408531A US2322154A (en) 1939-05-05 1941-08-27 Engine starting mechanism
US467145A US2353317A (en) 1941-08-27 1942-11-27 Electrical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US272029A US2261402A (en) 1939-05-05 1939-05-05 Engine starting mechanism
US408531A US2322154A (en) 1939-05-05 1941-08-27 Engine starting mechanism

Publications (1)

Publication Number Publication Date
US2322154A true US2322154A (en) 1943-06-15

Family

ID=23038105

Family Applications (2)

Application Number Title Priority Date Filing Date
US272029A Expired - Lifetime US2261402A (en) 1939-05-05 1939-05-05 Engine starting mechanism
US408531A Expired - Lifetime US2322154A (en) 1939-05-05 1941-08-27 Engine starting mechanism

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US272029A Expired - Lifetime US2261402A (en) 1939-05-05 1939-05-05 Engine starting mechanism

Country Status (2)

Country Link
US (2) US2261402A (en)
GB (1) GB540617A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013870A (en) * 1958-06-30 1961-12-19 Ackerman Arthur Manufacture of abrasive belts and coated fabrics therefor
US3029327A (en) * 1958-08-18 1962-04-10 Naimer H L Remotely controllable rotary switch
US20130276739A1 (en) * 2012-04-19 2013-10-24 Kevin Lloyd McNabb Direct current electric starter solenoid manual activation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437400A (en) * 1941-04-08 1948-03-09 Bendix Aviat Corp Engine starting mechanism
US2446297A (en) * 1944-03-07 1948-08-03 Bendix Aviat Corp Starter
US2508833A (en) * 1946-08-28 1950-05-23 Bendix Aviat Corp Engine starting means
US2763797A (en) * 1955-03-07 1956-09-18 Dean Peter Payne Overload protection for electric motor worm drive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013870A (en) * 1958-06-30 1961-12-19 Ackerman Arthur Manufacture of abrasive belts and coated fabrics therefor
US3029327A (en) * 1958-08-18 1962-04-10 Naimer H L Remotely controllable rotary switch
US20130276739A1 (en) * 2012-04-19 2013-10-24 Kevin Lloyd McNabb Direct current electric starter solenoid manual activation device
US9359988B2 (en) * 2012-04-19 2016-06-07 Kevin Lloyd McNabb Direct current electric starter solenoid manual activation device

Also Published As

Publication number Publication date
GB540617A (en) 1941-10-23
US2261402A (en) 1941-11-04

Similar Documents

Publication Publication Date Title
US2322154A (en) Engine starting mechanism
US2302687A (en) Engine control apparatus
US2661730A (en) Engine starter control apparatus
US1833948A (en) Engine starting apparatus
US2862391A (en) Engine starting apparatus
US1939405A (en) Starting mechanism
US2876644A (en) Automotive mechanical starter
US1792583A (en) Engine-starting system
US2207652A (en) Engine starting mechanism
US2900970A (en) Single lever control for engine starting mechanism
US2117230A (en) Engine starting apparatus
US2338403A (en) Starting device for internal combustion engines
US1661372A (en) Engine starter
US1931459A (en) Starting mechanism
US1978523A (en) Electrical apparatus for automotive vehicles
US1761540A (en) Engine-starting apparatus
US2014258A (en) Engine starter
US1940349A (en) Engine starting mechanism
US2105643A (en) Engine control apparatus
US2353317A (en) Electrical apparatus
US1693342A (en) Engine starter
US1275941A (en) Starting apparatus for internal-combustion engines.
US1761539A (en) Engine-starting apparatus
US2032775A (en) Means for controlling starting motor and ignition circuits
US1970885A (en) Engine starter