US2321454A - Multiple section antenna - Google Patents

Multiple section antenna Download PDF

Info

Publication number
US2321454A
US2321454A US420041A US42004141A US2321454A US 2321454 A US2321454 A US 2321454A US 420041 A US420041 A US 420041A US 42004141 A US42004141 A US 42004141A US 2321454 A US2321454 A US 2321454A
Authority
US
United States
Prior art keywords
antenna
sections
outer conductors
conductors
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US420041A
Inventor
George H Brown
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Priority to US420041A priority Critical patent/US2321454A/en
Application granted granted Critical
Publication of US2321454A publication Critical patent/US2321454A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • H01Q21/10Collinear arrangements of substantially straight elongated conductive units

Definitions

  • This invention relates to multiple section antennas and particularly to an improved antenna in which the outer conductors, consisting of a plurality of sections of concentric lines, are used as radiators and in which inner portions of the concentric lines are used as phasing reactors and a mechanical support.
  • the Franklin antenna is one in which several radiating sections are connected by non-radiating phasing sections.
  • the radiating sections are conventional conductors and the phasing sections are folded conductors. In practice it is dilicult to develop folded sections which do not radiate and which oier the proper impedance to the applied currents. Since sectional antennas of the single conductor type are usually not selfsupporting, it becomes necessary to provide a support together with means for insulating the several sections.
  • One of the objects of the present invention is to provide an improved multiple section antenna. Another object is to provide an improved multiple section self-supporting antenna. Another object is to provide improved means whereby a multiple section antenna may be adjusted to produce a predetermined radiation pattern. An additional object is to provide means whereby a plurality of sections of concentric lines are connected so that applied currents establish radiation fields of predominantly the same phase from the several sections.
  • FIG. 1 is an elevational view of one embodiment of the invention
  • Fig. 2 is a graph representing the field pattern of the antenna of Fig. l
  • Fig. 3 is an elevational view of a vertical antenna arranged in accordance with the invention
  • Fig. 4 is a sectional View along the line 4 4 of Fig. 1.
  • the inner conductor 3 of the four sections is a continuous conductor on which are located four pairs of snorting plugs 5, 5', 'I, 'I, 9, 9' and II, II.
  • Each pair of snorting plugs support one of the four sections of the outer conductors I3, I5, I'I, I9 of the transmission line.
  • the end conductors I3 and I9 are each 5/8 of the operating wave length long.
  • the central conductors I5 and II are each of the operating wave length long.
  • the adjacent edges of the outer conductors are separated by a small air gap.
  • the centrally located outer conductors I5 and I'I are supported by metal elements 2l and 23.
  • One of the supporting elements 23 may act as a portion of the concentric feed line 25 which is connected to the transmitter 2l or other radio device.
  • the end conductors I3 and I9 are supported by metal elements 29, 3l which are located at voltage nodes.
  • the snorting plugs 5 and II are located near the ends of the end sections I3 and I9.
  • the electrical location of these plugs is not important as they serve only as supports for the outer conductors I3 and I9. and 1, and 9' and II are so Vspaced with respect to each other that they, -in conjunction with the intervening concentric line conductors, constitute an inductive reactance so that the currents traversing the inside portion of the outer conductors I3, l5 and I'I, I9 and the inner conductor 3 between the plugs 5', 1' and 9', II', are phased as hereinafter described.
  • the shorting plugs 1 and 9 at the central portion of the' antenna are spaced so that the antenna impedance matches the impedance of the concentric fed line 25.
  • the operation of the antenna is as follows: The currents applied to the central sections I5, I'I are distributed over the outside portions of the central sections as shown in the kgraph above the antenna of Fig. l. Since the central sections have a total length of 3A; of a wave at the operating frequency it follows that the current distribution will be a half wave 33 at the center of the antenna followed .by oppositely .polarized 1/8 waves 35, 3l at the remote ends of the central sections.
  • the applied currents then flow along the inner walls of ⁇ the .outer conductors I5, I'I; along the snorting plugs 1', 9'; along the inner conductors to the snorting plugs 5 and II; along the plugs 5' and II'; and alongthe inner walls of the outer conductors 'I3 ⁇ and I 9.
  • the current distribution on the end sections .I3 and I9 starts with 1/8 wave distribution of the same phase as the 1/8 wave distribution on the neighboring conductors I5 and II and then ends with half wave distribution Yas indicated by the curves 39, 4I, respectively.
  • the main radiation is establishedby the 4currents vof half wave distribution 33, 3.9, 4I.
  • the field pattern shown in Fig. 2 was obtained. The main single lobe was resolved into two lobes by changing the spacing of the snorting plugs l and 9', Il.
  • the eld pattern may be varied over a wide range by varying the lengths of the radiating portions and the reactance of the non-radiating portions.
  • the invention may be applied to an antenna for radiating vertically polarized Waves.
  • Fig. 3 Such an arrangement is shown in Fig. 3 in which the inner conductor 5I is the support for the an tenna.
  • the inner conductor may be grounded and may be supplied with ground rods 53.
  • Shorting plugs ⁇ 55, 51, 5l', 58, 59', 6l, 6I and 63 are attached to the inner conductor.
  • the snorting plugs serve two functions: the first is to support the outer conductors 65, El, 69 and 1I; the second is to provide non-radiating reactance sections of the type previously described by reference to lj'ig. l.
  • the rst outer conductor section 65 is connected to the inner member of a concentric fed line 'I3 which is connected to the transmitter' l5, or receiver if the antenna is used for reception.
  • the outer member of the fed line is connected to ground and to the inner conductor Y 5I of the antenna.
  • the spacing of the lowest plug 55 is adjusted to match the antenna impedance to the fed line impedance.
  • the spacings of the adjacent pairs of snorting plugs 51-51, Bil-59', and BI-Bl are adjusted to obtain the desired reactance between tne adjacent radiating sections.
  • the lowest section E5 is made of a wave length of the applied current.
  • the central radiating sections 61, and 69 are each of a wave length.
  • the highest section is made ⁇ L/ of a wave length.
  • the current distribution of the several radiating sections is illustrated by a graph 'l1 which is a part of Fig. 3.
  • the eld pattern of the antenna will be circular. In an antenna of this type the out of phase components do not necessarily indcate a loss because properly related to the in phase components, they tend to suppress sky wave radiation and to confine the main radiation to the useful path parallel to the earths surface.
  • the vertical antenna may be provided with reflectors or directors, if a directive pattern is desired. Moreover, such reflectors or directors may be rotated or oscillated to produce a rotating or oscillating pattern.
  • a multisection antenna including an inner conductor, a plurality of separated outer conductors, and conductive means attached to said inner conductor for supporting said outer conductors and spaced to form reactive sections connecting said outer conductors in series.
  • a multisection antenna including an inner conductor, a plurality of separated and linearly arranged outer conductors, snorting plugs at ⁇ tached to said inner conductor and located in pairs connected respectively to adjacent outer conductors to form reactance sections therebetween effectively connecting said outer conductors in series, and means for effectively connecting a radio device to said antenna.
  • a multisection antenna including an inner conductor, a plurality of adjacent outer conductors, conductive means attached to said inner conductor for supporting said adjacent outer conductors and spaced to form reactive sections connecting said adjacent outer conductors in series, and means for connecting a radio device to said antenna.
  • a multisection antenna including an inner nonradiating conductor, a plurality of adjacent radiating outer conductors arranged in a line, snorting members attached to said inner and outer conductors and forming reactive sections connecting said adjacent radiating conductors in series so that the main radiation from said conductors is in the same phase, and means for connecting a radio device between the adjacent ends of two of said outer conductors.
  • a multisection antenna including an inner nonradiating conductor, a plurality of adjacent radiating outer conductors, snorting members attached to said inner and outer conductors and forming reactive sections connecting said adjacent radiating conductors in series so that the main radiation from said conductors is in the same phase, means for connecting a radio device between the adjacent ends of two of said outer conductors, and additional snorting members spaced with respect to said connecting means for adjusting the input impedance 'of said antenna.
  • a multisection antenna including an inner conductor, a plurality of adjacent outer conductors, conductive members attached to said inner conductor for supporting said adjacent outer conductors and spaced to form reactive sections connecting said adjacent outer conductors in series, and means for connecting a radio device between said inner conductor and one of said outer conductors.
  • a multisection antenna including an inner conductor, a plurality of adjacent outer conductors each of a length not less than a quarter of the operating wave length, conductive members attached to said inner conductor for supporting said adjacent outer conductors to form reactance sections connecting said adjacent outer conductors in series, and means for applying radio frequency currents to the adjacent ends of two of said outer conductors so that the current distribution corresponds to a plurality of half waves of the same phase.
  • a device including means for adjusting the impedance between said adjacent ends.
  • a multisection antenna including an inner conductor, a plurality of outer conductors arranged in'a line and each o f a length not less than a quarter of the operating wave length, conductive membersfattached to said inner conductor and to said outer conductors to form reactance sections connecting adjacent outer conductors in series, and connections vfor applying radio frequency currents to the adjacentlends of GEORGE HBROWN.

Landscapes

  • Details Of Aerials (AREA)

Description

June 8, 1943. G. H. BROWN 2,321,454
MULTIPLE SECTION ANTENNA Yiled NOV. 22, 1941 A l Snventot wfyslraw/L Patented June 8, 1943 UNH STATES ATENT OFFICE MULTKPLE SECTION ANTENNA George H. Brown, Haddonfield, N. J., assigner t Radio Corporation of America a corporation of Delaware 10 Claims.
This invention relates to multiple section antennas and particularly to an improved antenna in which the outer conductors, consisting of a plurality of sections of concentric lines, are used as radiators and in which inner portions of the concentric lines are used as phasing reactors and a mechanical support.
The Franklin antenna is one in which several radiating sections are connected by non-radiating phasing sections. The radiating sections are conventional conductors and the phasing sections are folded conductors. In practice it is dilicult to develop folded sections which do not radiate and which oier the proper impedance to the applied currents. Since sectional antennas of the single conductor type are usually not selfsupporting, it becomes necessary to provide a support together with means for insulating the several sections.
One of the objects of the present invention is to provide an improved multiple section antenna. Another object is to provide an improved multiple section self-supporting antenna. Another object is to provide improved means whereby a multiple section antenna may be adjusted to produce a predetermined radiation pattern. An additional object is to provide means whereby a plurality of sections of concentric lines are connected so that applied currents establish radiation fields of predominantly the same phase from the several sections.
The invention will be described by referring to the accompanying drawing in which Fig. 1 is an elevational view of one embodiment of the invention; Fig. 2 is a graph representing the field pattern of the antenna of Fig. l; Fig. 3 is an elevational view of a vertical antenna arranged in accordance with the invention; and Fig. 4 is a sectional View along the line 4 4 of Fig. 1.
Referring to Fig. 1, on a grounded plate or screen I four sections of concentric transmission line are arranged as follows: The inner conductor 3 of the four sections is a continuous conductor on which are located four pairs of snorting plugs 5, 5', 'I, 'I, 9, 9' and II, II. Each pair of snorting plugs support one of the four sections of the outer conductors I3, I5, I'I, I9 of the transmission line. By way of example, the end conductors I3 and I9 are each 5/8 of the operating wave length long. The central conductors I5 and II are each of the operating wave length long. The adjacent edges of the outer conductors are separated by a small air gap. The centrally located outer conductors I5 and I'I are supported by metal elements 2l and 23. One of the supporting elements 23 may act as a portion of the concentric feed line 25 which is connected to the transmitter 2l or other radio device. The end conductors I3 and I9 are supported by metal elements 29, 3l which are located at voltage nodes.
The snorting plugs 5 and II are located near the ends of the end sections I3 and I9. The electrical location of these plugs is not important as they serve only as supports for the outer conductors I3 and I9. and 1, and 9' and II are so Vspaced with respect to each other that they, -in conjunction with the intervening concentric line conductors, constitute an inductive reactance so that the currents traversing the inside portion of the outer conductors I3, l5 and I'I, I9 and the inner conductor 3 between the plugs 5', 1' and 9', II', are phased as hereinafter described. The shorting plugs 1 and 9 at the central portion of the' antenna are spaced so that the antenna impedance matches the impedance of the concentric fed line 25.
The operation of the antenna is as follows: The currents applied to the central sections I5, I'I are distributed over the outside portions of the central sections as shown in the kgraph above the antenna of Fig. l. Since the central sections have a total length of 3A; of a wave at the operating frequency it follows that the current distribution will be a half wave 33 at the center of the antenna followed .by oppositely .polarized 1/8 waves 35, 3l at the remote ends of the central sections. The applied currents then flow along the inner walls of `the .outer conductors I5, I'I; along the snorting plugs 1', 9'; along the inner conductors to the snorting plugs 5 and II; along the plugs 5' and II'; and alongthe inner walls of the outer conductors 'I3 `and I 9. The current distribution on the end sections .I3 and I9 starts with 1/8 wave distribution of the same phase as the 1/8 wave distribution on the neighboring conductors I5 and II and then ends with half wave distribution Yas indicated by the curves 39, 4I, respectively. The distribution of currentsiiowing within the inner surfaces of the lconcentric lines, as distinguished from the outeror radiating surfaces, is not shownbecause these Ysurfaces do not radiate and therefore do not contribute to the response or radiation field estab-lished about the'antenna. V
The main radiation is establishedby the 4currents vof half wave distribution 33, 3.9, 4I. YThe outl of phase components corresponding to the 1/8 wave 35, 31, 43, 45 distribution, theoretically detract from the main radiation. This has not The adjacent snorting plugs 5' proven detrimental because in many cases the out of phase components tend to confine the eld to useful regions. For described lengths and spacings of snorting plugs, the field pattern shown in Fig. 2 was obtained. The main single lobe was resolved into two lobes by changing the spacing of the snorting plugs l and 9', Il. The eld pattern may be varied over a wide range by varying the lengths of the radiating portions and the reactance of the non-radiating portions.
The invention may be applied to an antenna for radiating vertically polarized Waves. Such an arrangement is shown in Fig. 3 in which the inner conductor 5I is the support for the an tenna. The inner conductor may be grounded and may be supplied with ground rods 53. Shorting plugs `55, 51, 5l', 58, 59', 6l, 6I and 63 are attached to the inner conductor. The snorting plugs serve two functions: the first is to support the outer conductors 65, El, 69 and 1I; the second is to provide non-radiating reactance sections of the type previously described by reference to lj'ig. l. The rst outer conductor section 65 is connected to the inner member of a concentric fed line 'I3 which is connected to the transmitter' l5, or receiver if the antenna is used for reception. The outer member of the fed line is connected to ground and to the inner conductor Y 5I of the antenna.
The spacing of the lowest plug 55 is adjusted to match the antenna impedance to the fed line impedance. The spacings of the adjacent pairs of snorting plugs 51-51, Bil-59', and BI-Bl are adjusted to obtain the desired reactance between tne adjacent radiating sections. The lowest section E5 is made of a wave length of the applied current. The central radiating sections 61, and 69 are each of a wave length. The highest section is made `L/ of a wave length. The current distribution of the several radiating sections is illustrated by a graph 'l1 which is a part of Fig. 3. The eld pattern of the antenna will be circular. In an antenna of this type the out of phase components do not necessarily indcate a loss because properly related to the in phase components, they tend to suppress sky wave radiation and to confine the main radiation to the useful path parallel to the earths surface.
While the invention has been described as composed of sections of concentric line it should be understood that the outer conductors need not be solid but may be fabricated from wires, or'screens. The vertical antenna may be provided with reflectors or directors, if a directive pattern is desired. Moreover, such reflectors or directors may be rotated or oscillated to produce a rotating or oscillating pattern.
.I claim las my invention: j
'1. A multisection antenna including an inner conductor, a plurality of separated outer conductors, and conductive means attached to said inner conductor for supporting said outer conductors and spaced to form reactive sections connecting said outer conductors in series.
2. A multisection antenna including an inner conductor, a plurality of separated and linearly arranged outer conductors, snorting plugs at` tached to said inner conductor and located in pairs connected respectively to adjacent outer conductors to form reactance sections therebetween effectively connecting said outer conductors in series, and means for effectively connecting a radio device to said antenna.
3. A multisection antenna including an inner conductor, a plurality of adjacent outer conductors, conductive means attached to said inner conductor for supporting said adjacent outer conductors and spaced to form reactive sections connecting said adjacent outer conductors in series, and means for connecting a radio device to said antenna.
4. A multisection antenna including an inner nonradiating conductor, a plurality of adjacent radiating outer conductors arranged in a line, snorting members attached to said inner and outer conductors and forming reactive sections connecting said adjacent radiating conductors in series so that the main radiation from said conductors is in the same phase, and means for connecting a radio device between the adjacent ends of two of said outer conductors.
5. A multisection antenna including an inner nonradiating conductor, a plurality of adjacent radiating outer conductors, snorting members attached to said inner and outer conductors and forming reactive sections connecting said adjacent radiating conductors in series so that the main radiation from said conductors is in the same phase, means for connecting a radio device between the adjacent ends of two of said outer conductors, and additional snorting members spaced with respect to said connecting means for adjusting the input impedance 'of said antenna.
6. A multisection antenna including an inner conductor, a plurality of adjacent outer conductors, conductive members attached to said inner conductor for supporting said adjacent outer conductors and spaced to form reactive sections connecting said adjacent outer conductors in series, and means for connecting a radio device between said inner conductor and one of said outer conductors.
7. A multisection antenna including an inner conductor, a plurality of adjacent outer conductors each of a length not less than a quarter of the operating wave length, conductive members attached to said inner conductor for supporting said adjacent outer conductors to form reactance sections connecting said adjacent outer conductors in series, and means for applying radio frequency currents to the adjacent ends of two of said outer conductors so that the current distribution corresponds to a plurality of half waves of the same phase.
8. A device according to claim 7 including means for adjusting the impedance between said adjacent ends. Y A
9. A multisection antenna including an inner conductor, a plurality of outer conductors arranged in'a line and each o f a length not less than a quarter of the operating wave length, conductive membersfattached to said inner conductor and to said outer conductors to form reactance sections connecting adjacent outer conductors in series, and connections vfor applying radio frequency currents to the adjacentlends of GEORGE HBROWN.
US420041A 1941-11-22 1941-11-22 Multiple section antenna Expired - Lifetime US2321454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US420041A US2321454A (en) 1941-11-22 1941-11-22 Multiple section antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US420041A US2321454A (en) 1941-11-22 1941-11-22 Multiple section antenna

Publications (1)

Publication Number Publication Date
US2321454A true US2321454A (en) 1943-06-08

Family

ID=23664838

Family Applications (1)

Application Number Title Priority Date Filing Date
US420041A Expired - Lifetime US2321454A (en) 1941-11-22 1941-11-22 Multiple section antenna

Country Status (1)

Country Link
US (1) US2321454A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467962A (en) * 1947-01-28 1949-04-19 Electronies Res Inc High-frequency antenna
US2471045A (en) * 1944-10-21 1949-05-24 Selvidge Harner Ultra high frequency antenna system
US2480155A (en) * 1945-02-28 1949-08-30 Rca Corp Antenna system
US2480172A (en) * 1943-11-05 1949-08-30 Int Standard Electric Corp Radio antenna
US2486597A (en) * 1946-03-30 1949-11-01 Workshop Associates Inc Antenna
US2492404A (en) * 1945-11-10 1949-12-27 Rca Corp Construction of ultra high frequency broad-band antennas
US2502155A (en) * 1948-03-02 1950-03-28 Charles L Jeffers Low-angle radiation antenna
US2503952A (en) * 1946-03-19 1950-04-11 Rca Corp Traveling wave antenna
US2509253A (en) * 1946-04-29 1950-05-30 Farnsworth Res Corp Vertical antenna array
US2509283A (en) * 1945-10-25 1950-05-30 Rca Corp Directive antenna system
US2511221A (en) * 1946-06-28 1950-06-13 Rca Corp Antenna
US2512704A (en) * 1943-12-06 1950-06-27 Int Standard Electric Corp Arrangement for coupling wide frequency band antennae to transmission lines
US2513007A (en) * 1945-05-11 1950-06-27 Rca Corp Broadcast antenna
US2513336A (en) * 1947-03-11 1950-07-04 Standard Telephones Cables Ltd Radio antenna
US2514821A (en) * 1945-09-29 1950-07-11 Rca Corp Antenna system
US2529213A (en) * 1947-03-10 1950-11-07 American Phenolic Corp Ground plane antenna
US2531476A (en) * 1947-04-28 1950-11-28 Farnsworth Res Corp Ultra high frequency antenna
US2600179A (en) * 1946-02-18 1952-06-10 Alford Andrew Split cylinder antenna
US2605412A (en) * 1945-09-14 1952-07-29 Henry J Riblet Collinear sleeve type antenna array
US2625654A (en) * 1946-01-12 1953-01-13 Alford Andrew Slotted cylindrical antenna
US2682050A (en) * 1951-02-05 1954-06-22 Alford Andrew Localizer antenna system
US2683808A (en) * 1947-02-17 1954-07-13 Shumaker Clifton Broad band antenna
US2700112A (en) * 1949-03-07 1955-01-18 Alford Andrew Antenna structure
DE937782C (en) * 1953-02-01 1956-01-12 Elektronik G M B H Deutsche Radiator composed of several dipoles
US2757738A (en) * 1948-09-20 1956-08-07 Union Oil Co Radiation heating
US2767397A (en) * 1951-03-31 1956-10-16 Motorola Inc Antenna
DE973274C (en) * 1952-02-13 1960-01-07 Standard Elek K Lorenz Ag Coaxial dipole antenna system
US2945232A (en) * 1949-03-07 1960-07-12 Alford Andrew Antenna structure
US3735414A (en) * 1971-12-13 1973-05-22 Us Navy Slot fed stub antenna
WO1982004358A1 (en) * 1981-06-05 1982-12-09 Richard D Snyder Broadband antennae
US4479130A (en) * 1981-06-05 1984-10-23 Snyder Richard D Broadband antennae employing coaxial transmission line sections
DE3703812A1 (en) * 1987-02-07 1988-08-18 Kolbe & Co Hans Antenna arrangement

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2480172A (en) * 1943-11-05 1949-08-30 Int Standard Electric Corp Radio antenna
US2512704A (en) * 1943-12-06 1950-06-27 Int Standard Electric Corp Arrangement for coupling wide frequency band antennae to transmission lines
US2471045A (en) * 1944-10-21 1949-05-24 Selvidge Harner Ultra high frequency antenna system
US2480155A (en) * 1945-02-28 1949-08-30 Rca Corp Antenna system
US2513007A (en) * 1945-05-11 1950-06-27 Rca Corp Broadcast antenna
US2605412A (en) * 1945-09-14 1952-07-29 Henry J Riblet Collinear sleeve type antenna array
US2514821A (en) * 1945-09-29 1950-07-11 Rca Corp Antenna system
US2509283A (en) * 1945-10-25 1950-05-30 Rca Corp Directive antenna system
US2492404A (en) * 1945-11-10 1949-12-27 Rca Corp Construction of ultra high frequency broad-band antennas
US2625654A (en) * 1946-01-12 1953-01-13 Alford Andrew Slotted cylindrical antenna
US2600179A (en) * 1946-02-18 1952-06-10 Alford Andrew Split cylinder antenna
US2503952A (en) * 1946-03-19 1950-04-11 Rca Corp Traveling wave antenna
US2486597A (en) * 1946-03-30 1949-11-01 Workshop Associates Inc Antenna
US2509253A (en) * 1946-04-29 1950-05-30 Farnsworth Res Corp Vertical antenna array
US2511221A (en) * 1946-06-28 1950-06-13 Rca Corp Antenna
US2467962A (en) * 1947-01-28 1949-04-19 Electronies Res Inc High-frequency antenna
US2683808A (en) * 1947-02-17 1954-07-13 Shumaker Clifton Broad band antenna
US2529213A (en) * 1947-03-10 1950-11-07 American Phenolic Corp Ground plane antenna
US2513336A (en) * 1947-03-11 1950-07-04 Standard Telephones Cables Ltd Radio antenna
US2531476A (en) * 1947-04-28 1950-11-28 Farnsworth Res Corp Ultra high frequency antenna
US2502155A (en) * 1948-03-02 1950-03-28 Charles L Jeffers Low-angle radiation antenna
US2757738A (en) * 1948-09-20 1956-08-07 Union Oil Co Radiation heating
US2700112A (en) * 1949-03-07 1955-01-18 Alford Andrew Antenna structure
US2945232A (en) * 1949-03-07 1960-07-12 Alford Andrew Antenna structure
US2682050A (en) * 1951-02-05 1954-06-22 Alford Andrew Localizer antenna system
US2767397A (en) * 1951-03-31 1956-10-16 Motorola Inc Antenna
DE973274C (en) * 1952-02-13 1960-01-07 Standard Elek K Lorenz Ag Coaxial dipole antenna system
DE937782C (en) * 1953-02-01 1956-01-12 Elektronik G M B H Deutsche Radiator composed of several dipoles
US3735414A (en) * 1971-12-13 1973-05-22 Us Navy Slot fed stub antenna
WO1982004358A1 (en) * 1981-06-05 1982-12-09 Richard D Snyder Broadband antennae
US4479130A (en) * 1981-06-05 1984-10-23 Snyder Richard D Broadband antennae employing coaxial transmission line sections
DE3703812A1 (en) * 1987-02-07 1988-08-18 Kolbe & Co Hans Antenna arrangement

Similar Documents

Publication Publication Date Title
US2321454A (en) Multiple section antenna
US2455403A (en) Antenna
US2267889A (en) Antenna with wide wave range
GB528817A (en) Improvements in or relating to radio antenna
US2640930A (en) Antenna assembly
US2275646A (en) Antenna
US3016536A (en) Capacitively coupled collinear stripline antenna array
US2935747A (en) Broadband antenna system
US2539433A (en) Circularly polarized antenna
US2297329A (en) Wide-band antenna array
US3401387A (en) Slotted cone antenna
US2495399A (en) Antenna system
US2611867A (en) Slotted winged cylindrical antenna
US2465379A (en) Antenna unit
US2210491A (en) High frequency antenna
US2947988A (en) Traveling wave antenna
US2618746A (en) Antenna system
US2759183A (en) Antenna arrays
US3550145A (en) Manipole broadband antenna
US2724774A (en) Slotted cylinder antenna
US2267613A (en) Broadcast antenna
US2533900A (en) Antenna
US2207781A (en) Ultra high frequency antenna
US2985878A (en) Wound antenna with conductive support
US2447879A (en) Antenna