US2315727A - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
US2315727A
US2315727A US397851A US39785141A US2315727A US 2315727 A US2315727 A US 2315727A US 397851 A US397851 A US 397851A US 39785141 A US39785141 A US 39785141A US 2315727 A US2315727 A US 2315727A
Authority
US
United States
Prior art keywords
stop
code
station
character
rockshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US397851A
Inventor
Harry J Nichols
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US353114A external-priority patent/US2288819A/en
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US397851A priority Critical patent/US2315727A/en
Priority to US397852A priority patent/US2315728A/en
Application granted granted Critical
Publication of US2315727A publication Critical patent/US2315727A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L17/00Apparatus or local circuits for transmitting or receiving codes wherein each character is represented by the same number of equal-length code elements, e.g. Baudot code
    • H04L17/16Apparatus or circuits at the receiving end
    • H04L17/30Apparatus or circuits at the receiving end using electric or electronic translation

Definitions

  • the present invention is a division of applicants copending application Serial No. 353,114, filed August 17, 1940 relating to interoice r interstation communication systems and more particularly to communication systems for interconnectingseparatetypewriters of a certain standard construction, wherein the operation of any one typewriter, in a normal manner, can be either isolated, at will, from the operation of the system, to permit ordinary individual operation of the typewriters or, on the other hand, operation of one typewriter in the normal mannerv can be utilized to produce a copy, at a sending station, of the intelligence to be transmitted, and to simultaneously operate a second or receiving similar typewriter or a plurality of such receiving typewriters at remote points.
  • each of the plurality of receiving typewriters can be utilized when desired, as sending typewriters, and means are provided for break-in by a receive station, so that the direction of transmission can be reversed when necessary or desired.
  • one of the objects of the present invention is to provide novel means for interconnecting and operating two or more standard oiiice equipment typewriters, such as the well known Electromatic typewriter, so that such a standard instrument is utilized with very little additional equipment, in an interoice communication system, to produce speedy and accurate transmission and reception of messages.
  • standard oiiice equipment typewriters such as the well known Electromatic typewriter
  • a further object is to provide a system of communication for interconnecting at least two standard cce typewriters, comprising means controlled by each depressed key of the keyboard for setting up, in a simple and direct manner, a code combination of signal impulses representative of the function or character associated with the depressed key, and including start and stop signal impulses, said code combination comprising a plurality of electrical impulses ci identical VBivided and this application June 13,
  • a single signal channel for interconnecting the typewriters, means for transmitting selectively and sequentially through said channel the individual elements or impulses of a signal, representing aparticular function or character, and a novel combined mechanical-electrical translator controlled by the selecting elements of the code combination, for selectively energizing, at a standard receiving typewriter, solely the operating solenoid of the key bar corresponding to the key depressed at the sending station, for operating said corresponding key bar, whereby the depression of a chosen character key of a standard typewriter at one station produces the typing of the selected character at a remote station by means of a similar standard typewriter.
  • Still another object is to provide a system of interoii'ice or interstation communication including at least a pair of standard oilice typewriters having a modified keyboard, a series of solenoids, one for each character key, means controlled by a selected character key for producing a combination oi signal code elements representative of the character, means for interconnecting the respective typewriter solenoidsincluding one signal channel only, over which the code signal elements representative of said character are sequentially transmitted, start-stop, send-receive distributor means for sending or receiving, respectively, at separate stations, and in synchronism, the code elements comprising a representative signal, and novel mechanical-electrical translator means for receiving said code elements, translating the same, and selectively choosing that solenoid only, which corresponds to thekey depressed at the sending station.
  • Still another object is to provide a novel positive type mechanical translator.
  • a further object is to provide a novel mechanical-electrical translator for receiving the characteristic code signal elements and selectively choosing the corresponding character solenoid.
  • Fig. 1 is a schematic View illustrating teleprinting devices such as oiiice typewriters suitable for ordinary office work and also utilized for producing code signal permutations representative of a character and controllable by remotely originating signals, to type a character, and means for electrically interconnecting a pair of such devices by a minimum number of signal channels for signal transmission therebetween.
  • teleprinting devices such as oiiice typewriters suitable for ordinary office work and also utilized for producing code signal permutations representative of a character and controllable by remotely originating signals, to type a character, and means for electrically interconnecting a pair of such devices by a minimum number of signal channels for signal transmission therebetween.
  • Fig. 2 is a schematic view, in skeleton outline only, illustrating fundamentally how the operation of a character key produces a code permutation of signal components representative of the particular character, which components, in turn, are relayed in seriatim, to the line, by a distributor assembly, and also illustrating how a corresponding key bar is electrically operated, by a. characteristic signal received from a remote station and translated, to thereby select the corresponding solenoid.
  • Fig. 3 is a schematic diagram illustrating in outline only, a complete communication system including separate sending and receiving stations, respectively, and the circuits for breakin
  • Fig. 4 is a schematic view illustrating the circuits and elements of a sending mechanism with the send-receive relay energized and the startstop clutch in the normal stop position.
  • Fig. 5 is a schematic view of a portion of Fig. 4, but with the send-receive relay deenergized and the start-stop clutch in the preliminary stop position.
  • Fig. 6 is a schematic view of a portion of Fig. 4, with the latch control circuit added but with the send-receive relay deenergized and with the start-stop clutch in the preliminary stop position.
  • Fig. 7 is a schematic view illustrating the circuits and mechanism used in receiving and including the mechanical-electrical translator, the mechanical operating elements of the respective translator cascade switches being indicated schematically only.
  • Fig. 8 is a plan view illustrating in detail the construction and mounting of the permutation unit rockshafts and the particular mounting of the universal bail rockshaft and its torque bias spring.
  • Fig. 9 is a detail view of one of the code rockshafts.
  • Fig. 10 is a fragmentary sectional view illustrating in detail the assembly of the clips for operating the rockshafts by means of a slidable selector member and studs mounted thereon.
  • Fig. 11 is a fragmentary sectional View of the device of Fig. 10.
  • Fig. 12 is a fragmentary sectional view illustrating in detail the operation of the switch operating push pins by the cam grooves in a rockshaft and with the contact elements of the switch out of engagement.
  • Fig. 13 is a view similar to Fig. 12 with the contact elements of the switch in engagement.
  • Fig.V 14 is a fragmentary sectional view illustrating in detail the operation of the rockshaft detent pin for holding the rockshaft in its operated or oscillated position.
  • Fig. 15 is a plan view, with parts broken away and partly in section, of a distributor combined with one form of novel signal storage mechanism and the means operating the same.
  • Fig. 16 is a sectional view taken on the line I6-I6 of Fig. 15 illustrating a transmitting cam and pushrprins and groups of contacts operated thereby.
  • Fig. 17 is a side view of the device of Fig. 15 with parts removed illustrating the arrangement of the cascade switch tongues controlled by the signal storage tumblers.
  • Fig. 18 is a sectional view taken on line l8--l8 of Fig. 17 illustrating the mounting of the respective tiunblers, the operating cams therefor, and the cascade switch tongues controlled by a tumbler.
  • Fig. 19 is a schematic view illustrating in detail the relative circumferential arrangement of Ithe respective transmitting and control cams and contact operating push pins.
  • Fig. 20 is a schematic View illustrating in detail the relative circumferential positions of the respective receive cams for operating the translator tumblers.
  • Fig. 21 is a diagrammatic illustration of a set of specific line conditions affecting the device of Fig. 22.
  • Fig. 22 is a schematic diagram illustrating the storage tumblers of the novel form of storage mechanism, as illustrated in Figs. 15 and 18 and their respective positions in accordance with the line conditions as diagrammatically illustrated in Fig. 2l.
  • Fig. 23 is a side View of another form oi selector or storage mechanism for operating the respective cascade switch tongues.
  • Fig. 24 is an end view, partly in section, of the device of Fig. 23.
  • Fig. 25 is a side elevation in section of one form of novel start-stop single revolution clutch mechanism.
  • Fig. 26 is a secti-cnal view of the device of Fig. 25, taken on line 25-26.
  • Fig. 27 is an exploded perspective view illustrating the elements comprising a novel startstop clutch mechanism, which is based upon the principle of the clutch of Fig. 25.
  • Fig. 28 is an end view partly in section illustrating the start-stop mechanism and rebound cam of Fig. 27.
  • Fig. 29 is a side View, partly in section, illustrating the assembly of the start-stop clutch mechanism of Fig. 27.
  • Fig. 30 is a side view illustrating a part only, of the clutch of Fig. 29 and schematically illustrating a novel start-stop mechanism to be employed with the clutch of Fig. 29, said mechanism being in its stop position.
  • Fig. 3l is an end view of the device of Fig. 30.
  • Fig. 32 is 'a side view similar to Fig. 30, illustrating the novel start-stop mechanism in a released position.
  • Fig. 33 is an end view of the device of Fig. 32.
  • Fig. 34 is a side View similar to Fig. 30, illustrating the novel start-stop mechanism with the stop pawl released and in position to stop the clutch.
  • Fig. 35 is a sectional view of the device in Fig. 30, taken on line 35-35.
  • Fig. 36 is a perspective view of the shift and carriage release operating and signaling mechanism.
  • Typewriter A comprises an Electromatic typewriter provided with a standard keyboard wherein the typebars are power actuated, in a well known manner, upon depression of a chosen v'character key and wherein a blank key SRKI, controls a send-receive relay (Fig. 3), as will be described in detail later.
  • a novel composing permutation unit illustrated schematically in Fig. 2 is conditioned, as will be described later, so that a distinctive electrical signal is produced, composed oi a predetermined permutation of similar electrical components, which components, by means of a distributor assembly including novel start-stop single revolution clutch mechanismy send-receive -and line relays, respectively, are transmitted sequentially over the line to the typewriter B at the receive station.
  • the respective components when received at station B, are utilized to produce sequential conditioning of a shuttle magnetl at the receive station B, so that the same charact-er is typed on the record sheet 5i) (Fig. l) at both the send and receive stations.
  • any ci the letters can be typed and any function can be performed, so that any message can be typed at station A and signals set up at station A,
  • Warning and other signaling means may be provided between stations, in a manner well known in the art, but such warning and signaling means do not constitute any part of the present invention.
  • Fig. 2 there is illustrated in skeleton outline only, the mechanism and circuits for the operation of a chosen character key at station A with the consequent mechanical typing of the selected character at station A and the setting up of means yfor producing a signal representative of the character. whereby such a signal is transmitted to station B to produce typing of the same character at said station.
  • the operation of the send conditioned machine to produce a signal for remote operation of a receive conditioned machine is as follows: Upon depression of a chosen character key 5i, the key bar 52 is oscillated about its pivot pin 53 against the force of return spring 54 to move an extension arm 55 downwardly.
  • An impeller arm 63 in contact with an impeller lug B4 on cam E2 is constantly urged in a clockwise direction by means oi a spring and upon the disengagement of a channe] shaped lug 60 of the stop lever from a detent 75 6
  • cam 62 by means of its engagement with power roller E6 is thereupon rotated a full half revolution clockwise, until the other detent 6I, of the pair of detents on cam 62, engages the channel shaped lug 66 of stop lever 58, in a Well known manner.
  • Cam 62 is pivotally mounted by its axis 68 upon 'an arm 69 of a bell crank l0 which in turn is mounted for oscillation about a pivot 1I, and upon such rotation of cam 62, its eccentric contour causes a lateral movement of the cam axis (i8 to thereby oscillate bell crank 10 in a counterclockwise direction.
  • Such oscillation causes a downward movement of the arm 6tav of bell crank l0 to pull down a link l2, to rotate bell crank 'I3 against the force of spring 14 to actuate link l5 to oscillate bell crank 16 to in turn actuate the ty'pebar ll to strike one of the type characters 18 against the record 5l) (Fig. 1) in a manner well known in the art.
  • a roller i9 carried by the lower end of arm 69 is moved laterally to the right, as viewed in Fig. 2.
  • Rolli' 'i9 is in engagementwith a shoulder 86S on a permutation slider mounted lon suitable slotted guide bars Si secured to the frame (not shown) o'f the typewriter unit.
  • Each slider is provided 'with spaced studs 82 extending outwardly and alternately from one side and the other of the slider and vsuch studs are carried on both the top and bottom horizontal bars 591k and gob, respectively, of the slider member.
  • Rctata-bly mounted on each of a plurality of code rockshafts 83, and alternately 'on opposite sides of the sliders, are the diagrammati'cally represented rockshaft actuating clips, 3B.
  • These clips 84 are removably attached to the i'ockshaits, as described in detail later, the relative number and disposition of the clips in the assembly for each slider being dependentupon the particular code value of the character whose character key controls the respective slider niember. Therefore, upon depression of any chosen character key, the respective code rockshafts to which the clips are attached. will be rotated,
  • the universal bail rockshaft eUB is always actuated by means of 'a clip 84 to permit its controlled contacts to move momentarily' out of en gagement to thereby produce a spacing condition on' the signal channel, this rockshaft eUB being diagrammen-cally illustrated as spring biased by means of a coil spring acting through its associated clip 84 so that the rockshait slider 8l! are returned to their original positions upon ccmpletion of the hall revolution of caen @2.
  • the roller 'i3 moves the: slider St to the right against the spring bias eiect oi' spring 85 acting through clip 84 and its cooperating stud, whereby the studs carried by the slider actuate the associated clips and rotate the universal bail rockshait BSUB and such code rockshalts 33, as is required to set up the particularsignal.
  • Such actuation of the clips rotates the associated rocks'hafts to actuate the diagrammatically represented switch operating elements 86UB and 86 to permit the associated switch arm or tongue 81UX of the universal bail rockshaft to move out of engagement with its associated switch arm S'IUXa and to move the associated switch arms or tongues 8l of the code rockshafts selectively into engagement with the associated switch arms 81a, dependent upon the direction of rotation of the code rockshafts, respectively. It is to be particularly noted, that all code permutation signal settings are differentially produced and only those rockshafts are actuated, which require a change from the setting for the previously typed character.
  • a standard oice typewriter such as the Electromatic typewriter can be utilized, to locally type a character and to set up a code signal having a desired permutation y of components, characteristic of the selected character, which signal may be transmitted over the signal channel represented by the line, by the novel means now to be described and which may be utilized at a remote typewriter to type the same character.
  • the novel communication system comprisingr the present invention consists of novel permutation means at each station for composing or setting up a series of code signals representative of the characters to be remotely typed, a novel distributor assembly, comprising in addition to a send-receive relay and a line relay, novel distributor mechanism and a start-stop single revolution clutch mechanism, controlled by the line relay, to in turn control the operation of the distributor mechanism at the same station.
  • the code signal set up by the permutation unit is sequentially transmitted, by the sending distributor to maintain synchronism between the distributor mechanisms at the local station and at the remote stations and to produce typing of the desired character or performance of the desired function, the remote distributor mechanism controlling novel translator means utilizing the signal elements re- 75 ceived to thereby operate that solenoid only, corresponding to the character key depressed at the sending station.
  • a plurality of typewriters such as the machine at station A and the machine at station B (Fig. 1) with their respective associated electrical elements, distributor assembly including start-stop mechanism and various control elements are interconnected to comprise the novel teleprinting communication system.
  • the system operates on the start-stop, Baudot 6-unit code principle, and by means of associated circuits and mechanisms, two-way transmission of messages over a single channel is provided.
  • Novel permutation mechanism as shown in detail in Figs. 8 to 1,4, inclusive, controlled in the manner as diagrammatically illustrated in Fig. 2,*is utilized to open the line circuit to produce the start signal, to set up a code signal of separate signal components, characteristic of the character represented by the chosen depressed key and to produce a stop signal.
  • the particular permutation switch elements which are placed in a closed circuit relation by the permutation mechanism close a circuit up to contacts, as shown in Fig. 4, which contacts are sequentially controlled, by the transmitting distributor cams which are mounted on the start-stop shaft along with the receive cams and control cams.
  • the universal bail contacts Upon depression of a chosen character key bar to thereby locally type the character and simultaneously set up the code signal representative of that character, the universal bail contacts are operated to open the line circuit and thereby release the novel clutch and start-stop mechanisms of Figs. 25 and 26 or of Figs. 27-35, inclusive, whereby the start-stop shaft is rotated one complete revolution, only, and the code signal set up by the permutation unit is sequentially transmitted to the line by means of the distributor cams and the send-receive relay, as diagrammatically illustrated in Fig. 4.
  • the line signals received at the distributor assembly of typewriter B (Fig, l) control a shuttle magnet (Figs. 7 and l'l) to position selectively the tumblers of the novel selector mechanism of Figs.
  • the transmitting mechanism comprises a novel permutation unit controlled by the key bars of the transmitting typewriter, which permutation unit controls circuits leading to contacts controlled by transmitting cams of the dis,- tributor mechanism.
  • the circuits closed by the transmitting distributor cams transmit code elements of the signal to a send-receive relay at the send station which relay controls the transmission of the signal elements through a line relay at the sending station and to a line relay at the receiving station.
  • the line relay at the sending station controls the operation of a novel start-stop single revolution clutch mechanism which, in turn, controls the operation of the distributor mechanism.
  • FIG. 8 is illustrated the manner of mounting the several code rockshafts and the universal bail rockshaft.
  • Each of the code rockshafts B3 comprises a cylindrical element, axially bored at each endto form openings 83a into which project the pivot screws 89, each mounted in a support plate 89a, thereby rotatably Supporting the individual rockshafts.
  • Each rockshaft 83 is provided with a plurality of pairs of slots 83s. As shown in Figs.
  • a plurality of rockshaft operating clips 84 are detachably mounted on the individual rockshafts by insertion of the legs 84a and 84h of the clips into the respective slots comprising each pair.
  • the rounded end 84e on the leg 84h of each clip locks the clip to the rockshaft after insertion thereof into the slots.
  • Each clip is provided with an offset 84d (Fig. 1l) so that the clips can be mounted to cooperate with either the lugs 82 on one side of the slider o-rwith the lugs on the opposite side of the slider,l as is seen in Fig. ll.
  • the clips are mounted on the respective shafts either in upright or in inverted position, as is illustrated in Fig. 10 and as diagrammatically indicated in Fig. 2.
  • the particular arrangement and position of the clips for each slider is determined by the particular code value of the character or function whose key controls the slider. It is to be particularly noted, that as certain of the pairs of contacts controlled by the code rockshafts, are closed, others are simultaneously opened, so that only those pairs of contacts corresponding to the code value of the particular character or function, remain closed, as the slider 8B (Fig. 2) returns to its original position under the control of the torque bias spring 35.
  • the single elongated arm of the clips 84 abuts these lugs, in one position of the rockshafts, so that upon lateral movement of the slider 80, to the right as viewed in Fig. 10, certain of the code rockshafts are rotated clockwise by the upwardly directed, single elongated arms of the clips, respectively, and the remaining code rockshafts are rotated ⁇ counterclockwise by the downwardly directed single elongated arms. It is assumed, merely for purposes of clarity in description, that such clockwise rotation produces separation of the control contacts while countercloclgwise rotation moves the contacts into engagement.
  • the universal bail rockshaft SSUB (Fig. 8) is provided with a portion of reduced diameter 83rd at one end, extending axially of the shaft and a slot 83s, extending axially of the shaft, is formed in the outer perphery'of this reduced portion.
  • a coil bias spring 85 is slipped over the reduced portion before the shaft is mounted on its sup.- porting pivot screws 89.
  • One end of the coil spring terminates in a portion 85a, extending radially inwards, which is fitted into the axially extending slot 83s, as the coil spring is slid into position over the reduced portion 83rd.
  • the opposite end of the ⁇ coil spring 8-5 comprises a radi.- ally extending portion 85h whichI extends laterally to the right, as viewed in Fig. 8, and under the pivot screw 89 of the adjacent code rocks/haft.
  • FIGs. 12, 13 and 14 are illustrated the asse-m.- bly and coaction of the code rockshafts, notches, contact actuating push pins, contacts and -detent pins.
  • a permutation switch actuating element or i push pin 86 (Fig. 12) having an linsu-latecll end .86a
  • Fig. 12 is mounted for vertical movement, as viewed in Fig. 12,y in openings Sb and 900i in the support and guide plates 9
  • the push pin is shown as entered in the elongatedaxially extending notch 83h lso that the lower blade contact 81 is out of .engagement with the cooperating blade 81a.
  • Fig. 12 the push pin is shown as entered in the elongatedaxially extending notch 83h lso that the lower blade contact 81 is out of .engagement with the cooperating blade 81a.
  • the push pin ⁇ 36 is shown in its actuated position which position is assumed upon counterclockwise rotation of the rockshaft whereby the lower end of the push pin is forced out of the notch 83h and onto the regular outer periphery of the rockshaft whereby the push pin is thereby moved bodily upwards, carrying the lower Contact 8.1 into engagement with Contact 87a.
  • Fig. 14 are illustrated the relative positions of the detent pin and the axial Slot at the Outer end of the :rockshaft 83.
  • the longer axially extending notch, ⁇ cooperating with the push Din. ⁇ is spaced cireumferentially about the periphery of the code rockshaft with respect to the shorter slot on the. Opposite end of the ⁇ shaft, which shorter slot cooperates with rthe detent pin.
  • the/.notch 83h assumes the position of Fig. 13 while the notch 83e assumes the position of Y8313 in Fig. 12.
  • a stent Din 94 having a. flanged portion 94o in.- tegral therewith is .mounted for vertical ymovement in the openings a and 95h n the ⁇ support and. euicleplates 96 and 91. respeciivelv.l Aeon
  • Each code rockshaft is further provided with 7 5 Spring 93 .abuis lthe Support .pla-tf: 9B ⁇ 'lattine end thereof and exerts a 4downward force uponA the anged portion 94a thereby urging the iiange towards the guide plate 01 and holding the lower end of the detent pin in the notch 83C, as is seen in Fig. 14.
  • the operation of the permutation unit is as follows: Upon lateral movement to the right, for example, of the slider v 80 as viewed in Fig. 2, the slider and its studs 82 are moved to the right. Such movement actuates the'clips 84 to rotate the respective code rockshafts either clockwise or counterclockwise depending upon the particular assembly of the clips for the actuated slider.
  • Control cam TC controls contacts (Fig. 4) which, in turn, control the circuits of the control magnet
  • control cam TL (Fig. 6) controls the contacts which, in turn, control the circuit to a latch magnet.
  • control contacts connected'in series between the Ypermutation unit contacts and the send-receive relay while cams T4, T5 and T5 also control holding circuits (Fig. 1) for group magnets of the translator.
  • Transmission cam TP (Fig. 7) controls contacts which, in turn, control the circuit providing energization of the particular key solenoid selected by the translator in response to a received code signal and also controls holding circuits for the group relays.
  • the horizontal start-stop shaft isrtransversely journaled in ball bearings
  • the start-stop shaft is intermittently driven by means of a novel startstop single revolution clutch mechanism
  • the universal bail opens the line circuit, as described above, the magnet SSM is deenergiz'ed to thereby release the sto-p arm
  • 06 is at-V tached in any well known manner, such as by means of a set screw 06a, to the start-stop shaft 99 for rotation therewith.
  • to T6, inclusive, and TP are fixed in a chosen sequence on the shaft 99, the separate cams cooperating with their respective push pins to actuate the associated contacts, as described above, and the separate cams being maintained in proper relative axial position by means of spacer rings
  • the cams are clamped against the ange
  • 09 is machined in the outer periphery of the cam sleeve
  • the contacts controlled by the respective cams are diagrammatically illustrated in Figs.

Description

April 6, 1943- H. J. NlcHoLs 2,315,727
COMMUNICATION SYSTEM l original med Aug. 17, 1940 14 sheets-sheet 1 SW7/0N A INVENTOR.
' ATT'ORNEY.
April 6, 1943. H. J. Nx'cHoL's 2,315,727
COMMUNICATION SYSTEM Original Filed Aug. 17, 1940 14 Sheets-Sheet 2 INVENTOR. #Af/Py J fwn/a5 un. wm
BY wf/,
ATTORNEY April 6, 1943 H. J. NICHOLS 2,315,727
COMMUNICATION SYS TEM Original Filedv Aug. 17, 1940 14 Sheets-Sheet 3 220 f e2 vl l M S s 212 Q 211 g I 213 I I I l 45| QQ Rf I ATTORNEY.
APril 6, 1943. H. J. NICHOLS COMMUNICATION SYSTEM 14 Sheets-Sheet 4' Original Filed Aug. 17, 1940 INVEN TOR.
FIGA.
#Aff y JMC/fom ATTORN Apn'l e, 1943.
H. J. NlcHoLs 2,315,727 COMMUNICATION SYSTEM Original Filed Aug. 17, 1940 14 Sheets-Sheet 5 SRR! w 30gg/.215 snm j M n m Fles. m 15; Y
- 2 Il Il HindIII/lll' INVENTOR. #Af/PV J. AOC/9015 BY I April 6, 1943. H. J. NlcHoLs COMMUNICATION SYSTEM Original Filed Aug. l'7-, 1940 14 Sheets-Sheet 6 hmm ATTORNEY.
Apnl 6,1943. HJ. NICHOLS 2,315,727
COMMUNICATION SYS TEM origihal Filed Aug. 17, 1940 14 sheets-sheet 7 F IG.8.
INVENTOR. A/PAY J AOC/i045 ATTORNEY.
A 6, 1943. H. J. NlcHoLs n COMMUNICATION SYSTEM Original Filed Aug. 17, 1940 14 Sheets-Sheet 9 SSMA INVENTOR. HARAY .1N/wow BYv ATTORNEY.
Apn'l e, 1943.
H. J. NlcHoLs 2,315,727
COMMUNICATION SYSTEM Original Filed Aug. 17, 1940 14 Sheets-Sheet l0 ATTORNEY.
JApf'i16,1943. I f NlCHOLS 2,315,727
` COMMUNICATION SYSTEM Original Filed Aug. 17, 1940. 14 Sheets-Sheet-ll ATTORNEY.
April 6, 1943. H. J. NgcHoLs i 2,315,727
COMMUNICATION SYS TEM Original Filed Aug. 17, 1940 14 Sheets-Shet 12 ATTORNEY.
H. J. NICHOLS COMMUNICATION SYSTEMy originai F11-911mg. 17, 1940 April 6, 1943,.l
14 Sheets-Sheet 13 mm. I rr A TTORNE Y.
April 6, 1943.
H. J. NlcHoLs COMMUNICATION SYS TEM Original Filed Aug. 17, 1940 14 Sheets-Sheet 14 I I NV EN TOR. Af/Py J. /wc//azs ATTORNEY.
Patented Apr. 6, 1943 COMMUNICATION SYSTEM Harry J. Nichols, Point Pleasant, N. J., assignor Ltfztional Business Machines Corporation, new York, N. Y., a corporation of New York Origina" application August 17, 1940, Serial No.
19111, Serial No. 397,851
The present invention is a division of applicants copending application Serial No. 353,114, filed August 17, 1940 relating to interoice r interstation communication systems and more particularly to communication systems for interconnectingseparatetypewriters of a certain standard construction, wherein the operation of any one typewriter, in a normal manner, can be either isolated, at will, from the operation of the system, to permit ordinary individual operation of the typewriters or, on the other hand, operation of one typewriter in the normal mannerv can be utilized to produce a copy, at a sending station, of the intelligence to be transmitted, and to simultaneously operate a second or receiving similar typewriter or a plurality of such receiving typewriters at remote points. In like manner, each of the plurality of receiving typewriters can be utilized when desired, as sending typewriters, and means are provided for break-in by a receive station, so that the direction of transmission can be reversed when necessary or desired.
In devices of the prior art wherein interoce messages have been transmitted, special machines, which are not the usual standard equipment of business oices, have been employed. There have also been previously provided, electrical interconnecting systems for standard typewriters, 'out such systems have required either an extensive modication of the mechanical structure of the typewriter itself, to adapt it to such a system, or have required complicated mechanical permutation bar devices for translating a received signal, in order to produce selective actuation of a character key bar in accordance with the signal received.
Accordingly, one of the objects of the present invention is to provide novel means for interconnecting and operating two or more standard oiiice equipment typewriters, such as the well known Electromatic typewriter, so that such a standard instrument is utilized with very little additional equipment, in an interoice communication system, to produce speedy and accurate transmission and reception of messages.
A further object is to provide a system of communication for interconnecting at least two standard cce typewriters, comprising means controlled by each depressed key of the keyboard for setting up, in a simple and direct manner, a code combination of signal impulses representative of the function or character associated with the depressed key, and including start and stop signal impulses, said code combination comprising a plurality of electrical impulses ci identical VBivided and this application June 13,
characteristics and of equal duration, a single signal channel for interconnecting the typewriters, means for transmitting selectively and sequentially through said channel the individual elements or impulses of a signal, representing aparticular function or character, and a novel combined mechanical-electrical translator controlled by the selecting elements of the code combination, for selectively energizing, at a standard receiving typewriter, solely the operating solenoid of the key bar corresponding to the key depressed at the sending station, for operating said corresponding key bar, whereby the depression of a chosen character key of a standard typewriter at one station produces the typing of the selected character at a remote station by means of a similar standard typewriter.
Still another object is to provide a system of interoii'ice or interstation communication including at least a pair of standard oilice typewriters having a modified keyboard, a series of solenoids, one for each character key, means controlled by a selected character key for producing a combination oi signal code elements representative of the character, means for interconnecting the respective typewriter solenoidsincluding one signal channel only, over which the code signal elements representative of said character are sequentially transmitted, start-stop, send-receive distributor means for sending or receiving, respectively, at separate stations, and in synchronism, the code elements comprising a representative signal, and novel mechanical-electrical translator means for receiving said code elements, translating the same, and selectively choosing that solenoid only, which corresponds to thekey depressed at the sending station.
Still another object is to provide a novel positive type mechanical translator.
A further object is to provide a novel mechanical-electrical translator for receiving the characteristic code signal elements and selectively choosing the corresponding character solenoid.
Other objects of the invention will be pointed out in the following description and claims and illustrated in the accompanying drawings, which disclose, by way of example, the principle of the invention and the best mode, which has been contemplated, of applying that principle.
In the drawings:
Fig. 1 is a schematic View illustrating teleprinting devices such as oiiice typewriters suitable for ordinary office work and also utilized for producing code signal permutations representative of a character and controllable by remotely originating signals, to type a character, and means for electrically interconnecting a pair of such devices by a minimum number of signal channels for signal transmission therebetween.
Fig. 2 is a schematic view, in skeleton outline only, illustrating fundamentally how the operation of a character key produces a code permutation of signal components representative of the particular character, which components, in turn, are relayed in seriatim, to the line, by a distributor assembly, and also illustrating how a corresponding key bar is electrically operated, by a. characteristic signal received from a remote station and translated, to thereby select the corresponding solenoid.
Fig. 3 is a schematic diagram illustrating in outline only, a complete communication system including separate sending and receiving stations, respectively, and the circuits for breakin Fig. 4 is a schematic view illustrating the circuits and elements of a sending mechanism with the send-receive relay energized and the startstop clutch in the normal stop position.
Fig. 5 is a schematic view of a portion of Fig. 4, but with the send-receive relay deenergized and the start-stop clutch in the preliminary stop position.
Fig. 6 is a schematic view of a portion of Fig. 4, with the latch control circuit added but with the send-receive relay deenergized and with the start-stop clutch in the preliminary stop position.
Fig. 7 is a schematic view illustrating the circuits and mechanism used in receiving and including the mechanical-electrical translator, the mechanical operating elements of the respective translator cascade switches being indicated schematically only.
Fig. 8 is a plan view illustrating in detail the construction and mounting of the permutation unit rockshafts and the particular mounting of the universal bail rockshaft and its torque bias spring.
Fig. 9 is a detail view of one of the code rockshafts.
Fig. 10 is a fragmentary sectional view illustrating in detail the assembly of the clips for operating the rockshafts by means of a slidable selector member and studs mounted thereon.
Fig. 11 is a fragmentary sectional View of the device of Fig. 10.
Fig. 12 is a fragmentary sectional view illustrating in detail the operation of the switch operating push pins by the cam grooves in a rockshaft and with the contact elements of the switch out of engagement.
Fig. 13 is a view similar to Fig. 12 with the contact elements of the switch in engagement.
Fig.V 14 is a fragmentary sectional view illustrating in detail the operation of the rockshaft detent pin for holding the rockshaft in its operated or oscillated position.
Fig. 15 is a plan view, with parts broken away and partly in section, of a distributor combined with one form of novel signal storage mechanism and the means operating the same.
Fig. 16 is a sectional view taken on the line I6-I6 of Fig. 15 illustrating a transmitting cam and pushrprins and groups of contacts operated thereby.
Fig. 17 is a side view of the device of Fig. 15 with parts removed illustrating the arrangement of the cascade switch tongues controlled by the signal storage tumblers.
Fig. 18 is a sectional view taken on line l8--l8 of Fig. 17 illustrating the mounting of the respective tiunblers, the operating cams therefor, and the cascade switch tongues controlled by a tumbler.
Fig. 19 is a schematic view illustrating in detail the relative circumferential arrangement of Ithe respective transmitting and control cams and contact operating push pins.
Fig. 20 is a schematic View illustrating in detail the relative circumferential positions of the respective receive cams for operating the translator tumblers.
Fig. 21 is a diagrammatic illustration of a set of specific line conditions affecting the device of Fig. 22.
Fig. 22 is a schematic diagram illustrating the storage tumblers of the novel form of storage mechanism, as illustrated in Figs. 15 and 18 and their respective positions in accordance with the line conditions as diagrammatically illustrated in Fig. 2l.
Fig. 23 is a side View of another form oi selector or storage mechanism for operating the respective cascade switch tongues.
Fig. 24 is an end view, partly in section, of the device of Fig. 23.
Fig. 25 is a side elevation in section of one form of novel start-stop single revolution clutch mechanism.
Fig. 26 is a secti-cnal view of the device of Fig. 25, taken on line 25-26.
Fig. 27 is an exploded perspective view illustrating the elements comprising a novel startstop clutch mechanism, which is based upon the principle of the clutch of Fig. 25.
Fig. 28 is an end view partly in section illustrating the start-stop mechanism and rebound cam of Fig. 27.
Fig. 29 is a side View, partly in section, illustrating the assembly of the start-stop clutch mechanism of Fig. 27.
Fig. 30 is a side view illustrating a part only, of the clutch of Fig. 29 and schematically illustrating a novel start-stop mechanism to be employed with the clutch of Fig. 29, said mechanism being in its stop position.
Fig. 3l is an end view of the device of Fig. 30.
Fig. 32 is 'a side view similar to Fig. 30, illustrating the novel start-stop mechanism in a released position.
Fig. 33 is an end view of the device of Fig. 32.
Fig. 34 is a side View similar to Fig. 30, illustrating the novel start-stop mechanism with the stop pawl released and in position to stop the clutch.
Fig. 35 is a sectional view of the device in Fig. 30, taken on line 35-35.
Fig. 36 is a perspective view of the shift and carriage release operating and signaling mechanism.
Referring to the drawings wherein like reference characters refer to like parts throughout the several views and more particularly to Fig. 1, the invention is illustrated in the present example as applied to a pair of standard Electromatic typewriters A and B at the sending station A and the receiving station B, respectively, but it is to be expressedly understood that any type of standard ofce typewriter can be utilized in the novel combination of the present invention and that any number of typewriters can be so interconnected.
Typewriter A comprises an Electromatic typewriter provided with a standard keyboard wherein the typebars are power actuated, in a well known manner, upon depression of a chosen v'character key and wherein a blank key SRKI, controls a send-receive relay (Fig. 3), as will be described in detail later.
Upon depression of any chosen character key, the character is typed on the record sheet 5U at station A and a novel composing permutation unit illustrated schematically in Fig. 2 is conditioned, as will be described later, so that a distinctive electrical signal is produced, composed oi a predetermined permutation of similar electrical components, which components, by means of a distributor assembly including novel start-stop single revolution clutch mechanismy send-receive -and line relays, respectively, are transmitted sequentially over the line to the typewriter B at the receive station. The respective components, when received at station B, are utilized to produce sequential conditioning of a shuttle magnetl at the receive station B, so that the same charact-er is typed on the record sheet 5i) (Fig. l) at both the send and receive stations. Similarly., any ci the letters can be typed and any function can be performed, so that any message can be typed at station A and signals set up at station A,
which when transmitted to station B, will type the same message on the machine at that station.
When the operator at station A wishes to send a message to station B, to be simultaneously typed upon both machines, the operator at station A. depresses the blank key SRKI, thereby conditioning the machine at station A for sending, station B being normally' in receive condition, all as will be described in detail later. Warning and other signaling means may be provided between stations, in a manner well known in the art, but such warning and signaling means do not constitute any part of the present invention. l
Referring speciically to Fig. 2, there is illustrated in skeleton outline only, the mechanism and circuits for the operation of a chosen character key at station A with the consequent mechanical typing of the selected character at station A and the setting up of means yfor producing a signal representative of the character. whereby such a signal is transmitted to station B to produce typing of the same character at said station. The operation of the send conditioned machine to produce a signal for remote operation of a receive conditioned machine is as follows: Upon depression of a chosen character key 5i, the key bar 52 is oscillated about its pivot pin 53 against the force of return spring 54 to move an extension arm 55 downwardly. Upon such downward movement, the bifurcated lower end of arm 55 engages a pin 55 on arm 5l integral with the stop lever 5S, to thereby rotate stop lever 58 counterclockwise about its pivot 59. This rotation disengages the channel shaped lug eli of stop lever 58 from the right hand one of a pair of detents GI on cam E2. An impeller arm 63, in contact with an impeller lug B4 on cam E2 is constantly urged in a clockwise direction by means oi a spring and upon the disengagement of a channe] shaped lug 60 of the stop lever from a detent 75 6| of the cam, the impeller arm 63, by means of its contact with impeller lug 64, rotates the "cam 82, slightly in a clockwise direction, until it engages the constantly rotating power roller 66 which is rotated about the stationary shaft 6l by means of the typewriter motor (not shown), in a manner well known in the art. The cam 62 by means of its engagement with power roller E6 is thereupon rotated a full half revolution clockwise, until the other detent 6I, of the pair of detents on cam 62, engages the channel shaped lug 66 of stop lever 58, in a Well known manner. Cam 62 is pivotally mounted by its axis 68 upon 'an arm 69 of a bell crank l0 which in turn is mounted for oscillation about a pivot 1I, and upon such rotation of cam 62, its eccentric contour causes a lateral movement of the cam axis (i8 to thereby oscillate bell crank 10 in a counterclockwise direction. Such oscillation causes a downward movement of the arm 6tav of bell crank l0 to pull down a link l2, to rotate bell crank 'I3 against the force of spring 14 to actuate link l5 to oscillate bell crank 16 to in turn actuate the ty'pebar ll to strike one of the type characters 18 against the record 5l) (Fig. 1) in a manner well known in the art.
Also upon the rotation of cam 62 and consen quent lateral movement of the cam axis, a roller i9 carried by the lower end of arm 69, is moved laterally to the right, as viewed in Fig. 2. Rollei' 'i9 is in engagementwith a shoulder 86S on a permutation slider mounted lon suitable slotted guide bars Si secured to the frame (not shown) o'f the typewriter unit. Each slider is provided 'with spaced studs 82 extending outwardly and alternately from one side and the other of the slider and vsuch studs are carried on both the top and bottom horizontal bars 591k and gob, respectively, of the slider member. Rctata-bly mounted on each of a plurality of code rockshafts 83, and alternately 'on opposite sides of the sliders, are the diagrammati'cally represented rockshaft actuating clips, 3B. These clips 84 are removably attached to the i'ockshaits, as described in detail later, the relative number and disposition of the clips in the assembly for each slider being dependentupon the particular code value of the character whose character key controls the respective slider niember. Therefore, upon depression of any chosen character key, the respective code rockshafts to which the clips are attached. will be rotated,
described presently, land in such a direction that the particular code permutation representing the character, will be set up by the respective perron tation switches. It is to be particularly noted, that the universal bail rockshaft eUB is always actuated by means of 'a clip 84 to permit its controlled contacts to move momentarily' out of en gagement to thereby produce a spacing condition on' the signal channel, this rockshaft eUB being diagrammen-cally illustrated as spring biased by means of a coil spring acting through its associated clip 84 so that the rockshait slider 8l! are returned to their original positions upon ccmpletion of the hall revolution of caen @2. v
Upon the above described lateral movement of the cam axis, the roller 'i3 moves the: slider St to the right against the spring bias eiect oi' spring 85 acting through clip 84 and its cooperating stud, whereby the studs carried by the slider actuate the associated clips and rotate the universal bail rockshait BSUB and such code rockshalts 33, as is required to set up the particularsignal. Such actuation of the clips rotates the associated rocks'hafts to actuate the diagrammatically represented switch operating elements 86UB and 86 to permit the associated switch arm or tongue 81UX of the universal bail rockshaft to move out of engagement with its associated switch arm S'IUXa and to move the associated switch arms or tongues 8l of the code rockshafts selectively into engagement with the associated switch arms 81a, dependent upon the direction of rotation of the code rockshafts, respectively. It is to be particularly noted, that all code permutation signal settings are differentially produced and only those rockshafts are actuated, which require a change from the setting for the previously typed character. If the same letter is typed twice in succession, the corresponding slider is twice actuated, but only the universal bail rockshaft is rotated since the remaining rockshaits remain in their previously set position, as described in detail later. Thus, such permutation switch elements 81a and 81 as are moved into engagement, close a-circuit from the positive side of a D. C. source Bl, as illustrated diagrammatically in Fig. 2 and the universal bail likewise opens a circuit `to the positive side of the same source by separation of its pair of contacts S'IUX and S'IUXa, in series, with a pair of relay controlled contacts 88 and 88a, between the positive side of said source and the distributor assembly.
The particular permutation of switches closed will thereby supply positive potential to the distributor assembly, including the novel start-stop single revolution clutch mechanism, send-receive relay and line relay, diagrammatically illustrated only, in Fig. 2, which, in turn, at the proper time and in proper sequence will transmit the code signals through the signal channel represented by the line, to the distributor assembly at the receive station, in a manner to be described in detail later. Upon completion of a full half revolution of the cam 62, the universal bail rockshaft 83UB is returned to its normal position by spring 85, thereby producing closure of contacts B'IUX and B'IUXa but the code rcckshafts 83 are retained in their actuated positions by coacting detent pins, as described later, until depression of another character key bar. It is seen, therefore, that in a simple and direct manner, a standard oice typewriter, such as the Electromatic typewriter can be utilized, to locally type a character and to set up a code signal having a desired permutation y of components, characteristic of the selected character, which signal may be transmitted over the signal channel represented by the line, by the novel means now to be described and which may be utilized at a remote typewriter to type the same character.
The novel communication system comprisingr the present invention consists of novel permutation means at each station for composing or setting up a series of code signals representative of the characters to be remotely typed, a novel distributor assembly, comprising in addition to a send-receive relay and a line relay, novel distributor mechanism and a start-stop single revolution clutch mechanism, controlled by the line relay, to in turn control the operation of the distributor mechanism at the same station. The code signal set up by the permutation unit is sequentially transmitted, by the sending distributor to maintain synchronism between the distributor mechanisms at the local station and at the remote stations and to produce typing of the desired character or performance of the desired function, the remote distributor mechanism controlling novel translator means utilizing the signal elements re- 75 ceived to thereby operate that solenoid only, corresponding to the character key depressed at the sending station.
A general description coordinated'by reference to the respective gures of the drawings, will iirst be given, of the essential elements of a complete communication system and then a detailed description of the sending or transmitting mechanism and circuits and of the receiving mechanism and circuits including a detailed description of the respective component elements of these mechanisms and circuits will be given, which will be followed by a detailed description of the operation of the system including transmission, reception, break-in and other communication functions.
General description A plurality of typewriters, such as the machine at station A and the machine at station B (Fig. 1) with their respective associated electrical elements, distributor assembly including start-stop mechanism and various control elements are interconnected to comprise the novel teleprinting communication system. The system operates on the start-stop, Baudot 6-unit code principle, and by means of associated circuits and mechanisms, two-way transmission of messages over a single channel is provided.
Novel permutation mechanism, as shown in detail in Figs. 8 to 1,4, inclusive, controlled in the manner as diagrammatically illustrated in Fig. 2,*is utilized to open the line circuit to produce the start signal, to set up a code signal of separate signal components, characteristic of the character represented by the chosen depressed key and to produce a stop signal. The particular permutation switch elements which are placed in a closed circuit relation by the permutation mechanism close a circuit up to contacts, as shown in Fig. 4, which contacts are sequentially controlled, by the transmitting distributor cams which are mounted on the start-stop shaft along with the receive cams and control cams.
Upon depression of a chosen character key bar to thereby locally type the character and simultaneously set up the code signal representative of that character, the universal bail contacts are operated to open the line circuit and thereby release the novel clutch and start-stop mechanisms of Figs. 25 and 26 or of Figs. 27-35, inclusive, whereby the start-stop shaft is rotated one complete revolution, only, and the code signal set up by the permutation unit is sequentially transmitted to the line by means of the distributor cams and the send-receive relay, as diagrammatically illustrated in Fig. 4. The line signals received at the distributor assembly of typewriter B (Fig, l) control a shuttle magnet (Figs. 7 and l'l) to position selectively the tumblers of the novel selector mechanism of Figs. 15, 17, 18 and 22 or of the novel selector mechanism of Figs. 23 and 24, which tumblers selectively set the cascade switch elements of the translator, as illustrated in Fig. 7, so that the particular key solenoid KS only, which corresponds to the chosen character, is energized, thereby (Fig. 2) pulling down the key bar of the chosen character key at station B (Fig. l) and producing remote typing of the chosen character.
Transmitting mechanism The transmitting mechanism comprises a novel permutation unit controlled by the key bars of the transmitting typewriter, which permutation unit controls circuits leading to contacts controlled by transmitting cams of the dis,- tributor mechanism. The circuits closed by the transmitting distributor cams transmit code elements of the signal to a send-receive relay at the send station which relay controls the transmission of the signal elements through a line relay at the sending station and to a line relay at the receiving station. The line relay at the sending station, controls the operation of a novel start-stop single revolution clutch mechanism which, in turn, controls the operation of the distributor mechanism. The construction of the permutation unit, the transmitting distributor unit of the distributor assembly, the several start-stop single revolution clutch mechanism modifications and the shift and carriage release mechanisms will now be described in detail.
Referring to Figs. 8 to 11i, inclusive, there is disclosed therein details of the elements comprising the novel permutation unit and the manner of assembly thereof. In Fig. 8 is illustrated the manner of mounting the several code rockshafts and the universal bail rockshaft. Each of the code rockshafts B3 comprises a cylindrical element, axially bored at each endto form openings 83a into which project the pivot screws 89, each mounted in a support plate 89a, thereby rotatably Supporting the individual rockshafts. Each rockshaft 83 is provided with a plurality of pairs of slots 83s. As shown in Figs. and 1l, a plurality of rockshaft operating clips 84 are detachably mounted on the individual rockshafts by insertion of the legs 84a and 84h of the clips into the respective slots comprising each pair. The rounded end 84e on the leg 84h of each clip locks the clip to the rockshaft after insertion thereof into the slots. Each clip is provided with an offset 84d (Fig. 1l) so that the clips can be mounted to cooperate with either the lugs 82 on one side of the slider o-rwith the lugs on the opposite side of the slider,l as is seen in Fig. ll. Further, the clips are mounted on the respective shafts either in upright or in inverted position, as is illustrated in Fig. 10 and as diagrammatically indicated in Fig. 2. The particular arrangement and position of the clips for each slider is determined by the particular code value of the character or function whose key controls the slider. It is to be particularly noted, that as certain of the pairs of contacts controlled by the code rockshafts, are closed, others are simultaneously opened, so that only those pairs of contacts corresponding to the code value of the particular character or function, remain closed, as the slider 8B (Fig. 2) returns to its original position under the control of the torque bias spring 35. Mounted on both the top and bottom bars 8Dt and 86h, respectively, of the slider 8B, are the studs 82 attached alternately to opposite sides of the respective bars, as illustrated in Figs. 10 and 11. The single elongated arm of the clips 84 abuts these lugs, in one position of the rockshafts, so that upon lateral movement of the slider 80, to the right as viewed in Fig. 10, certain of the code rockshafts are rotated clockwise by the upwardly directed, single elongated arms of the clips, respectively, and the remaining code rockshafts are rotated` counterclockwise by the downwardly directed single elongated arms. It is assumed, merely for purposes of clarity in description, that such clockwise rotation produces separation of the control contacts while countercloclgwise rotation moves the contacts into engagement.
van axially extending elongated notch 83h formed in the outerl periphery of the rockshaft at one end thereof, and with a. shorter axially extending notch 8-3c, formed in the outer periphery` of the rockshaft, at the opposite end thereof, as illustrated in Fig. 9'.
l The universal bail rockshaft SSUB (Fig. 8) is provided with a portion of reduced diameter 83rd at one end, extending axially of the shaft and a slot 83s, extending axially of the shaft, is formed in the outer perphery'of this reduced portion. A coil bias spring 85 is slipped over the reduced portion before the shaft is mounted on its sup.- porting pivot screws 89. One end of the coil spring terminates in a portion 85a, extending radially inwards, which is fitted into the axially extending slot 83s, as the coil spring is slid into position over the reduced portion 83rd. The opposite end of the` coil spring 8-5 comprises a radi.- ally extending portion 85h whichI extends laterally to the right, as viewed in Fig. 8, and under the pivot screw 89 of the adjacent code rocks/haft. By rotating the universal bail rockshaft before the clips are inserted and then inserting the clips to hold the coil spring in its coiled position, an adjustable amount of torque. can be produced by the universal bail rocks-haft andspring assembly so that the rockshafi;` contacts are positively closed with a desired force by the spring bias .of the universal bail rockshaft upon release of the asso,- ciated slider 80 by the roller 19 (Fig. 2).
In Figs. 12, 13 and 14 .are illustrated the asse-m.- bly and coaction of the code rockshafts, notches, contact actuating push pins, contacts and -detent pins. A permutation switch actuating element or i push pin 86 (Fig. 12) having an linsu-latecll end .86a
is mounted for vertical movement, as viewed in Fig. 12,y in openings Sb and 900i in the support and guide plates 9| and 92, respectively, the u ninsulated lower end ofthe push pin fitting into the axially extending notch 83o in a code rockshaft 83 or. in the universal bail rookshaft, while the insulated end abuts the self, spring biased blade contact 81 held in spaced relation from the cooperating blade contact 81a, by well known in,- sulating support means 9,3.l In Fig. 12, the push pin is shown as entered in the elongatedaxially extending notch 83h lso that the lower blade contact 81 is out of .engagement with the cooperating blade 81a. In Fig. 13, the push pin `36 is shown in its actuated position which position is assumed upon counterclockwise rotation of the rockshaft whereby the lower end of the push pin is forced out of the notch 83h and onto the regular outer periphery of the rockshaft whereby the push pin is thereby moved bodily upwards, carrying the lower Contact 8.1 into engagement with Contact 87a.
In Fig. 14, are illustrated the relative positions of the detent pin and the axial Slot at the Outer end of the :rockshaft 83. As is Seen in Fig. 9, the longer axially extending notch, `cooperating with the push Din. `is spaced cireumferentially about the periphery of the code rockshaft with respect to the shorter slot on the. Opposite end of the` shaft, which shorter slot cooperates with rthe detent pin. As therockshaft'is rotated counterclOGkWse, as Viewed in Figs-` '12 and 13. the/.notch 83h assumes the position of Fig. 13 while the notch 83e assumes the position of Y8313 in Fig. 12. A stent Din 94 having a. flanged portion 94o in.- tegral therewith is .mounted for vertical ymovement in the openings a and 95h n the `support and. euicleplates 96 and 91. respeciivelv.l Aeon Each code rockshaft is further provided with 7 5 Spring 93 .abuis lthe Support .pla-tf: 9B `'lattine end thereof and exerts a 4downward force uponA the anged portion 94a thereby urging the iiange towards the guide plate 01 and holding the lower end of the detent pin in the notch 83C, as is seen in Fig. 14. It is seen, therefore, that upon rotation of a shaft 83, the notch 83h is moved out of engagement with the cooperating push pin 86 `and the outer periphery of the rockshaft is moved into engagement with the push pin to thereby move the pin vertically, while the notch 83e is aligned, upon such rotation, with the spring bias detent pin 94 which pin 94 enters notch `83C as ,shown in Fig. 12 and the rockshaft is therefore positively held in its rotated position until forced back to its initial position by aslider actuated clip.
The operation of the permutation unit is as follows: Upon lateral movement to the right, for example, of the slider v 80 as viewed in Fig. 2, the slider and its studs 82 are moved to the right. Such movement actuates the'clips 84 to rotate the respective code rockshafts either clockwise or counterclockwise depending upon the particular assembly of the clips for the actuated slider.
Counterclockwise rotation of certain of the code rockshafts, produces closures of the cooperating contacts controlled thereby while clockwise rotation of the other rockshafts permits the cooperating contacts to open. As certain of the rockshafts are rotated counterclockwise to thereby close the associated contacts (Fig. 13) the associated detent pin is aligned with a slot 83o (Fig. 14) and -the end of the spring urged detent pin enters the slot to positively hold the rockshaft in its new, contact closing position. As other rockshafts are rotated clockwise, the notches 83e are moved out of alignment with the associated detent pins and the shafts assume the position as shown in Fig. 12 with the contacts 81 and 81a out of engagement. The contact operating pins engaging with their respective notches now serve Vin the same lcapacity as did the detent pins in the prior positions of the rockshafts. A certain desired permutation of the pairs of contacts remains closed lafter slider 80 moves back to its initial position -under the bias of the torque spring 85.
` The universal bail rockshaft 83UB is rotated 'against the torque exerted by coil spring 85, by means of its clip 84 and associated lug 82 upon Ilateral movement of any slider 80, to the right,
to thereby open its associated contacts 81UX, -81UXa (Fig. 2) and momentarily open the line, as will be explained in detail later. Upon the return of slider 80 to its initial position, the spring I85 of the universal bail rockshaft rotates the 'rockshaft back to its initial position to thereby "close its associated contacts 811UX and 81UXa. It is to be noted that no detent pin and cooperating slot is provided for the universal bail rockshaft.
Upon the closure of any pairs of contacts 81, 81a. a circuit is closed (Fig.` 4) to the contacts controlled by the cams of the translation distributor unit of the send-receive mechanism, which mechanism will now be described in detail.
Referring to Figs. 15, 16, 17 and 19, the con-v struction, assembly and operation of the distributor of the send-receive mechanism are illustrated therein. A plurality of transmission cams TI to T5, inclusive and control cams TC, 'I'L and TPvare mounted on the start-stop shaft 99 in position to be lubricated by oiler wicks OW (Fig. 16) along with the receive cams described later. Control cam TC controls contacts (Fig. 4) which, in turn, control the circuits of the control magnet, control cam TL (Fig. 6) controls the contacts which, in turn, control the circuit to a latch magnet. Transmission cams T| to T6, inclusive, (Fig. 4) control contacts connected'in series between the Ypermutation unit contacts and the send-receive relay while cams T4, T5 and T5 also control holding circuits (Fig. 1) for group magnets of the translator. Transmission cam TP (Fig. 7) controls contacts which, in turn, control the circuit providing energization of the particular key solenoid selected by the translator in response to a received code signal and also controls holding circuits for the group relays.
Referring to Figs. 15 and 1'1, the horizontal start-stop shaft isrtransversely journaled in ball bearings |00 forced into suitable recesses bored in the vertical side plates |0| of the dis'- tributor mechanism'. The start-stop shaft is intermittently driven by means of a novel startstop single revolution clutch mechanism |02 (described later) which is controlled by a start-stop magnet assembly SSM. When the universal bail opens the line circuit, as described above, the magnet SSM is deenergiz'ed to thereby release the sto-p arm |03 (Fig. 17). This release of the stop arm allows a spring |038 to rotate the arm |03 counterclockwise, so that a pawl |04 (Fig. 15) attached to the stop arm |03 is moved out of the path of rotation of the stop pin 04B attached to a member of the start-stop clutch and into the path of stop pin |04A intercepting said stop pin to thereby arrest the rotation of the start-stop clutch to halt the start-stop shaft in the preliminary stop position. When the start-stop magnet SSM is subsequently energized, the stop arm |03 is moved clockwise (Fig. 1'1) into the path of rotation of the stop pin |04B to thereby stop the start-stop shaft in the second or normal stop position.
The send or transmitting cam sleeve |06 is at-V tached in any well known manner, such as by means of a set screw 06a, to the start-stop shaft 99 for rotation therewith. The cams TC, TL, T| to T6, inclusive, and TP are fixed in a chosen sequence on the shaft 99, the separate cams cooperating with their respective push pins to actuate the associated contacts, as described above, and the separate cams being maintained in proper relative axial position by means of spacer rings |01. The cams are clamped against the ange |06j at one end of the transmitting cam sleeve by means of the receive cam sleeve |08 urged against the right hand spacer ring |01 cooperating with cam TP by means of the Vthrust exerted by a nut 99D threaded on the right hand end 90a of the start-stop shaft 99. A key way |09 is machined in the outer periphery of the cam sleeve |06 into which is positioned a cylindrical key I0 coacting with the inner periphery of the cams to lock the cams and cam sleeve together for simultaneous rotation by means of the start-stop shaft. The contacts controlled by the respective cams are diagrammatically illustrated in Figs. 4 and '7, it being particularly noted that these contacts are controlled by means of the push pins and that the relative positions of the cams, push pins and contacts are as illustrated in Fig. 15. The particular, circumferentially extending, sequence of the cams and their position relative to the respective push pins is illustrated schematically in Fig. 19. Referring to Figs. l5 and 16, the hardened steel push pins I provided with insulated ends llld, are aligned with the respective cams by insertion into openings in the front contact mounting plate H2 and in the back Contact mounting plate H3
US397851A 1940-08-17 1941-06-13 Communication system Expired - Lifetime US2315727A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US397851A US2315727A (en) 1940-08-17 1941-06-13 Communication system
US397852A US2315728A (en) 1940-08-17 1941-06-13 Communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US353114A US2288819A (en) 1940-08-17 1940-08-17 Communication system
US397851A US2315727A (en) 1940-08-17 1941-06-13 Communication system
US397852A US2315728A (en) 1940-08-17 1941-06-13 Communication system

Publications (1)

Publication Number Publication Date
US2315727A true US2315727A (en) 1943-04-06

Family

ID=32096836

Family Applications (2)

Application Number Title Priority Date Filing Date
US397851A Expired - Lifetime US2315727A (en) 1940-08-17 1941-06-13 Communication system
US397852A Expired - Lifetime US2315728A (en) 1940-08-17 1941-06-13 Communication system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US397852A Expired - Lifetime US2315728A (en) 1940-08-17 1941-06-13 Communication system

Country Status (1)

Country Link
US (2) US2315727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437698A (en) * 1942-12-12 1948-03-16 Bell Telephone Labor Inc Printer and control system therefor
US2770304A (en) * 1951-12-21 1956-11-13 Ibm Relay storage unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437698A (en) * 1942-12-12 1948-03-16 Bell Telephone Labor Inc Printer and control system therefor
US2770304A (en) * 1951-12-21 1956-11-13 Ibm Relay storage unit

Also Published As

Publication number Publication date
US2315728A (en) 1943-04-06

Similar Documents

Publication Publication Date Title
US2200807A (en) Keyboard
US2315727A (en) Communication system
US2168441A (en) Teletypewriter
US2288819A (en) Communication system
GB402453A (en) Improvements in start-stop telegraph systems and apparatus therefor
US1966386A (en) Method and means of transposing signals from one code to another
US2304769A (en) Communication system
US2052677A (en) Telegraph system and apparatus
US2752414A (en) Answer back device for printing telegraph systems
US2192353A (en) Printing telegraph receiver
US1985640A (en) Telegraph transmitter
US2370445A (en) Supervisory signal system
US2117855A (en) Printing telegraph system and apparatus
US2110149A (en) Code transmission system
US3187096A (en) Receiver and selector mechanism
US2232701A (en) Functional translator for printing telegraph machines
US2355297A (en) Perforating apparatus
US2233667A (en) Printing telegraph apparatus
US2335404A (en) Method of telegraphically transmitting communication for statistical purposes
US2113611A (en) Communication system
GB452031A (en) Improvements in or relating to communication systems
US1879524A (en) Telegraph system and apparatus
US2458734A (en) Mechanical ciphering system
US1090366A (en) Keyboard for printing-telegraph systems.
US2109989A (en) Telegraph transmitting system