US2313018A - Electrostatic electron lens - Google Patents
Electrostatic electron lens Download PDFInfo
- Publication number
- US2313018A US2313018A US368271A US36827140A US2313018A US 2313018 A US2313018 A US 2313018A US 368271 A US368271 A US 368271A US 36827140 A US36827140 A US 36827140A US 2313018 A US2313018 A US 2313018A
- Authority
- US
- United States
- Prior art keywords
- bushing
- electron
- electrostatic
- layer
- conducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002966 varnish Substances 0.000 description 11
- 239000011810 insulating material Substances 0.000 description 7
- 239000004020 conductor Substances 0.000 description 4
- 230000005686 electrostatic field Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007859 condensation product Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
- H01J37/12—Lenses electrostatic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/58—Arrangements for focusing or reflecting ray or beam
- H01J29/62—Electrostatic lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/10—Lenses
- H01J2237/12—Lenses electrostatic
- H01J2237/1205—Microlenses
Definitions
- the present invention relates toelectron microscopes and more specifically pertains to electrostatic means for controlling the movement of electrons in such apparatus.
- Electrostatic electron lens operate in such a manner that potential difierences are applied to two or more insulated plates. often referred to as diaphragms whereby lens-like effects are produced on electron rays passing axially through openings in: the diaphragms. Such lenses are used in electron apparatus such as electrostatic electron microscopes.
- An object of the present invention resides in providing animproved type of electrostatic lens. for electron microscopes wherein the lens arrangement is characterized by a continuous variation of the potential fields.
- Fig. 1 is a sectional view of a tube of an electron microscope showing one lens arrangement embodying the invention.
- Fig. 2 is a similar sectional view of a modified arrangement.
- Fig. 3 is a sectional view of an electron microscope tube showing a further modification of the electrostatic lens arrangement.
- Fig. l a tube of an electron microscope.
- the electron rays move axially in the tube as indicated by the arrow Ill.
- a cylindrical bushing b formed of suitable insulating material is provided within the tube and suitably secured therein.
- Another bushing c of insulating material is mounted within the bushing b.
- the bushing 2 may be provided with external threads for engaging internal threads of the bushing 22.
- the two bushings b and 0 may be formed of any suitable insulating material such as phenol formaldehyde condensation products or other synthetic resins.
- the bushing c is provided with a central axially extending opening through which the electron rays of the microscope are adapted to pass.
- the inner periphery of the bushing c is coated with a conducting varnish d having a relatively high resistance characteristic.
- the varnish layer covers the ends of the bushing c as illustrated in Fig. 1.
- Current is supplied to the conducting varnish layer d by means of wires I which are connected to metal rings e.
- the metal rings e a and thickness of the conducting varnish. A volt- 10' age of a. few thousand volts may therefore be impressed across the end rings e" and it is thus possible to form and continuously control the electric field within the central opening of the bushing c.
- a modified electrostatic. lens arrangement is illustrated in Fig. 2 wherein aninsulatingbushing a is arranged within the bushing b.
- the bushing 0' may likewise be threaded in the bushing 1).
- the inner surface of the insulating bushing 0' is preferably arched or provided with a I concave shape as shown in Fig. 2;
- the bushing c is also formed of a suitable insulating material and coated on the inner surface with a conducting varnish having a relatively high ohmic characteristic. Current is conducted to the varnish layer d by means of end .rings e and conductors f in a manner similar to the arrangement disclosed in Fig. l.
- the conducting varnish layer d may vary in thickness so that the central portion of the bushing c' is provided with a thicker conducting layer than the thickness of the layer adjacent the ends of the bushing c.
- the arcuate shape of the inner surface of the conducting layer at provides the advantage that the ends of the electrostatic field adjacent the rings e are further removed from the central axis of the microscope.
- Another advantage of providing a thicker coating of the conducting varnish in the center of the bushing c pertains to the fact that the voltage drop varies along the length of the bushing 0' since the resistance of the conducting coating varies with the thickness thereof.
- the central portion of the conducting layer d may be grounded as indicated at g.
- a number of electrostatic lens arrangements such as shown in Figs. 1 and 2 may be arranged in an electron microscope tube a and an example of such a series of electron lens is shown in Fig. 3.
- the insulating bushings c are similar to those illustrated in Fig. 1 and successively arranged along the electron microscope tube a.
- insulating bushing mounted within said tube and having an opening through which rays of the electron tube are adapted to pass, a layer of conducting material arranged on said bushing within said opening, means for applying a voltage across said layer, and said conducting layer having suffi- V cient resistance to provide a voltage drop along the inner surface of the bushing so as to provide an electrostatic field for controlling the movement of the electron rays.
- An electrostatic electron lens for electron tubes comprising, a bushing of insulating material mounted within the electron tube, said bushing being of appreciable length and having an opening tubes comprising, a bushing of insulating material 3 mounted within the electron tube, said bushing being of appreciable length and having an opening therein through which electron rays are adapted to pass, a layer of conducting material arranged along the surface of said opening, means for impressing a voltage across said conducting layer and the resistance and thickness of said conducting layer being such as to provide a voltage drop establishing an electrostatic field for controlling the electron rays, and said conducting layer having varying thicknesses along the inner surface of the bushing.
- An electrostatic electron lens for electron tubes comprising, a bushing of insulating material mounted within the electron tube, said bushing havin an appreciable length and an axial opening of concave shape through which electron rays are adapted to pass, a layer of conducting varnish arranged along the surface of said opening, means for impressing a voltage across said conducting layer and the resistance and thickness of said conducting varnish layer being such as to provide a voltage drop establishing an electrostatic field for controlling the electron rays.
- An electrostatic electron lens for electron microscopes comprising, an electron tube, an insulating bushing mounted within said electron tube and having an opening of concave shape through which electron rays are adapted to pass, a layer of electrically conductive material arranged on said bushing within said opening, means for impressing a voltage across said conductive layer, and the thickness of said electrically conductive layer varying along the inner surface of the bushing so as to provide a voltage drop along the conductive layer within the opening for controlling the movement of the electrons therethrough.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electron Sources, Ion Sources (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2313018X | 1940-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US2313018A true US2313018A (en) | 1943-03-02 |
Family
ID=7994521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US368271A Expired - Lifetime US2313018A (en) | 1940-05-08 | 1940-12-02 | Electrostatic electron lens |
Country Status (2)
Country | Link |
---|---|
US (1) | US2313018A (de) |
BE (1) | BE440927A (de) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2421234A (en) * | 1944-08-31 | 1947-05-27 | Gen Electric | Electron lens assembly |
US2424788A (en) * | 1942-12-01 | 1947-07-29 | Gen Electric | Electron microscope |
US2455992A (en) * | 1947-01-25 | 1948-12-14 | Du Mont Allen B Lab Inc | Cathode-ray tube amusement device |
US2507331A (en) * | 1946-03-12 | 1950-05-09 | Csf | Independent electrostatic lens |
US2740913A (en) * | 1951-11-01 | 1956-04-03 | Itt | Electron gun |
US2845571A (en) * | 1953-04-17 | 1958-07-29 | Kazan Benjamin | Electrostatically focused traveling wave tube |
US2862129A (en) * | 1954-03-11 | 1958-11-25 | Philips Corp | Device for compensating the astigmatism of electron lenses |
US2925496A (en) * | 1954-10-20 | 1960-02-16 | Swift & Co | Apparatus for obtaining substantially uniform irradiation from a nonuni form source |
US3143681A (en) * | 1959-12-07 | 1964-08-04 | Gen Electric | Spiral electrostatic electron lens |
US3188465A (en) * | 1959-12-29 | 1965-06-08 | Kabushikikaisha Nihondenshi Ka | Two stage electron beam magnification device comprising plural adjustable magnetic lens system |
US4096386A (en) * | 1977-04-04 | 1978-06-20 | Taylor-Kincaid Company | Light reflecting electrostatic electron lens |
US4126781A (en) * | 1977-05-10 | 1978-11-21 | Extranuclear Laboratories, Inc. | Method and apparatus for producing electrostatic fields by surface currents on resistive materials with applications to charged particle optics and energy analysis |
FR2460035A1 (fr) * | 1979-06-25 | 1981-01-16 | Rca Corp | Canon electronique pour tubes a rayons cathodiques et son procede de fabrication |
US4370594A (en) * | 1978-11-29 | 1983-01-25 | Rca Corporation | Resistive lens structure for electron gun |
US4663532A (en) * | 1984-12-14 | 1987-05-05 | Commissariat A L'energie Atomique | Apparatus for irradiating material by an electron beam |
EP0843335A1 (de) * | 1996-11-19 | 1998-05-20 | ACT Advanced Circuit Testing Gesellschaft für Testsystementwicklung mbH | Elektrostatische Vorrichtung zur Einwirkung auf einen Korpuskularstrahl |
EP2478546A2 (de) * | 2009-09-18 | 2012-07-25 | FEI Company | Beschleunigungssäule für verteilte ionenquellen |
WO2014068434A3 (en) * | 2012-10-31 | 2014-09-12 | Koninklijke Philips N.V. | Optical element with manipulated coating resistance |
-
0
- BE BE440927D patent/BE440927A/xx unknown
-
1940
- 1940-12-02 US US368271A patent/US2313018A/en not_active Expired - Lifetime
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2424788A (en) * | 1942-12-01 | 1947-07-29 | Gen Electric | Electron microscope |
US2421234A (en) * | 1944-08-31 | 1947-05-27 | Gen Electric | Electron lens assembly |
US2507331A (en) * | 1946-03-12 | 1950-05-09 | Csf | Independent electrostatic lens |
US2455992A (en) * | 1947-01-25 | 1948-12-14 | Du Mont Allen B Lab Inc | Cathode-ray tube amusement device |
US2740913A (en) * | 1951-11-01 | 1956-04-03 | Itt | Electron gun |
US2845571A (en) * | 1953-04-17 | 1958-07-29 | Kazan Benjamin | Electrostatically focused traveling wave tube |
US2862129A (en) * | 1954-03-11 | 1958-11-25 | Philips Corp | Device for compensating the astigmatism of electron lenses |
US2925496A (en) * | 1954-10-20 | 1960-02-16 | Swift & Co | Apparatus for obtaining substantially uniform irradiation from a nonuni form source |
US3143681A (en) * | 1959-12-07 | 1964-08-04 | Gen Electric | Spiral electrostatic electron lens |
US3188465A (en) * | 1959-12-29 | 1965-06-08 | Kabushikikaisha Nihondenshi Ka | Two stage electron beam magnification device comprising plural adjustable magnetic lens system |
US4096386A (en) * | 1977-04-04 | 1978-06-20 | Taylor-Kincaid Company | Light reflecting electrostatic electron lens |
US4126781A (en) * | 1977-05-10 | 1978-11-21 | Extranuclear Laboratories, Inc. | Method and apparatus for producing electrostatic fields by surface currents on resistive materials with applications to charged particle optics and energy analysis |
US4370594A (en) * | 1978-11-29 | 1983-01-25 | Rca Corporation | Resistive lens structure for electron gun |
FR2460035A1 (fr) * | 1979-06-25 | 1981-01-16 | Rca Corp | Canon electronique pour tubes a rayons cathodiques et son procede de fabrication |
US4281270A (en) * | 1979-06-25 | 1981-07-28 | Rca Corporation | Precoated resistive lens structure for electron gun and method of fabrication |
US4663532A (en) * | 1984-12-14 | 1987-05-05 | Commissariat A L'energie Atomique | Apparatus for irradiating material by an electron beam |
EP0843335A1 (de) * | 1996-11-19 | 1998-05-20 | ACT Advanced Circuit Testing Gesellschaft für Testsystementwicklung mbH | Elektrostatische Vorrichtung zur Einwirkung auf einen Korpuskularstrahl |
EP2478546A2 (de) * | 2009-09-18 | 2012-07-25 | FEI Company | Beschleunigungssäule für verteilte ionenquellen |
EP2478546A4 (de) * | 2009-09-18 | 2014-07-30 | Fei Co | Beschleunigungssäule für verteilte ionenquellen |
WO2014068434A3 (en) * | 2012-10-31 | 2014-09-12 | Koninklijke Philips N.V. | Optical element with manipulated coating resistance |
Also Published As
Publication number | Publication date |
---|---|
BE440927A (de) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2313018A (en) | Electrostatic electron lens | |
US2838639A (en) | Film resistor spirallising | |
US2868989A (en) | Electrostatic charging method and device | |
US2452919A (en) | Electron optical system | |
US3390266A (en) | Apparatus for charging the surface of photoelectric layers using corona discharge | |
US217466A (en) | Improvement in electric induction-coils | |
US3554161A (en) | Developing apparatus | |
US2322011A (en) | Slip ring assembly | |
US1157344A (en) | Means for preventing corona loss. | |
JPS61114452A (ja) | 荷電粒子ビ−ム装置 | |
US3783283A (en) | Corona charging device with semiconductive shield | |
US3328515A (en) | Polymeric insulator with means for preventing burning due to leakage current and arcs | |
US2913640A (en) | Electromagnetic coil assembly | |
GB686527A (en) | Improvements in or relating to focussing coils for electron beams | |
US3634684A (en) | Electron beam scanning apparatus | |
US2301882A (en) | Wound condenser and method of producing same | |
US2143390A (en) | Electron tube | |
US3845307A (en) | Combined corona and luminescent discharge | |
US2060114A (en) | Method of making variable resistance units | |
US3209147A (en) | Electron lens spherical aberration correcting device comprising a current carrying wire section on the lens axis | |
US2533790A (en) | High-tension electrostatic electron lens | |
US1876745A (en) | Method of applying heat to the coverings of electrically conductive cores | |
DE2153288A1 (de) | Korona-Entladungsvorrichtung | |
US3038993A (en) | Aperture system for electron optical instrument | |
US2545354A (en) | Electrostatic generator |