US2309268A - Prismatic system - Google Patents

Prismatic system Download PDF

Info

Publication number
US2309268A
US2309268A US374487A US37448741A US2309268A US 2309268 A US2309268 A US 2309268A US 374487 A US374487 A US 374487A US 37448741 A US37448741 A US 37448741A US 2309268 A US2309268 A US 2309268A
Authority
US
United States
Prior art keywords
face
faces
connecting piece
reflectors
prismatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US374487A
Inventor
Noske Rudolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US374487A priority Critical patent/US2309268A/en
Application granted granted Critical
Publication of US2309268A publication Critical patent/US2309268A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Description

Jan. 26, 1943. R. NGSKE 2,309,268
PRISMATIC SYSTEM T25 Filed Jan. 15, 1941 INVENTOR, RUDOLF NOS/(E.
A770 NEK Patented Jan. 26, 1943 Search Room UNITED STATES PATENT OFFICE 4 Claims.
The present invention relates to improvements in a prismatic system, and its principal object is to provide a system of the character described that is extremely simple in construction.
A further object of my invention is to provide a system of the character-described in which a plurality of prismatic reflectors are interconnected and held in operative position with respect to one another by a connecting piece formed integral with the prismatic reflectors whereby the entire system i made as a one-piece, unitary structure, the connecting piece being preferably made of the same material as the reflectors.
A still further object of the invention is to join a plurality of prismatic reflectors by a single connecting piece which holds the reflectors in operative and spaced relation for reflecting light rays in a desired manner and which is off-set with respect to the reflectors so as to leave a clear path for the light rays.
It is further proposed to arrange the connecting piece and the reflectors in a single unit in complementary relation to form a simple geometrical body, such as a cylinder or a polygonal block adapted for endwise insertion into a similarly shaped chamber forming part of the instrument in connection with which the system is to be used, such as a telescope, a field glass, range-finder or other optical instrument.
And finally, it is proposed to provide a unitary prismatic system of the character described in which the outline of the device, if polygonal, may be used for properly positioning the system with respect to the chamber holding the same, or in which, where a cylindrical form is used, the connecting piece may be formed with proper guide grooves or ridges or other means for positioning the unit in its chamber.
Further objects and advantages of my invention will appear as the specification proceeds, and the novel features thereof will be fully set forth in the claims hereto attached.
The preferred forms of my invention are illustrated in the accompanying drawing, forming part of this application, in which:
Figure 1 is a side view of my prismatic unit;
Figure 2, an end view of the same;
Figure 3, an end view from the other end;
Figure 4, an isometric view of the same, and
Figure 5, an isometric view of a modified form of my unit.
While I have shown only the preferred forms of my invention, I wish to have it understood that various changes or modifications may be made within the scope of the claims hereto attached, without departing from the spirit of the invention.
In its preferred form, my prismatic unit I, as shown in Figures 1-4, inclusive, comprises two prismatic reflectors 2 and 3 and a connecting piece 4.
Each reflector may be described as being part cf a semi-cylindrical block, having a flat diametrical face 5, a semi-cylindrical face 6 opposing the same, a fiat base I and two angular reflecting faces 8 and 9 opposite the latter, the angular faces forming a right angle between the same.
When a ray of light enters perpendicularly through the base 1, it strikes one of the angular faces, say face 9, is deflected to strike the other face 8, and is again reflected to return through the base I, in perpendicular direction and parallel to the incoming ray.
The connecting piece 4 is shown, in Figures 1-4. inclusive, as comprising a quarter-section cf a cylinder, of the same diameter as the cylinder from which the reflectors are made, and having a, quarter-round face l0 and two flat radial faces II and 12 forming a right angle between the same.
The two reflectors 2 and 3 are permanently and integrally secured to opposite ends of the connecting piece 4 so as to project laterally, one from one of the flat faces and the other from the second flat face, with their base faces 1 opposing one another in parallel and semi-overlapping relation, which brings two of the reflecting faces, indicated at 5, opposite one another while providing clear paths of entry and exit for the other two reflecting faces 8. The cylindrical faces of the reflectors and the connecting piece all lie in the same cylindrical plane.
Describing the arrangement in detail, the diametrical face 5 of the reflector 3 has that portion of it lying opposite the reflecting face 8 secured upon the flat face l2 of the connecting piece, the contacting faces overlapping just sufficiently for suitable anchoring, as at l5. This causes the connecting piece 4, in end view (see Figure 3), to occupy a quarter of the circle and the reflector to occupy that one-half of the circle adjacent the face l2 of the connecting piece.
The other reflector 2 is similarly secured, at the other end of the connecting piece I, to the face ll thereof, so as to occupy that one-half of the circle adjacent said face II. This arrangement brings the two reflecting faces 9 opposite one another, while the two reflecting faces 8 are unopposed.
The connecting piece 4, occupying that quarter of the circle left unoccupied by the reflectors does not interfere with the travel of the light rays.
In operation, referring particularly to the isometric view of Figure 4, the path of a light ray is indicated by the broken line, the points of entry, reflection and exit being indicated by dots.
The light ray, paralleling the connecting piece, passes the reflector 3 through the quarter space left unoccupied by both the reflector and the connecting piece 4, enters the reflector 2 through the base 1, strikes the reflecting face 8, is diverted to the reflecting face 9, returns through the base I, paralleling itself, enters the first reflector 3 through its base I, is diverted by its reflecting face 9, strikes the reflecting face 8 and is turned back, again paralleling itself, to pass the second reflector through that quarter-circle left unoccupied by the reflector 2 and the connecting piece.
The outer face of the unit is cylindrical and will fit into any similar cylindrical chamber. It may be held against rotation by any suitable means, for instance, by the groove IS in the connecting piece fitting over a suitable rib in the chamber.
The two reflectors and the connecting piece are preferably made of one piece of material, such as glass or other transparent plastic, and may be manufactured by any suitable method.
The form of my invention shown in Figure 5 is built on the same principle and operates in the same manner, the only difference being that the unit is made in the form of a rectangular block instead of a cylinder. In that case the groove l6 may be omitted, since the rectangular block will position itself automatically when introduced into a similarly shaped chamber.
I claim:
1. A unitary prism structure adapted for sliding insertion into a tube comprising a pair of prismatic reflectors, each having a base, a pair of reflecting faces and an end face, and a linear connecting member having its ends secured to the end faces of the prisms for supporting the latter in spaced and semi-overlapping relation with the bases facing one another, the outer faces of the prisms and of the connecting member being shaped to lie within the surface of a rectilinear 'body having a sliding fit with the tube.
2. A unitary prism structure adapted for sliding insertion into a tube, comprising a rectilinear supporting member having two side faces arranged at a right angle to one another, a pair of prisms, each having a base, a pair of reflecting faces and an end face, means for securing the end face of one of the prisms to the end of one of the side faces along a narrow overlap and means for similarly securing the end of the other prism to the opposite end of the other side face, the outer faces of the prisms and the supporting member being shaped to lie within the surface of a rectilinear body having a sliding fit with the tube.
3. A unitary prism structure adapted to have a sliding fit in a cylindrical chamber, the said prism structure comprising a rectilinear holding piece occupying a one-quarter section of the chamber and having an outer face contacting a quarter of said chamber and two radial faces at right angles to one another, a prismatic reflector of semi-cylindrical contour secured to one of the faces at one end of the holding piece to occupy one half of the chamber outside the holding piece, and a second prismatic reflector secured to the other face at the other end of the holding piece to occupy one half of the chamber outside the holding piece, the two reflectors being arranged in semi-overlapping relation with respect to one another.
4. A unitary prism structure adapted to have a sliding fit in a rectilinear chamber of regular cross-section, the said prism structure comprising a rectilinear holding piece occupying a one quarter section of the chamber and having an outer face contacting a quarter of said chamber and two inner faces at right angles to one another, a prismatic reflector secured to one of the inner faces at one end of the holding piece to occupy one half of the chamber outside the holding piece, and a second prismatic reflector secured to the other inner face at the other end of the holding piece to occupy one half of the chamber outside the holding piece, the two reflectors being arranged in semi-overlapping relation with respect to one another.
RUDOLF NOSKE.
US374487A 1941-01-15 1941-01-15 Prismatic system Expired - Lifetime US2309268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US374487A US2309268A (en) 1941-01-15 1941-01-15 Prismatic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US374487A US2309268A (en) 1941-01-15 1941-01-15 Prismatic system

Publications (1)

Publication Number Publication Date
US2309268A true US2309268A (en) 1943-01-26

Family

ID=23477051

Family Applications (1)

Application Number Title Priority Date Filing Date
US374487A Expired - Lifetime US2309268A (en) 1941-01-15 1941-01-15 Prismatic system

Country Status (1)

Country Link
US (1) US2309268A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423267A (en) * 1941-06-30 1947-07-01 Barr & Stroud Ltd Optical system for periscopes
US2781494A (en) * 1953-03-18 1957-02-12 Lab For Electronics Inc Ultrasonic delay lines
US2858727A (en) * 1954-06-30 1958-11-04 American Cyanamid Co Device for the measurement of absolute turbidity
US4746201A (en) * 1967-03-06 1988-05-24 Gordon Gould Polarizing apparatus employing an optical element inclined at brewster's angle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2423267A (en) * 1941-06-30 1947-07-01 Barr & Stroud Ltd Optical system for periscopes
US2781494A (en) * 1953-03-18 1957-02-12 Lab For Electronics Inc Ultrasonic delay lines
US2858727A (en) * 1954-06-30 1958-11-04 American Cyanamid Co Device for the measurement of absolute turbidity
US4746201A (en) * 1967-03-06 1988-05-24 Gordon Gould Polarizing apparatus employing an optical element inclined at brewster's angle

Similar Documents

Publication Publication Date Title
US5339382A (en) Prism light guide luminaire with efficient directional output
US5341791A (en) Bow sight apparatus
US4750798A (en) Prism light guide luminaire
US5040883A (en) Light fixture with beam shaping lens
US4470664A (en) Reflector device for use with optical distance measuring apparatus
US2628533A (en) Image forming optical reflecting and converging mirror device
GB1088146A (en) A device for injecting light into a glass fibre bundle
JPS62165603A (en) Photo induction tube
US4128308A (en) Optical system for changing the cross sectional dimensions of a collimated beam of light
US2309268A (en) Prismatic system
JPS5983124A (en) Wide angle condenser for laser beam
SE9301472D0 (en) A PARALLAX FREE SIGHT
US3057250A (en) Device to align and locate blocks and cylinders using optical instruments
US5644438A (en) Optical device for viewing into restricted areas
SE7710407L (en) NEW PRISM COMBINATION FOR PERISCOPIC OBSERVATION
KR940022119A (en) Optical scanning device
SU147809A1 (en) Mirrored telephoto lens
JP2831598B2 (en) Corner cube prism capable of direct surveying
US3614205A (en) Two-channel optical transmitter
US3442567A (en) Optical reflector target
US2359609A (en) Optical instrument
SU1332422A1 (en) Corner reflector
SU826257A1 (en) Multiple reflection optic system
SU1164639A1 (en) Trihedral corner reflector for three-coordinate optic orientator
US2121566A (en) High intensity reflector