US2298917A - Modification of fatty oils - Google Patents
Modification of fatty oils Download PDFInfo
- Publication number
- US2298917A US2298917A US2298917DA US2298917A US 2298917 A US2298917 A US 2298917A US 2298917D A US2298917D A US 2298917DA US 2298917 A US2298917 A US 2298917A
- Authority
- US
- United States
- Prior art keywords
- oil
- acid
- treatment
- modification
- sulphur
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010685 fatty oil Substances 0.000 title description 24
- 230000004048 modification Effects 0.000 title description 18
- 238000012986 modification Methods 0.000 title description 18
- 239000003921 oil Substances 0.000 description 47
- 235000019198 oils Nutrition 0.000 description 46
- 239000002253 acid Substances 0.000 description 40
- 239000003795 chemical substances by application Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 26
- 239000007789 gas Substances 0.000 description 20
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 239000005864 Sulphur Substances 0.000 description 17
- 239000002966 varnish Substances 0.000 description 17
- 239000000047 product Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000007792 addition Methods 0.000 description 12
- 239000000944 linseed oil Substances 0.000 description 11
- 235000021388 linseed oil Nutrition 0.000 description 11
- 238000001035 drying Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 9
- -1 sulphur chloride Chemical class 0.000 description 9
- 239000003513 alkali Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 239000004359 castor oil Substances 0.000 description 7
- 235000019438 castor oil Nutrition 0.000 description 7
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 7
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000004073 vulcanization Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000344 soap Substances 0.000 description 4
- ZGZXYZZHXXTTJN-UHFFFAOYSA-N 2,3-dichlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC(Cl)=C1Cl ZGZXYZZHXXTTJN-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229950011260 betanaphthol Drugs 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 229910001385 heavy metal Chemical class 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- NRZRRZAVMCAKEP-UHFFFAOYSA-N naphthionic acid Chemical compound C1=CC=C2C(N)=CC=C(S(O)(=O)=O)C2=C1 NRZRRZAVMCAKEP-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000000153 supplemental effect Effects 0.000 description 3
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- IPZMDJYHJNHGML-UHFFFAOYSA-N diphenylazanium;hydrogen sulfate Chemical compound OS(O)(=O)=O.C=1C=CC=CC=1NC1=CC=CC=C1 IPZMDJYHJNHGML-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical class ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 238000009489 vacuum treatment Methods 0.000 description 2
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- VRYIUQTXEWDFQI-UHFFFAOYSA-N 2-phenyldiazenylaniline sulfuric acid Chemical compound S(=O)(=O)(O)O.NC1=C(C=CC=C1)N=NC1=CC=CC=C1 VRYIUQTXEWDFQI-UHFFFAOYSA-N 0.000 description 1
- DQNAQOYOSRJXFZ-UHFFFAOYSA-N 5-Amino-1-naphthalenesulfonic acid Chemical compound C1=CC=C2C(N)=CC=CC2=C1S(O)(=O)=O DQNAQOYOSRJXFZ-UHFFFAOYSA-N 0.000 description 1
- YCPXWRQRBFJBPZ-UHFFFAOYSA-N 5-sulfosalicylic acid Chemical compound OC(=O)C1=CC(S(O)(=O)=O)=CC=C1O YCPXWRQRBFJBPZ-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- FCSHMCFRCYZTRQ-UHFFFAOYSA-N N,N'-diphenylthiourea Chemical compound C=1C=CC=CC=1NC(=S)NC1=CC=CC=C1 FCSHMCFRCYZTRQ-UHFFFAOYSA-N 0.000 description 1
- YYVFXSYQSOZCOQ-UHFFFAOYSA-N Oxyquinoline sulfate Chemical compound [O-]S([O-])(=O)=O.C1=C[NH+]=C2C(O)=CC=CC2=C1.C1=C[NH+]=C2C(O)=CC=CC2=C1 YYVFXSYQSOZCOQ-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 241000736029 Ruvettus pretiosus Species 0.000 description 1
- DCKMSBIWTITCME-UHFFFAOYSA-N S(=O)(=O)(O)O.NC=1C(=C(C=CC1)NC1=CC=CC=C1)N Chemical compound S(=O)(=O)(O)O.NC=1C(=C(C=CC1)NC1=CC=CC=C1)N DCKMSBIWTITCME-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 235000019498 Walnut oil Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- ASKHTHDBINVNFJ-UHFFFAOYSA-N chlorosulfonyloxyethane Chemical compound CCOS(Cl)(=O)=O ASKHTHDBINVNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- VNEBWJSWMVTSHK-UHFFFAOYSA-L disodium;3-hydroxynaphthalene-2,7-disulfonate Chemical compound [Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(O)=CC2=C1 VNEBWJSWMVTSHK-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 235000010985 glycerol esters of wood rosin Nutrition 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- NTOLGSSKLPLTDW-UHFFFAOYSA-N hydrogen sulfate;phenylazanium Chemical compound OS(O)(=O)=O.NC1=CC=CC=C1 NTOLGSSKLPLTDW-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- QVRVXSZKCXFBTE-UHFFFAOYSA-N n-[4-(6,7-dimethoxy-3,4-dihydro-1h-isoquinolin-2-yl)butyl]-2-(2-fluoroethoxy)-5-methylbenzamide Chemical compound C1C=2C=C(OC)C(OC)=CC=2CCN1CCCCNC(=O)C1=CC(C)=CC=C1OCCF QVRVXSZKCXFBTE-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical compound C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- OPECTNGATDYLSS-UHFFFAOYSA-N naphthalene-2-sulfonyl chloride Chemical compound C1=CC=CC2=CC(S(=O)(=O)Cl)=CC=C21 OPECTNGATDYLSS-UHFFFAOYSA-N 0.000 description 1
- 150000004780 naphthols Chemical class 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000010491 poppyseed oil Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N sulfurochloridic acid Chemical compound OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09F—NATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
- C09F7/00—Chemical modification of drying oils
- C09F7/06—Chemical modification of drying oils by polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/46—Polyesters chemically modified by esterification
- C08G63/48—Polyesters chemically modified by esterification by unsaturated higher fatty oils or their acids; by resin acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/005—Drying oils
Definitions
- Organic 'isocolloids are'colloidal substances in which the dispersed phase and the dispersion. medium are both of the same chemical composition, although present in a difierent physical state. In the'bodying of fatty oils (which are organic isocolloids) the relation between the dispersed phase and the dispersion medium is altered, the dispersed phase being increased and the dispersion medium correspondingly decreased.
- the modification is fatty oils. brought about by heating the isocolloid in the presence of a modifying agent.
- the present application isparticularly concerned with the modification of fatty oils by means of polar compounds, i. e., modifying agents containing a positive charge in one part of the molecule and a negative charge in another molecule, particular sub-group of agents having certain distinctive characteristics distinguishing it from other modifying agents in the general class, in which the inorganic radical does not contain sulphur.
- polar compounds i. e., modifying agents containing a positive charge in one part of the molecule and a negative charge in another molecule, particular sub-group of agents having certain distinctive characteristics distinguishing it from other modifying agents in the general class, in which the inorganic radical does not contain sulphur.
- class of modifying agents which '1 have termed Z-radica "'type, i.- e., having withinithe molecule anacidic inorganic residue and an organic residue.
- 'type i.- e., having withinithe molecule anacidic inorganic residue and an organic residue.
- an acidic inorganic residue -1 mean a residue capable of yielding an inorganic acidupon the addition of one or more hydrogen atoms or Oligroups.
- the oilsreferred to may be treated per se, or they may be treated in mixtures containing more than one such-oil, or containing other materials.
- all of the materials in question or acids of fatty oils and of resins may be modifled inlaccordance with the invention.
- separated fractions of fatty oils may be used as starting materials, either alone or mixed with other oils;
- the process of the present invention may, in fact, be used in connection with fatty oils themselves, fatty acids, esters of fatty acids, and various materials containing the same, and it is to be understood in connection with the appended claims that where reference is made to treating fatty oils, the language is not to be understood as limited to treatment of fatty oils per se, since essentially the same reaction takes place in the case of treatment of the fatty acids, esters thereof, etc. THE MODIFYING AGENT 'conditions the reactionmay not occur to any considerable extent. Nevertheless, the treating agents herein contemplated as suitable, are those which have the'poten'tial capability of yielding the corresponding sulphur-containing acid, upon the addition of hydrogen to the inorganic residue.
- the acid may be produced in different ways with diiferent compounds.
- the addition of OH groups is required, these normally being derived from H20, the remaining H atom combining with the organic part of the molecule; with other compounds,
- the addition of hydrogen is suflicient; with still other compounds, the addition of hydrogen (H2) is required, being derived from H2O, the remaining oxygen atom combining with the organic part of the molecule; and finally, the compound may be of such nature that (d) mere splitting-up thereof, as by the application of heat, may yield the sulphur-containing acid.
- An example of each one of these four types, selected from groups given hereinafter, is as follows:
- Beta-naphtliol 3:6 :8 sulphonic acid (a) Beta-naphtliol 3:6 :8 sulphonic acid. (b) Diamino-diphenyl sulphide.
- Agents in this class facilitate the heat bodying of fatty oils. More particularly, these agents are be noted that although outstanding in increasing the rate of bodying.
- this class of modifying agents isof advantage since it promotes liberation of water from the reaction mixture.
- Modifying agents coming within this general group may be classified in various ways, the organic sulphonic acids and the sulphonyl chlorides representing two important (though not all) sub-groups.
- Sulphonic acids andtheir derivativ'es increase alkali resistance of oils per se, or in varnishes.
- Sulphonic acids with aminoand/or hydroxysubstituents are especially advantageous, since products of lighter color may more readily'be secured therewith, than with other sulphonic acids.
- Inorganic salts of organic bases may also be used, for instance Diphenylamine sulphate, Diaminodiphenylamine sulphate, Aniline sulphate, Amino-azo-benzene sulphate.
- esters of inorganic acids may be employed, such as- Methyl-p-toluene sulphonate, Ethyl chlorosulphonate, Dimethyl sulphate.
- Some thiocompounds may be used, for instance- 'I'hiocarbanilide, Diamino-diphenyl sulphide. From the foregoing it will be seen that certain treating agents in the class herein claimed may be relatively complex compounds incorporating,
- the treating agent partakes somewhat of the characteristics the treating agents herein referred to also belong to a stunner agents claimed in a copending application, although in this event such a compound treating agent manifests not only the distinctive characteristic of the group claimed herein; but also the distinctive characteristic of the group claimed in said copending application.
- the mixing may be effected in the cold, 1. e., at room temperature; or may be effected at ele-. vated temperatures, forinstance at some temperature in the preferred range of reaction temperature.
- the quantity of treating agent may range anywhere from a'minor amount (for instance, a fractional percentage) up to about 30%, ordinarily the amount required is relatively small,.
- the degree of modification of the oil increases with increase in the amount of modifying agent used.
- the lower limit depends somewhat on the particular agent and also on the particular oil being treated, although at least some modification is observable from even-minor fractional percentages, going down aslow as .01%.
- the treatment temperature may also be varied over a considerable range, depending upon the nature of the treating agent and of the oil, as
- the temperature should be considerably aboveroom temperature, butnot above the boiling or decomposition point of the stance.
- the polar compound may be,incorporated inthe presence of various organic bodies such as' the purely organic additions mentioned. post or organic solvents. Again metal soaps may also be added; for instance siccatives (driers) such as the resinates and linoleates of metal compounds and metal oxides, commonly used in the varnish industry, as is mentioned in Serial No. 143,786.
- the time of treatment is also a variable, .depending upon the treating agent, the starting material and the result desired. In general, in- :reasing the time of treatment results in more extensive modification, and in most instances the treatment at, reaction te'mperatureshould be continued for at least 30 minutes, and preferably for several hours.
- the reaction may'take place either in an open .or in a closed vessel; and either at subatmospheric, at atmospheric, or at super-atmospheric pressure.
- Difierent results I are secured under various of these conditions,'-as is brought out fected after modification, and accelerators "and antioxidants may be added to the mix in known manner.
- I may produce liquid vulcanized products as well as rubber-like solids, by regulating the amount of sulphur and the time and temperature of heatingfl 'I'he liquid products are useful as varnish or paint bases.
- the processes may be carried out in various ways, for'instance, either in open orclosed vessels as desired.
- the air can'be entirely or partially displaced by another gas, such as hydrogen, CO2, S02, Has,
- gases which'influence the results obtained, thesegases' being used in supplement to the primary modifying agent employed.
- gases may be passed through a gas.
- the gas pressure can be that of atmospheric. In many cases, however, a vacuum may be used with advantage. Again, even a'higher pressure of several atmospheres is to be recom'- mended in certain cases, it" being sometimes advantageous.
- the results 7 effect vulcanization of my modified products in an after treatment, so as to produce solid, coherent and elastic products, sima certain given starting vessel in which the treatment be used.
- the alkaline of the process vary with the nature of the gas present and also with the physical condition (pressure) of this gas.
- material which is initially liquid will become slightly viscous only as a result of the modifying treatment, if the latter is effected under atmospheric pressure (open vessel) but more viscous if the gas is rarefied by the employment of a partial vacuum. In other cases the converse applies.
- Air gives a different result from another gas or mixtures of gases such as mentioned ante.
- the modifying treatment may be carried out either in the total or partial absence of air, by replacing the same with another gas, such as those shown ante.
- salts such as sodium salts
- the sulphonic acids hereinbefore listed may be added to the oil undergoing treatment, as a result of which, during the treatment reaction, the sulphonic acid itself is released, thereby providing for treatment in the presence of a 2-radical type compound, of which the acidic inorganic residue contains sulphur and has the capability of yielding a sulphurcontaining acid.
- alkali metal salts may satisfactorily be employed.
- the more advantageous metals are barium and lead.
- the organic isocolloid itself may be formedin situ during the treatment. That is, if it is desired to modify an organic isocolloid which is not a naturally occurring material and which has to be produced before it can be treated, the production of such artificial or manufactured organic isocolloid'may be advantageously combined with the treatment with the polar compound.
- the oil may be both heat-bodied and modified in a single step by heat-bodying the fatty oil in the presence of the electrolyte or polar compound. To do this several hours heating at polymerization temperatures is required. Many of my polar compounds are advantageous for this purpose as they accelerate the heat-bodying and polymerization of fatty oils.
- Example 1 To parts of rapeseed oil are added 5 parts of naphthalene sulphonic acid and the mixture is heated in a vacuum for two hours to 300-350" C. At the end of this time, the vacuum is broken poured into molds and allowed to cool.
- Example 3 100 parts of castor oil are heated with 5 parts 2:5 dichlorbenzene sulphonic acid in vacuo at C. for 5 hours.
- the modified oil product so obtained is a thick viscous oil, soluble in butyl acetate, in acetone Example 1000 parts of castor oil are heated at 270 .C.
- the modified castor oil product so obtained has a low to medium viscosity and good drying properties. It is a valuable paint and varnish base.
- Exampled 150 parts of linseed oil are heated in an open vessel-with 7% parts of, 2:5 dichlorbenzene su1- phonic acid to 290-310 C. for 5 hours.
- the product is a, dark viscous liquid, suitable for use as abase for the manufacture of varnishes.
- Example I Gommrm Tears
- alkali refined linseed oil i was used and thetreating agent employed was i made with a blank control experiment in which the same linseed oil was treated in the same manner, with the one exception that no modifying agent was used.
- the same modified oil was also incorporated in a maleie resin varnish and this varnish bodied in about 20% less time than a similar maleic var 6o nish made with the blank control oil.
- the varnish made with the modified oil had better drying and alkali resistance than the varnish made with the blank control oil, and the cold and boiling water tests were comparable to the blank control.
- Test B In accordance with this test .5% of the same reagent (naphthionic acid) was used, the oil being heated for 5 hours at 300C. at a vacuum of 7 mm. of mercury, the batch being agitated.
- Test E Various batches were tried with difierent per-- centages of the modifying agent (naphthionic acid), the best results being secured in the range from about .1% up through about .5%. Concentration below about .5% required greater time to secure a given body, whereas concentrations above about .5% had a tendency to char.
- Test F Since this particular modifying agent.(naphthionic' acid) is not readily compatible with the oil, variations in procedure were tried to im--" prove incorporation and dispersing of the reagent in the oil.
- the desired amount of reagent was mixed thoroughly with water and then added to the oil.
- the reagent was mixed with a small quantity of the oil itseli and then this mixture added to the experimental batch.
- the first method apparently yielded a product of lighter color.
- Example 8 The. conditions here employed were similar to those above in Example 'l-TestA, but here naphthol sulphonic acid 1:5 (Cleves acid) was used, the quantity being .5%.
- the oil was alkali refined linseed oil.
- the modified ,oil was t as ght as in Example 7, but a ciable improvement, as compared with the blank, in bodying, drying and alkali resistance was indicated. 7
- the oil was'alkali refined linseed oil.
- Example 10 In this experiment sulpho salicylic acid was used with alkali refined linseed oil, and CO2 bubbled through the oil. The batch was heated for about 2 hours at300 0., giving a viscosity of Z4. In cooks using more than-.5% of the reagent, the color of the oil was darker than with smaller quantities.
- Naphthylamine sulphonic acid 2 e: s (amido 6-,
- the process which comprises mixing the oil with a minor amount and not more than 10% of a polar compound having within the molecule an organic residue, and an acidic inorganic sulphur-containing residue capable of yielding a sulphur-containing acid at. the reaction temperature and in the presence of the reactants present during the treatment, and heating the mixture to a reaction temperature between about 200 and 350 C. for at least thirty minutes.
- the process which comprises mixing the oil with a minor amount and not more than 10% of a sulphonyl chloride, and heating the mixture to a reaction temperaand 350 C. for at least thirty minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lubricants (AREA)
Description
I Patented Oct. 13, 1942 j v lumrso sTATEs PATENT" OFFICE monmca'rr'on or ram ous Lisflj Aucr, East Orange, N. J.
No Drawing. Application February 5, 1942, Serial No. 429,661
' 1 5Claims; (omen- 101) GENERAL Oh INVENTION Thisinvention relates to the modification of organic isocolloids; More particularly, the invention is concerned with the bodying of fatty oils. The subject matter claimed herein is divided from my copending application Serial No. 318,650
of which the present'application is a continuation-in-part, and-said subject matter is disclosed not only in said application 318,650 but also at least in part in certain other prior applications, especially Serial No; 359,425 (now Patent .No. 2,213,944), and Serial No. 143,786 (now Patent No. 2,189,772) 1 Organic 'isocolloids are'colloidal substances in which the dispersed phase and the dispersion. medium are both of the same chemical composition, although present in a difierent physical state. In the'bodying offatty oils (which are organic isocolloids) the relation between the dispersed phase and the dispersion medium is altered, the dispersed phase being increased and the dispersion medium correspondingly decreased. I
In accordance with various of my prior applications, including those mentioned above, various different methods'are disclosed for modifying organic isocolloids, and'especially for bodying In general, the modification is fatty oils. brought about by heating the isocolloid in the presence of a modifying agent.
In the prior applications, various difierent generic and sub-generic classes and speciflc'modifying agents' are disclosed; and, in addition, there are alsordisclosed variations in process. Diflerent modifying agents or groups thereof, and also variations in. process, eifect diflerent results,
some being of importance for certain purposes and some for other purposes. V
The present application isparticularly concerned with the modification of fatty oils by means of polar compounds, i. e., modifying agents containing a positive charge in one part of the molecule and a negative charge in another molecule, particular sub-group of agents having certain distinctive characteristics distinguishing it from other modifying agents in the general class, in which the inorganic radical does not contain sulphur. The distinctive characteristics will be pointed out more fully hereinafter. v
. THE Sranrmc Mariam The fatty oils and similar materials with which the present application is especially concerned find one of their most important uses in the coating materials and'plastics industries, especially the paint and varnish industry, where oilshaving good body, and drying power are very important. The improved-products produced in accordance with this inventiqn alsohave many other uses;
A list of typical oils which may be "advantageously modified bymy invention is as follows:
Tung oil Rapeseed oil V Castor oil Walnut oil l Linseed oil Pine seed oil Fish oil (train oils) Corn oil Poppyseed oil Olive oil The ease of b dy g or modification, under equal ,"body. However, itshould be also mentionedconditions, decreases in the order given. That is, the first mentioned oils are most extensively bodied or modified by my methods, while the oils at the end of the series are modified to alesser that by the employment 0! suitable modifying agents in my methods, even the last mentioned 7 oils (those at the end oi. this series) can be profoundly modified or bodied, as well as those ofls appearing in the first of the series.
part of the molecule, or capable of orienting their I different radicals in opposite directions on an interface of liquid-gas, liquid-solid, or liquid-liquid.
More specifically, the invention is concerned with that. class of modifying agents which '1 have termed Z-radica "'type, i.- e., having withinithe molecule anacidic inorganic residue and an organic residue. By an acidic inorganic residue -1 mean a residue capable of yielding an inorganic acidupon the addition of one or more hydrogen atoms or Oligroups. I j 'x" The subject matter claimedherein relates to the use of 2-radica1 type modifying agents in which the acidic-inorganic residue'contain's sulphu'r and phujr-contalningacid upon the addition of hydroj is capable of'yielding an inorganic sulgen or OH groups, for instance from a water The loregoing and other fatty oils may be classified as follows: y
dry triglycerides.
i In accordance with the invention, the oilsreferred to may be treated per se, or they may be treated in mixtures containing more than one such-oil, or containing other materials. For inevent, all of the materials in question or acids of fatty oils and of resins, may be modifled inlaccordance with the invention.
In addition, separated fractions of fatty oils (for instance, the better drying fractions) may be used as starting materials, either alone or mixed with other oils;
The process of the present invention may, in fact, be used in connection with fatty oils themselves, fatty acids, esters of fatty acids, and various materials containing the same, and it is to be understood in connection with the appended claims that where reference is made to treating fatty oils, the language is not to be understood as limited to treatment of fatty oils per se, since essentially the same reaction takes place in the case of treatment of the fatty acids, esters thereof, etc. THE MODIFYING AGENT 'conditions the reactionmay not occur to any considerable extent. Nevertheless, the treating agents herein contemplated as suitable, are those which have the'poten'tial capability of yielding the corresponding sulphur-containing acid, upon the addition of hydrogen to the inorganic residue.
In fuller explanation of the capability of yielding the sulphur-containing acid, it is to be understood that the acid may be produced in different ways with diiferent compounds. Thus, in some instances, (a) the addition of OH groups is required, these normally being derived from H20, the remaining H atom combining with the organic part of the molecule; with other compounds, (b) the addition of hydrogen is suflicient; with still other compounds, the addition of hydrogen (H2) is required, being derived from H2O, the remaining oxygen atom combining with the organic part of the molecule; and finally, the compound may be of such nature that (d) mere splitting-up thereof, as by the application of heat, may yield the sulphur-containing acid., An example of each one of these four types, selected from groups given hereinafter, is as follows:
(a) Beta-naphtliol 3:6 :8 sulphonic acid. (b) Diamino-diphenyl sulphide.
(c) Thiocarbanilide.
(d) Diphenylamine sulphate.
From the above it will in some instances, heat alone may suffice to yield the sulphur-containing. acid, in mostinstances the addition. at least of hydrogen is required, although the hydrogen may be derived in different ways with different compounds. In any have in common the capability of yielding the sulphurcontaining acid under the normally prevailing reaction conditions.
Agents in this class facilitate the heat bodying of fatty oils. More particularly, these agents are be noted that although outstanding in increasing the rate of bodying.
At the same time, this class of modifying agents isof advantage since it promotes liberation of water from the reaction mixture.
Modifying agents coming within this general group may be classified in various ways, the organic sulphonic acids and the sulphonyl chlorides representing two important (though not all) sub-groups.
Sulphonic acids andtheir derivativ'es increase alkali resistance of oils per se, or in varnishes.
Sulphonic acids with aminoand/or hydroxysubstituents are especially advantageous, since products of lighter color may more readily'be secured therewith, than with other sulphonic acids.
Examples of the sulphonic acids and suphonyl chlorides are as follows:
Inorganic salts of organic bases may also be used, for instance Diphenylamine sulphate, Diaminodiphenylamine sulphate, Aniline sulphate, Amino-azo-benzene sulphate.
Still further, esters of inorganic acids (containing-sulphur and capable of yielding a sulphur-' containing acid) may be employed, such as- Methyl-p-toluene sulphonate, Ethyl chlorosulphonate, Dimethyl sulphate.
Some thiocompounds may be used, for instance- 'I'hiocarbanilide, Diamino-diphenyl sulphide. From the foregoing it will be seen that certain treating agents in the class herein claimed may be relatively complex compounds incorporating,
in addition to the sulphur-containing residue, other residues such, for instance, as a halogencontaining residue capable of yielding a halogencontaining acid upon addition of hydrogen, or a nitrogen-containing residue capable of yielding a nitrogen-containing acid upon addition of hydrogen or OH groups. In such cases, the treating agent partakes somewhat of the characteristics the treating agents herein referred to also belong to a stunner agents claimed in a copending application, although in this event such a compound treating agent manifests not only the distinctive characteristic of the group claimed herein; butalso the distinctive characteristic of the group claimed in said copending application.
I I Tsna'rnem (lonnrrrons In carrying out the process, the treating agent and the oil are first mixed together in any suit- I able way. Treating agents of different physical characteristics, such as consistency, naturally require different technique for mixing. These matters need not be considered in detail herein since they are fully disclosed in my copending application Serial No. 318,650. w l
The mixing may be effected in the cold, 1. e., at room temperature; or may be effected at ele-. vated temperatures, forinstance at some temperature in the preferred range of reaction temperature.
While the quantity of treating agent may range anywhere from a'minor amount (for instance, a fractional percentage) up to about 30%, ordinarily the amount required is relatively small,.
not usually more than-about In general,
the degree of modification of the oil increases with increase in the amount of modifying agent used. The lower limit depends somewhat on the particular agent and also on the particular oil being treated, although at least some modification is observable from even-minor fractional percentages, going down aslow as .01%.
The treatment temperature may also be varied over a considerable range, depending upon the nature of the treating agent and of the oil, as
well as on-the'character. and extent of modification desired. In general, the temperature should be considerably aboveroom temperature, butnot above the boiling or decomposition point of the stance. the polar compound may be,incorporated inthe presence of various organic bodies such as' the purely organic additions mentioned. post or organic solvents. Again metal soaps may also be added; for instance siccatives (driers) such as the resinates and linoleates of metal compounds and metal oxides, commonly used in the varnish industry, as is mentioned in Serial No. 143,786.
Further,sulphur or sulphur compounds, such as sulphur chloride, etc., may also be used in these processes and added in addition to the polar compound during the reaction or as an after treatment. The sulphur or sulphur compounds effect further modification and produce sulphurized products. The temperature usually employed for modification (above 200 C.) being substan-' tially above normal vulcanization temperatures, the effect of'the sulphur treatment at modifying temperatures is quite different from vulcanization. However, I may also ilar in some characteristics to ordinary rubber. Sulphur may be used for this purpose and may be added as such, or. in the form of a sulphur compound, such as sulphur chloride,-
When making solid vulcanized rubber-like,
products, I employ temperatures between 120 and 180C. for vulcanization, and from 5 to parts of sulphur to 100 parts of the isocolloid under treatment. .This vulcanization should be efoil. A good working rangeis from about 100 to about 350- C.,'and preferably above about 200? C.
The time of treatment is also a variable, .depending upon the treating agent, the starting material and the result desired. In general, in- :reasing the time of treatment results in more extensive modification, and in most instances the treatment at, reaction te'mperatureshould be continued for at least 30 minutes, and preferably for several hours.
The reaction may'take place either in an open .or in a closed vessel; and either at subatmospheric, at atmospheric, or at super-atmospheric pressure. Difierent results I are secured under various of these conditions,'-as is brought out fected after modification, and accelerators "and antioxidants may be added to the mix in known manner. I may produce liquid vulcanized products as well as rubber-like solids, by regulating the amount of sulphur and the time and temperature of heatingfl 'I'he liquid products are useful as varnish or paint bases.
Two step -methods for making vulcanized,
modified, heat-bodied fatty oil products are described and claimed in my application Serial No. 236,800 (Patent 2, ,545) As there stated,
' -many of those products are useful as rubber substitutes. Others are useful for other purposes, for instance, in the manufacture of varnishes, lacquers'and other liquid coating commore fully in my copending application Serial No. 318,650. a With referenceto the foregoing statement of treatment conditions, it is pointed out that these matters are discussed only briefly herein, since they arefully disclosed in my copending application Serial No. 318,650, to which reference may be had for further information. This is also true as .to the supplemental matters discussed just .below. SUPPLEMENTAL TREATMENT Conmrronsl m) AGENTS My processes may be practicedin the absence 'of any additional materialyother than the polar compound. Howevenl have found it is advantageous in some cases to incorporate the polar' compound in the presence of additional mate-' rials which facilitate its incorporation and the modification of the organic isocolloid. For in- ,thematerial being treated. That is, the modi flcation can be carried out during the passage of.
positions as well as in plastic compositions.
As noted above, the processes may be carried out in various ways, for'instance, either in open orclosed vessels as desired. In the latter case, the air can'be entirely or partially displaced by another gas, such as hydrogen, CO2, S02, Has,
nitrogen, etc., which'influence the results obtained, thesegases' being used in supplement to the primary modifying agent employed. Again, in both cases such gases may be passed through a gas. The gas pressure can be that of atmospheric. In many cases, however, a vacuum may be used with advantage. Again, even a'higher pressure of several atmospheres is to be recom'- mended in certain cases, it" being sometimes advantageous.
That is, I have further found that the results 7 effect vulcanization of my modified products in an after treatment, so as to produce solid, coherent and elastic products, sima certain given starting vessel in which the treatment be used. The alkaline of the process vary with the nature of the gas present and also with the physical condition (pressure) of this gas. Thus I have found that material which is initially liquid will become slightly viscous only as a result of the modifying treatment, if the latter is effected under atmospheric pressure (open vessel) but more viscous if the gas is rarefied by the employment of a partial vacuum. In other cases the converse applies. When plus pressure was used the results differ again. Air gives a different result from another gas or mixtures of gases such as mentioned ante. The modifying treatment may be carried out either in the total or partial absence of air, by replacing the same with another gas, such as those shown ante.
A pressure treatment followed by a vacuum treatment may be used, and I have found it to be advantageous to use alternately, atmospheric or plus pressure and vacuum treatment. such alternate treatment increases the uniformity of the distribution of the polar compound in the organic isocolloid. In my processes, the gas may be blown or passed through the liquid mass or simply passed over the surface of the same during the heating. It is advisable in some cases, both when open or closed vessels are employed to have a constant passage of the gas, such as those given ante, during the treatment with the polar compound.
It may be stated with reference to the action of gases, that generally speaking rareflcation of the gases present, by reduction of pressure inthe is given, tends to intensify the action of the gases in my processes.
If desired, the polar compound may be produced in situ, that is, within the organic isocolloid under treatment, by interaction within the organic isocolloid, of substances capable of reacting under the conditions of the process to produce' the polar compound. The sameapplies to the gas in the presence of which the organic isocolloid is to be treated and a substance or substances may be added which evolve the desired gas during the processing. It has been found in certain cases that polar compounds and gases which are produced in situ, being in the nascent state, are somewhat more active than those added in the pre-formed state.
As an example of production of the modifying agent in situ, it may be mentioned that salts, such as sodium salts, of various of the sulphonic acids hereinbefore listed may be added to the oil undergoing treatment, as a result of which, during the treatment reaction, the sulphonic acid itself is released, thereby providing for treatment in the presence of a 2-radical type compound, of which the acidic inorganic residue contains sulphur and has the capability of yielding a sulphurcontaining acid.
Instead of sodium salts, other alkali metal, alkaline earth metal and heavy metal salts may earth metal salts and the heavy metal salts are more advantageous in preparing varnish and paint base materials, than are the salts of alkali metals, because if metal soaps are formed in the oil during the reaction through interchange, the soaps of the alkaline earth metal saitsand the heavy metal salts have lower water solubility than do the soaps of the alkali metals. The lower solubility imparts better water resistance properties to paint and varnish films.
However, in cases where small proportions of and the material modifying agents are used, even alkali metal salts may satisfactorily be employed. Examples of the more advantageous metals are barium and lead.
Likewise, the organic isocolloid itself may be formedin situ during the treatment. That is, if it is desired to modify an organic isocolloid which is not a naturally occurring material and which has to be produced before it can be treated, the production of such artificial or manufactured organic isocolloid'may be advantageously combined with the treatment with the polar compound. For instance, in making modified heatbodied fatty oils, the oil may be both heat-bodied and modified in a single step by heat-bodying the fatty oil in the presence of the electrolyte or polar compound. To do this several hours heating at polymerization temperatures is required. Many of my polar compounds are advantageous for this purpose as they accelerate the heat-bodying and polymerization of fatty oils.
In addition to the action of polar compounds and the cooperating action of gases in effecting the colloidal transformations characteristic of my invention, an additional modification of the ultimate physical properties of the treated products can be effected by the addition to the material under treatment, of purely (i. e. metal-free) organic bodies, such as phenols, naphthols, naphthalene, chloroform, acetone, alcohols and their homologues and derivatives. These additions are supplemental to the use of polar compounds. Some of them are solvents and assist in dispersing the polar compound in the organic isocolloid. The use of solvents for this purpose is also shown in my Serial No. 273,159 (Patent 1,985,230) and other prior applications.
I have also found that in my processes the colloidal transformations may be promoted by the useof rays of oscillating energy, such as ultraviolet rays, infra-red rays, X-rays, 4 it is advantageous to irradiatejhe oil or other organic isocolloid before or during the treatment with the polar compound Sometimes a subsequent treatment withthese rays is also helpful. Further, these rays influence and intensify the action of the gases in my processes.
XAMPLES Example 1 To parts of rapeseed oil are added 5 parts of naphthalene sulphonic acid and the mixture is heated in a vacuum for two hours to 300-350" C. At the end of this time, the vacuum is broken poured into molds and allowed to cool.
' Example 2 parts of linseed oil are heated in vacuum to 2803l0 C. for 5 hours with 7.5 parts of 2:5 dichlorbenzene sulphonic acid.
The modified oil product so'obtained is a soft solid product suitable for use in making varnishes.
Example 3 Example 4 100 parts of castor oil are heated with 5 parts 2:5 dichlorbenzene sulphonic acid in vacuo at C. for 5 hours.
etc. That is,
and in benzene.
I The modified oil product so obtained is a thick viscous oil, soluble in butyl acetate, in acetone Example 1000 parts of castor oil are heated at 270 .C.
" with-50 parts of p-toluene sulphochloride for one hour and then an additional 9000 parts oi'castor oil are added to the mixture, and this mixture is then held for- 2 hours at 270 0., 2 hours at 250 C. and 1' hour at 200 C.,'during which time a cur- I rent of nitrogen is bubbled through the so heated mixture.
a The modified castor oil product so obtained has a low to medium viscosity and good drying properties. It is a valuable paint and varnish base. Exampled 150 parts of linseed oil are heated in an open vessel-with 7% parts of, 2:5 dichlorbenzene su1- phonic acid to 290-310 C. for 5 hours. The product is a, dark viscous liquid, suitable for use as abase for the manufacture of varnishes.
Example I Gommrm: Tears In this group of "tests, alkali refined linseed oil i was used and thetreating agent employed was i made with a blank control experiment in which the same linseed oil was treated in the same manner, with the one exception that no modifying agent was used.
. Test A Particularly good results were obtained when employing a C02 blanket on the surface of the batch, the batch being agitated during treatment.
In this test about 6 hours were required at about 300 C. to reach a viscosity of Z- -5 (Gardner scale). This represented a saving of about 30% of the time required to body to the same viscosity, in the absence of the'modifying agent. Moreover the oil modified in the presence of the ,An ester gum varnish made with the treated oil just referred to was comparable to the blank control experiment in cold and boilingwater tests and in cooking time. The modified oil, however,
yielded a varnish superior to the varnish made v with the blank control oil both in drying and in alkali resistance.
The same modified oil was also incorporated in a maleie resin varnish and this varnish bodied in about 20% less time than a similar maleic var 6o nish made with the blank control oil. The varnish made with the modified oil had better drying and alkali resistance than the varnish made with the blank control oil, and the cold and boiling water tests were comparable to the blank control.
Test B In accordance with this test .5% of the same reagent (naphthionic acid) was used, the oil being heated for 5 hours at 300C. at a vacuum of 7 mm. of mercury, the batch being agitated.
This yielded a light oil of goodquality, although with somewhat less body than the oil of Test A; Other properties were similar to the oil produced in accordance with Test A. I I 7 aaca'erra' I I i I 5' Test 0 I In this test agitation was employed, but neither the C02 blanket nor the vacuum of Tests A and B were here employed. Various characteristics of the oil were similar, but the color was darker.
Test 11 g Heating procedure similar to that above was employed, but here a CO: blanket was employed but no agitation was used. Some charring of the reagent occurred.
Test E Various batches were tried with difierent per-- centages of the modifying agent (naphthionic acid), the best results being secured in the range from about .1% up through about .5%. Concentration below about .5% required greater time to secure a given body, whereas concentrations above about .5% had a tendency to char.
Test F Since this particular modifying agent.(naphthionic' acid) is not readily compatible with the oil, variations in procedure were tried to im--" prove incorporation and dispersing of the reagent in the oil.
In one experiment the desired amount of reagent was mixed thoroughly with water and then added to the oil. Inanother the reagent was mixed with a small quantity of the oil itseli and then this mixture added to the experimental batch. The first method apparently yielded a product of lighter color.
Example 8 The. conditions here employed were similar to those above in Example 'l-TestA, but here naphthol sulphonic acid 1:5 (Cleves acid) was used, the quantity being .5%. As before, the oil was alkali refined linseed oil. The modified ,oil was t as ght as in Example 7, but a ciable improvement, as compared with the blank, in bodying, drying and alkali resistance was indicated. 7
. Example 9 I Here naphthylamine sulphonic acid 223:6 (amido R-acid) was used, the heating proceagent was light in color. 501 dure and percentage being in accordance with that described above in'Example "ITest A. As
, before, the oil was'alkali refined linseed oil.
This modifying agent also yields alight oil and improves bodying.
Example 10 In this experiment sulpho salicylic acid was used with alkali refined linseed oil, and CO2 bubbled through the oil. The batch was heated for about 2 hours at300 0., giving a viscosity of Z4. In cooks using more than-.5% of the reagent, the color of the oil was darker than with smaller quantities.
Example 11 Test A Alkali refined linseed oil, was heated for about 2 hoursat 300C. with .5% of beta-naphthol 3:6:8 trisulphonic acid. During the treatment '00: was bubbled through the oil. The viscos- 5 A, but with the lead salt of beta-naphthol 3:6:8
trisulphonic acid. The only appreciable difference from Test A was that the bodied oil lighter in color.'
was
Test C tested experimentally the following P may be mentioned:
Schaffer salt,
Anthraquinone-beta-su1phonic acid,
Oxyquinoline sulphate (yellow),
Naphthol disulphonic 'acid 1:3:8 (Andersens acid),
Naphthylamine sulphonic acid 2:e: s (amido 6-,
acid), lnaphthylamine 3:6:8 trisulpho acid, Naphthalene-beta-sulphonyl chloride, 2:5 dichlorbenzene sulphonic acid, Naphthol disulphonic acid 1:4:8 (Schoelkopf's acid), Naphthol sulphonic acid acid), Naphthol disulphonic acid 2:3:6 (R-salt), Laurent's acid. a
I claim:
1. In the modification of fatty oils to improve the drying properties thereof, the process which comprises mixing the oil with a minor amount and not more than 10% of a polar compound having within the molecule an organic residue, and an acidic inorganic sulphur-containing residue capable of yielding a sulphur-containing acid at. the reaction temperature and in the presence of the reactants present during the treatment, and heating the mixture to a reaction temperature between about 200 and 350 C. for at least thirty minutes. a
2. A process in accordance with claim 1 in which the fatty oil is castor oil.
1 (Neville-Winter heating the mixture 3. A process in accordance with claim 1 in which the fatty oil is linseed oil.
4. In the modification of fatty oils to improve the drying properties thereof, the process which comprises mixing the oil with a minor amount and not more than 10% of a sulphonic acid, and to a reaction temperature between about 200 and 350 C. for at least thirty minutes.
5. A process in accordance with claim 4 in which the fatty oil is castor oil. a
6. A process in accordance with claim 4 in which the fatty oil is linseed oil.
.7. A. process in accordance .with claim 4 in which said sulphonic acid is a poly-sulphonic acid. v .4 8.A"process' in accordance with cl'aim 4 in which said acid is. a hydro'xy-substituted sulphonicacid. 4
9. A process in accordance with claim 4 in which said acid is an amino-substituted sulphonic acid.
10. A process in accordance with claim 4 in which said acid is a naphthalene-derivative hydroxy-substituted sulphonic acid.
11. A process in accordance with claim 4 in which said acid amino-substituted sulphonic acid.
12. A process in accordance with claim 4 in which said acid is naphthionic acid.
13. Aprocess in accordance with claim 4 in which said acid is beta-naphthol 3:6:8 trisulphonic 'acid.
' comprises mixing the acid, and heating "the ture between about 200 14; In the modification of fatty oils to improve the drying properties thereof, the process which on with a minor amount and not more than 10% of a salt of a sulphonic 7 mixture to a reaction .temperature between about 200 and 350 C. for at least thirty minutes.
15. In the modification of fatty oils to improve the drying properties thereof, the process which comprises mixing the oil with a minor amount and not more than 10% of a sulphonyl chloride, and heating the mixture to a reaction temperaand 350 C. for at least thirty minutes.
LziszLo AUER.
is a naphthalene-derivative v
Publications (1)
Publication Number | Publication Date |
---|---|
US2298917A true US2298917A (en) | 1942-10-13 |
Family
ID=3432912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US2298917D Expired - Lifetime US2298917A (en) | Modification of fatty oils |
Country Status (1)
Country | Link |
---|---|
US (1) | US2298917A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4168275A (en) * | 1977-09-29 | 1979-09-18 | James G. McDonald | Process for modifying linseed oil |
US5028264A (en) * | 1989-04-24 | 1991-07-02 | Miner Philip S | Method for producing soluble polymerized oils |
-
0
- US US2298917D patent/US2298917A/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4168275A (en) * | 1977-09-29 | 1979-09-18 | James G. McDonald | Process for modifying linseed oil |
US5028264A (en) * | 1989-04-24 | 1991-07-02 | Miner Philip S | Method for producing soluble polymerized oils |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2234545A (en) | Manufacture of vulcanized, modified fatty oils | |
US2298917A (en) | Modification of fatty oils | |
US2669526A (en) | Enamel composition having a stabi | |
US2382533A (en) | Oil in water dispersions | |
US2298270A (en) | Manufacture of modified organic | |
US2448621A (en) | Composition containing tall oil resins | |
US1980367A (en) | Modification of the physical properties of resins | |
US2418453A (en) | Process for making coating material emulsions | |
US2547760A (en) | Polymerized fatty oils | |
US2418451A (en) | Process of preparing emulsions of soap-free fatty oils | |
US2007958A (en) | Manufacture of modified, bodied products from fatty oils and the like | |
US2530370A (en) | Starting materials | |
US1963065A (en) | manufacture of thickened | |
US2509495A (en) | Manufacture of interpolymers of aromatic vinyl hydrocarbons and oils | |
US1971634A (en) | Of producing an oxidized | |
US2278425A (en) | Drying oil and process | |
US2298914A (en) | Modification of fatty oils | |
US2322106A (en) | Manufacture of coating composi | |
US2298919A (en) | Modification of fatty oh | |
US2298915A (en) | Manufacture of modified products | |
US2213944A (en) | Process for colloidal transfor- | |
US2403408A (en) | Production of thickened products from fatty acid esters | |
US2172955A (en) | Coating and impregnating process and product | |
US2298916A (en) | Modification of fatty oils | |
US2418452A (en) | Making coating material emulsions |