US2256932A - Piezoelectric crystal apparatus - Google Patents

Piezoelectric crystal apparatus Download PDF

Info

Publication number
US2256932A
US2256932A US313461A US31346140A US2256932A US 2256932 A US2256932 A US 2256932A US 313461 A US313461 A US 313461A US 31346140 A US31346140 A US 31346140A US 2256932 A US2256932 A US 2256932A
Authority
US
United States
Prior art keywords
crystal
electrode
cathode
circuit
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US313461A
Inventor
John M Wolfskill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bliley Electric Co
Original Assignee
Bliley Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bliley Electric Co filed Critical Bliley Electric Co
Priority to US313461A priority Critical patent/US2256932A/en
Application granted granted Critical
Publication of US2256932A publication Critical patent/US2256932A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/34Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being vacuum tube

Description

Sept. 23, 1941. J. M. WOLFSKILL 356,932
PIEZOELECTRIC CRYSTAL APPARATUS Filed Jan. ll, 1940 .ELE-l- ,225 24;
Re enratzbn gzdenser /7 @N .Ri lE` /Ox J7 Eeeneradan govdenser Patented Sept. 23, 1941 PIEZOELECTRIC CRYSTAL APPARATUS Application January 11, 1940, Serial No. 313,461
7 Claims.
This invention relates to a variable frequency piezo-electric crystal oscillator and more particularly to a wide range continuously variable piezoelectric crystal oscillator.
An object of the invention is to provide a form of oscillator circuit in which the quartz crystal is excited very lightly.
Another object of the invention is to provide an oscillator circuit in which crystals which have a high frequency-temperature coeflicient may be employed without encountering a high frequency drift because the actual temperature rise of the crystal from non-oscillating to oscillating condition is negligible.
Another objectof the invention is to provide a form of feedback so that the crystal is continuously excited over a large air-gap variation, the feed-back being of such a form that the drive on the crystal is practically constant regardless of whether the air-gap is at a minimum or maximum position.
Another object is to provide a form of oscillator circuit in which the output or load circuit does not react on the characteristics of the crystal oscillator.
Still another object is to provide an oscillator circuit such that the output or load circuit may be turned to a second harmonic of the crystal oscillator frequency and obtain practically the Same radio frequency power output as when the load circuit is tuned to the fundamental frequency.
Another object is to provide a form of crystal controlled exciter unit whereby output may be obtained on the fundamental and second harticularly true in the amateur field. VariousA methods have been devised for accomplishing this, but most of these have been by the use of self-excited or electron coupled oscillators. These naturally have the advantage of 'allowing for wide frequency adjustment, but they have them too desirable for controlling the frequency of a transmitter.
A crystal controlled oscillator is far superior for this purpose, the advantages being well known in the art. However, a crystal controlled oscillator'is generally considered as a single xed frequency device. Relatively new to the art has been the development ofa practical method for varying the frequency of a quartz crystal over a narrow range. A method of doing this is described in my Patent No. 2,079,540, which discloses a form of adjustable electrode air-gap associated with a quartz crystal for varying and controlling the frequency of the crystal. The present invention also uses the same fundamental type of air-gapvariation, but instead of using a low drift type of crystal in which the frequency variation obtainable is approximately .17% of the crystall frequency, a relatively high drift, high activity crystal is used. However the latter type of crystal may be advantageously employed in the present case because the type of circuit used excites the crystal element very lightly and consequently the frequency drift is rather small because the temperature rise is small.
By selecting an angle of 19 plusv or minus 5, for example,Y such Vas disclosed in my Patent No. 2,157,808, it is possible to obtain a fundamental frequency variation of as much as .35% of the crystal frequency by means of air-gap adjustment. This is more than double the frequency variation obtainable with the lower activity low drift type of crystal. This type of crystal element has a high frequency-temperature coeicient (approximately plus 50 cycles/10W centigrade temperature change) however this does not cause excessive drift in the output frequency since the crystal is excited very lightly for all adjustments of the air-gap.
Other and further objects of this invention' will be apparent to those skilled in the art to which it relates from the following specification and claims.
Referring to the drawing briefly, Fig. 1 illustrates a schematic circuit diagram of the piezoelectric oscillator circuit and the resonance indicator of my invention Fig. 2 illustrates the crystal oscillator portion of the circuit; and Fig. 3 is a circuit diagram used to facilitate explanation of parts of the invention.
'Ihe circuit of Fig. 1 makes the use of a high activity high drift type of crystal l0 possible, be-
' lcause the excitation on the crystal is very low at many'inherent disadvantages which do not make 55 all times for all adjustments of the gap between lthe crystal and the electrode H. This electrode II is adjustable by means of the knob I3 in a manner such as, for example, illustrated in my prior Patent No. 2,079,540. The first grid I 6, cathode I5 and screen grid II of the tube I4 constitute the crystal oscillator portion of the circuit together with the crystal I 0, the grid leak 2 I, the radio frequency choke 22, condenser 23, source of current supply 24 and resistor 25, as shown in Fig. 2. A by-pass condenser 24a is connected across the source of anode current supply 24. A positive" potential is impressed on the screen grid I'I from the source of current supply 24 and consequently this grid electrode acts as an anode. Either one or both the choke coil 22 and the condenser 23 may be variable if desired, Particularly if large frequency bands are to be covered. The screen grid I'I, however, instead of being grounded to radio frequency, is by-passed to the cathode I 5 for radio frequency by means of the condenser and this constitutes the form of feedback employed.
Disregarding for the present the use of feedback in this circuit, reference is made to Fig. 3. In this circuit, the cathode I5 of the tube I4 may be considered at ground radio frequency potential, a radio frequency choke 22 being used to isolate the cathode I5, and the condenser 23 across the radio frequency choke serving as a capacitive reactance in the plate circuit required to causeoscillation. Electric oscillation in the circuit takes place by virtue of the fact that the circuit takes the form of a Colpitts oscillator with the crystal connected between the screen grid I'I, which acts as a plate or anode, and the control grid I6, the condenser 23 across the choke 22 giving the proper impedance in the plate circuit for oscillation. This type of circuit produces very little driving action on the crystal, and of course this is desirable since a high-frequency drift coefficient crystal is used. However, it has been found that even though the driving action is adequate in the minimum air-gap position of the electrode II this action tapers off and decreases as maximum air-gap is approached. This is detrimental to the performance of the unit, and as a result a slight amount of feedback was added in such a way that the drive on the crystal with the large air-gap was increased without materially increasing rthe drive'when the crystal IS and electrode II are at minimum air-gap position. Thefeedback then applied in this form has the tendency to smooth out and make the driving action on the crystal constant regardless of whether the air-gapis maximum or minimum. This is accomplished by connecting the grid electrode I.'I to the cathode I5 through the condenser 20 thus adding regeneration to the cricuit by the amount of impedance voltage drop across the cathode condenser 23 that is, the radio frequency current in returning to ground 22a passes through the cathode condenser 23, shunting the radio frequency .choke 22, and the feedback may be varied by varying this condenser and changing the impedance voltage drop across it.
The suppressor grid electrode I8 has a slight positive potential applied to it through the resistors 25a and 293D connected across the source 24, and is grounded to radio frequency through the condenser 25. By doing this, the output from the exciter tube I4 is increased, and at the same f time the electrostatic isolationfbetween the circuit of the plate I9 and the crystalfoscillator circuit 'is more complete. The tank circuit 21 connected to the plate I9 is provided with inductance and condenser elements 28 and 29 of such a size 'l' that it is possible to tune this tank circuit to both the fundamental frequency and the second harmonic of the crystal oscillator element. This enables a choice of high frequency energy output on several frequency bands, simply by adjusting a variable condenser or by switching in a fixed condenser of appropriate size. The output from the complete unit is taken by coupling a coil 30 and a suitable twisted line or coaxial line 3I to the plate tank inductance 28.
In order to indicate when the tank circuit 2'I is tuned to its resonance peak, a resonance indicator 32 is coupled thereto by the inductance 31 connected to the grid 32a. and cathode 32e through the condenser 36. This could normally be in the form of a neon tube lightly coupled to the plate tank, but it was found that the neon tube indicator consumed considerable energy. In order not to consume any appreciable amount of the radio frequency energy in the indicating device and at the same time obtain a resonance indicator considerably less expensive than a meter, an electron eye tube 32 is employed to indicate radio frequency resonance without employing a separate rectifier tube, battery or other current source to furnish the bias voltage for the electron eye tube. This was done by simply coupling the grid 32a of the eye tube to the output tank circuit, supplying a bias potential to the grid 32a of the tube by means of a relatively large cathode bias resistor 34, the fixed bias being of such value as to just close the eye when no signal is applied.
The diode load resistor 33 and condenser 3S combination acts to increase the bias potential on the grid ,32a when a radio frequency signal is applied to the inductance 31 and by virtue of the effect this bias change has on the plate current, the fluorescent target or electron eye is opened. By properly adjusting the fixed cathode bias resistor 34 the tube can be made to open or close its target on application of a radio frequency signal by working on a different portion of the grid Voltage plate current curve. By this means, the tube operates toproduce its own bias poten-V tial to produce variation in plate current in the tube, and consequently variation in potential on the target electrode 321 with variation in the radio frequency signal.
The crystal oscillator exciter of this invention can be used in amateur and other applications very conveniently. For example if it is desired to operate in the 8,0 and 40 meter bands, the exciter can be connected to control any existing radio transmitterin these bands. Assuming a crystal frequency of 3600 kilocycles, the output tank circuit 2'I can be tuned to 8O meters and by varying the air-gap electrode II of the crystal, a frequency variation 0f 12 kilocycles may be obtained in this band. By simply tuning the output tank circuit 2'? to 7200 kilocycles, operation may be obtained in the 40 meter band, a crystal at 3600 kilocycles, givinga continuous frequency variation in the 40 meter band of 24 kilocycles, the output tank of course being tuned to peak resonance by means of the indicating device 32.
1nv practice I have found that the tube I4 `may be a type 1852 or 6AC'7 or similar types; resistor 2| is 100,000 ohms; resistors 25, 25a and 25h are 30,000, 20,000 and `100,000 ohms respectively; condensers 2,0 and 26 are 0.01 microfarad respectively; choke coil 22 is 2.1 milli-henries; and the condenser 23 is variable between 0.00025 and 0.0005 micr'ofarad. The tube 32 is a 6E5 or 6U5 or similar indicator type; resistors 33 and 35 are each one megohm; resistor 34 is 20,000 ohms; and
condenser 36 is 0.1 microfarad. It is of course obvious that other values may be used for the foregoing component parts and'that this invention is not to be limited to those values since they are given only for the purpose of illustrating one form of practical embodiment of this invention. Furthermore I do not desire to limit this invention to the exact circuit details illustrated except insofar as those details are defined by the claims.
What I claim is as follows:
1. A piezo electric crystal oscillator, comprising: a piezo electric crystal element, a variable air gap holder for said crystal element having an electrode adjustable with respect to one of the principal faces of said crystal element, a vacuum tube having a grid electrode connected to an electrode of said crystal element holder, a cathode for said tube, a source of current supply, an inductance element functioning as a high frequency choke connected between said cathode and a negative terminal of said source of current supply, connections for connecting the other electrode of said holder to said negative terminal, connections for connecting a positive terminal of said source of current supply to another electrode of said tube functioning as an anode, and irnpedance means connected between said last mentioned tube electrode and said cathode for producing a regenerative eiect and slightly driving said piezo-electric crystal throughout the total variation of said variable air gap electrode with respect to the corresponding crystal element face.
2. A piezo electric crystal oscillator comprising: a piezo electric crystal element, a variable air gap holder for said crystal element having an i electrode adjustable with respect to one of the principal faces of said crystal element, a vacuum tube having a grid electrode connected to an electrode of said crystal element holder, a cathode for said tube, a source of current supply, an inductance element functioning as a high frequency choke connected between said cathode and a negative terminal of said source of current supply, connections for connecting the other electrode of said holder to said negative terminal, connections for connecting a positive terminal of said source of current supply to another electrode of said tube functioning as an anode, capacitative impedance means connected between said last mentioned tube electrode and said cathode for producing a regenerative effect and slightly driving said piezo-electric crystal at minimum air gap, and additional means for producing a regenerative eifect at maximum air gap of said electrode with respect to the corresponding crys- 2 tal face, said last means being connected across said high frequency choke.
3. A piezo electric crystal oscillator, comprising: a piezo electric crystal element, a variable air gap holder for said crystal element having an electrode adjustable with respect to one of the principal faces of said crystal element, a Vacuum tube having a grid electrode connected to an electrode of said crystal element holder, a cathode for said tube, a source of current supply, connections for connecting a positive terminal of said source of current supply to another electrode of said tube functioning as an anode, impedance means connected between said last mentioned tube electrode and said cathode for producing a regenerative e'ect and slightly driving said piezo-electric crystal, and impedance means connected between said cathode and a negative terminal of said source of current supply to increase the regenerative effect at maximum air gap in the aforesaid holder, and connections'for connecting the other electrode of said crystal holder to said negative terminal.
4. A piezo electric crystal oscillator, comprising: a piezo electric crystal element, a variable air gap holder for said crystal element, a vacuum tube having a grid electrode connected to an electrode of said crystal element holder, a cathode for said tube, a source of current supply, an inductance element functioning as a high -frequency choke connected between said 'cathode and a negative terminal of said source of current supply, connections for connecting the other electrode of said holder to said negative terminal, connections for connecting a positive terminal of said source of current supply to another electrode of said tube functioning as an anode, impedance means connected between said last mentioned tube electrode and said cathode for producing a regenerative effect and slightly driving said piezo-electric crystal, and a condenser connected across said high frequency choke to increase the regenerative 'eifect at maximum air gap in the aforesaid holder.
5. A piezo electric crystal oscillator adaptedA for adjustable frequency operation, comprising: a piezo electric crystal having a pair of electrodes one of which is variable to provide a frequency adjusting variable air gap, an electron discharge device having a cathode, a control grid, and another electrode functioning as an anode, said piezo electric crystal having a high frequency drift and being adapted to shift its frequency over relatively wide ranges by virtue thereof when the aforesaid Variable air gap is adjusted, a source of anode current supply, connections for connecting said piezo electric crystal through one of its electrodes to said control grid electrode and through the other of its electrodes to the negative terminal of said current supply, a condenser connected between said electrode functioning as an anode and said cathode for producing a slight amount of regeneration when said crystal air gap is substantially at minimum, a high frequency choke connected between said negative terminal of said current supply and said cathode, and a condenser connected across said lchoke for increasing said regeneration when said air gap is increased for applying a slight driving action to said crystal without exciting said crystal to a point where considerable temperature rise takes place in it.
6. An oscillation generator, comprising: an electron discharge device oscillation generator having a piezo electric crystal oscillator circuit and an output circuit including an anode, said piezo electric crystal oscillator circuit including a cathode, a control grid and a screen grid and means for connecting said piezo electric crystal between said cathode and said control electrode, a source of 'current supply for said anode and said screen grid, a high frequency choke connected between said cathode and the negative terminal of said source of current supply for maintaining said cathode at a radio frequency potential substantially above rL'ero, and an impedance feedback device connected directly between said screen grid and said cathode, a suppressor grid electrode in said electron discharge device between said anode and said screen anode, means for maintaining said suppressor grid electrode substantially at Zero radio frequency potential for electrostatically isolatingsaid anode from said crystal oscillator circuit, and a tuned circuit connected between said last men- .tioned anode and the positive terminal of said source of current supply.
7. A piezo electric crystal oscillator, comprising: an electron discharge device having a cathode, a control grid, and an anode, a piezo electric crystalhaving apair of electrodes, connections for connecting said piezo electric crystal through one of its electrodes to said control grid electrode, a source of current supply, an output circuit connected between said anode and the positive terminal of said source of current supply, means connected between said cathode .and said output circuit for producing a. slight amount of regeneration between said output-circuit and the circuit of said piezo electric lcrystal for applying a slight driving action to said crystal, and a high frequency choke Vhaving one terminal connected to said cathode, the other terminal of said high frequency choke being connected to the other electrode of said piezo electric crystal and to the negative terminal of said 10 source of current supply.
JOHN M. WOLFSKILL.
US313461A 1940-01-11 1940-01-11 Piezoelectric crystal apparatus Expired - Lifetime US2256932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US313461A US2256932A (en) 1940-01-11 1940-01-11 Piezoelectric crystal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US313461A US2256932A (en) 1940-01-11 1940-01-11 Piezoelectric crystal apparatus

Publications (1)

Publication Number Publication Date
US2256932A true US2256932A (en) 1941-09-23

Family

ID=23215783

Family Applications (1)

Application Number Title Priority Date Filing Date
US313461A Expired - Lifetime US2256932A (en) 1940-01-11 1940-01-11 Piezoelectric crystal apparatus

Country Status (1)

Country Link
US (1) US2256932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437660A (en) * 1944-04-29 1948-03-09 Premier Crystal Lab Inc End-loaded piezoelectric unit
US2570840A (en) * 1946-11-23 1951-10-09 Gen Railway Signal Co Radio-frequency oscillator organization
US2767316A (en) * 1954-11-17 1956-10-16 Rca Corp Oscillator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437660A (en) * 1944-04-29 1948-03-09 Premier Crystal Lab Inc End-loaded piezoelectric unit
US2570840A (en) * 1946-11-23 1951-10-09 Gen Railway Signal Co Radio-frequency oscillator organization
US2767316A (en) * 1954-11-17 1956-10-16 Rca Corp Oscillator

Similar Documents

Publication Publication Date Title
US3068427A (en) Frequency modulator including voltage sensitive capacitors for changing the effective capacitance and inductance of an oscillator circuit
US2262149A (en) Volume control circuit for oscillators
US2066027A (en) Constant frequency generator
US2256932A (en) Piezoelectric crystal apparatus
US2298774A (en) Crystal controlled oscillation generator
US2051936A (en) Oscillation generator
US2486265A (en) Variable frequency oscillator
US2452951A (en) Crystal oscillator circuits
US2459557A (en) Wave length modulation
US1864368A (en) Electrical oscillation generator
US2382954A (en) Oscillator
US3061802A (en) Frequency modulated crystal oscillator
US1811128A (en) Balanced magnetostrictive oscillator
US2043242A (en) High frequency oscillator
US2369954A (en) Crystal oscillator circuit
US2925562A (en) Frequency modulated crystal oscillator circuit
US2797328A (en) Transistor oscillator
US2311163A (en) Oscillator circuit
US2029488A (en) Negative resistance crystal controlled oscillator
US1921844A (en) Crystal controlled oscillator
US1606791A (en) Oscillation generator
US2092098A (en) Crystal controlled oscillator
US2076289A (en) Frequency modulation
US2727993A (en) Stabilized oscillator
US2718593A (en) Crystal-controlled electric oscillation generators