US2255482A - Process which consists in causing chromium to diffuse - Google Patents

Process which consists in causing chromium to diffuse Download PDF

Info

Publication number
US2255482A
US2255482A US263060A US26306039A US2255482A US 2255482 A US2255482 A US 2255482A US 263060 A US263060 A US 263060A US 26306039 A US26306039 A US 26306039A US 2255482 A US2255482 A US 2255482A
Authority
US
United States
Prior art keywords
carbon
chromium
article
articles
diffuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US263060A
Inventor
Daeves Karl
Becker Gottfried
Steinberg Fritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2255482A publication Critical patent/US2255482A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/38Chromising
    • C23C10/40Chromising of ferrous surfaces

Definitions

  • this invention relates to the introduction of chromium into iron and steel articles by diffusion.
  • One method of doing this consists in packing the articles in containers with compounds or alloys of chromium, for example ferrochrom-e, and substances, for example barium chloride, which enter into gaseous combination with the chromium at temperatures of about 900 to 1100 C., and heating the containers.
  • Another method, which is the best so far developed, is to cause a gaseous chromium compound, for example chrom um chloride, to flow over the articles at temperatures of about 900 to 1100 C.
  • the chromium layers formed on the surfaces of the article are excellent only if the articles are made from iron or steel alloys containing less than 0.1% carbon and are comparatively thin. With higher carbon contents the depths to which the chromium layers penetrate are small, and even with carbon contents less than 0.1% satisfactory results are not obtained at the usual temperatures and with the usual periods of diffusion if the articles are thick.
  • An important object of this invention is to improve the chromium diffusion, whatever the carbon content of the alloy.
  • Another object of the invention is to provide articles more suitable for chromium diffusion than hitherto.
  • the alloys from which the iron or steel articles are made alloys containing one or more elements having an affinity for carbon greater than that of chromium.
  • the alloys may contain titanium in an amount between 0.1 and 1.0%, but other elements that may be used are columbium, tantalum, zirconium and any similar element having the power of binding the carbon.
  • the said element or elements should be used that the migration of carbon throughout the crosssection of the article during the diffusion process is substantially wholly suppressed.
  • Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium which comprises including from 0.1 to 1.0% titanium in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing the ferrous metal article from such composition, and diffusing chromium into the surface of the article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

Patented Sept. 9, 1941 PROCESS WHICH CONSISTS IN CAUSING CHROMIUM TO DIFFUSE Karl Daeves and Gottfried Becker, Dusseldorf, and Fritz Steinberg, Krefeld, Germany No Drawing.
Application March 20, 1939, Serial No. 263,060. In Germany March 23, 1938 Claims.
this invention relates to the introduction of chromium into iron and steel articles by diffusion. One method of doing this consists in packing the articles in containers with compounds or alloys of chromium, for example ferrochrom-e, and substances, for example barium chloride, which enter into gaseous combination with the chromium at temperatures of about 900 to 1100 C., and heating the containers. Another method, which is the best so far developed, is to cause a gaseous chromium compound, for example chrom um chloride, to flow over the articles at temperatures of about 900 to 1100 C.
It has been found that the chromium layers formed on the surfaces of the article are excellent only if the articles are made from iron or steel alloys containing less than 0.1% carbon and are comparatively thin. With higher carbon contents the depths to which the chromium layers penetrate are small, and even with carbon contents less than 0.1% satisfactory results are not obtained at the usual temperatures and with the usual periods of diffusion if the articles are thick.
An important object of this invention is to improve the chromium diffusion, whatever the carbon content of the alloy.
Another object of the invention is to provide articles more suitable for chromium diffusion than hitherto. I
It has now been found that, to produce layers containing mixed crystals of iron and chromium that are thick enough to be really useful from both the physical and chemical point of view, it is necessary to take into account not only the proportion of carbon but-also the total amount of the carbon in the article, or at least in the section of it beneath the surface under treatment. It has most surprisingly been found that, as the chromium penetrates into the surface of the article, migration of the carbon from the insidev to the surface takes place, and this migration is the stronger, the greater the carbon content and the thicker the article. Even with iron alloys comparatively low in carbon, the surface layers that can be produced are not very satisfactory from the physical and chemical point of view if the wall thickness of the article exceeds a certain size.
Basing ourselves on this discovery, we use as the alloys from which the iron or steel articles are made alloys containing one or more elements having an affinity for carbon greater than that of chromium. Advantageously the alloys may contain titanium in an amount between 0.1 and 1.0%, but other elements that may be used are columbium, tantalum, zirconium and any similar element having the power of binding the carbon. For the best results, so much of the said element or elements should be used that the migration of carbon throughout the crosssection of the article during the diffusion process is substantially wholly suppressed.
We have further discovered that the product H of the carbon content C of the article in percent and the thickness d of the article in millimetres is an important factor. If this product H (=C.d) exceeds 0.12 when the diffusion is carried on under the usual conditions and for the usual time, i. e. for from 5 to 6 hours at 900 to 1100 C., satisfactory layers cannot be obtained with ordinary carbon steels. Accordingly it is for articles with a value of H greater than 0.12 that it is important to use steels containing titanium or equivalent element. Naturally, the greater the value of H, the greater should be the titanium or equivalent content. The amount of any given element to be used depends upon its aflinity for carbon and the tendency of its carbides to go into solid solution under the conditions of the diffusion.
The action of the titanium or equivalent element can be increased by ensuring that the proportions of those constituents of the alloys that are often called impurities are appropriate. In particular, it is desirable that the silicon content should be between 0.1 and 0.5%, the phosphorus content more than 0.03% and the manganese content not more than 0.3%. Moreover, aluminium contents of more than 0.005% seem to lead to good results.
We claim:
1. Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium, which comprises substantially suppressing the migration of carbon, by including, in quantity suflicient to bind all the carbon, a carbon-binding alloy element of greater affinity for carbon than chromium, in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing from such composition the ferrous metal article, and diffusing chromium into the surface of the article.
2. Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium, which comprises including from 0.1 to 1.0% titanium in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing the ferrous metal article from such composition, and diffusing chromium into the surface of the article.
3. A method according to claim 1, in which from 0.1 to 0.5% silicon is also included in the ferrous metal compositiom 4. A method according to claim 1, in which greater than 0.03% phosphorous is also included in the ferrous metal composition.
5. A method according to claim 1, in which more than 0.005% aluminum is also included in 5 the ferrous metal composition.
US263060A 1938-03-23 1939-03-20 Process which consists in causing chromium to diffuse Expired - Lifetime US2255482A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2255482X 1938-03-23

Publications (1)

Publication Number Publication Date
US2255482A true US2255482A (en) 1941-09-09

Family

ID=7992567

Family Applications (1)

Application Number Title Priority Date Filing Date
US263060A Expired - Lifetime US2255482A (en) 1938-03-23 1939-03-20 Process which consists in causing chromium to diffuse

Country Status (1)

Country Link
US (1) US2255482A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415078A (en) * 1940-07-17 1947-02-04 Becker Gottfried Process for chroming steel articles
US2809127A (en) * 1948-11-19 1957-10-08 Metal Gas Company Ltd Surface treatment of metals
US2875090A (en) * 1953-12-22 1959-02-24 Onera (Off Nat Aerospatiale) Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces
US3108013A (en) * 1960-01-28 1963-10-22 Pfaudler Permutit Inc Method of chromizing
US3449159A (en) * 1966-02-14 1969-06-10 Alloy Surfaces Co Inc Process for forming metal coatings
US3767456A (en) * 1971-09-07 1973-10-23 Fansteel Inc Chemical vapor deposition of steel with tantalum and columbium
US3969550A (en) * 1973-08-13 1976-07-13 National Steel Corporation Chromizing process using columbium as stabilizer
US4042426A (en) * 1975-03-10 1977-08-16 National Steel Corporation Chromized steel substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415078A (en) * 1940-07-17 1947-02-04 Becker Gottfried Process for chroming steel articles
US2809127A (en) * 1948-11-19 1957-10-08 Metal Gas Company Ltd Surface treatment of metals
US2875090A (en) * 1953-12-22 1959-02-24 Onera (Off Nat Aerospatiale) Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces
US3108013A (en) * 1960-01-28 1963-10-22 Pfaudler Permutit Inc Method of chromizing
US3449159A (en) * 1966-02-14 1969-06-10 Alloy Surfaces Co Inc Process for forming metal coatings
US3767456A (en) * 1971-09-07 1973-10-23 Fansteel Inc Chemical vapor deposition of steel with tantalum and columbium
US3969550A (en) * 1973-08-13 1976-07-13 National Steel Corporation Chromizing process using columbium as stabilizer
US4042426A (en) * 1975-03-10 1977-08-16 National Steel Corporation Chromized steel substrate

Similar Documents

Publication Publication Date Title
US1836317A (en) Corrosion resistant alloys
US2255482A (en) Process which consists in causing chromium to diffuse
US3806374A (en) Process for boriding steel
US2399848A (en) Process for the introduction of chromium into steel articles
Howes Metal-oxide interface morphology for a range of Fe-Cr alloys
US2157594A (en) Method of chromizing
US2756489A (en) Metal alloy
US3184330A (en) Diffusion process
US1892316A (en) Noncorrosive steel alloy
US2157902A (en) Impregnation of metals with silicon
US2103610A (en) Alloy steels
US2142941A (en) Impregnation of metals with silicon
DE1902209A1 (en) Method of surface hardening
US2415078A (en) Process for chroming steel articles
DE2149835A1 (en) Process to improve the fatigue strength and wear resistance, the sliding properties and the corrosion resistance of workpiece surfaces made of iron and steel
US2955933A (en) Inoculants for cast iron
US1697083A (en) Ferrous base article of manufacture
SU392165A1 (en)
US1919211A (en) Alloy steel
SU1601195A1 (en) Composition for borating steel articles
SU1633015A1 (en) Boriding composition
US1723015A (en) Molybdenum nitriding steels and process of nitriding same
SU747906A1 (en) Paste for carburization of titanium alloy articles
SU926068A1 (en) Composition for diffusion siliconizing
US1509624A (en) Alloy