US2255482A - Process which consists in causing chromium to diffuse - Google Patents
Process which consists in causing chromium to diffuse Download PDFInfo
- Publication number
- US2255482A US2255482A US263060A US26306039A US2255482A US 2255482 A US2255482 A US 2255482A US 263060 A US263060 A US 263060A US 26306039 A US26306039 A US 26306039A US 2255482 A US2255482 A US 2255482A
- Authority
- US
- United States
- Prior art keywords
- carbon
- chromium
- article
- articles
- diffuse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title description 16
- 229910052804 chromium Inorganic materials 0.000 title description 15
- 239000011651 chromium Substances 0.000 title description 15
- 238000000034 method Methods 0.000 title description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 24
- 229910052799 carbon Inorganic materials 0.000 description 24
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000010410 layer Substances 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/28—Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
- C23C10/34—Embedding in a powder mixture, i.e. pack cementation
- C23C10/36—Embedding in a powder mixture, i.e. pack cementation only one element being diffused
- C23C10/38—Chromising
- C23C10/40—Chromising of ferrous surfaces
Definitions
- this invention relates to the introduction of chromium into iron and steel articles by diffusion.
- One method of doing this consists in packing the articles in containers with compounds or alloys of chromium, for example ferrochrom-e, and substances, for example barium chloride, which enter into gaseous combination with the chromium at temperatures of about 900 to 1100 C., and heating the containers.
- Another method, which is the best so far developed, is to cause a gaseous chromium compound, for example chrom um chloride, to flow over the articles at temperatures of about 900 to 1100 C.
- the chromium layers formed on the surfaces of the article are excellent only if the articles are made from iron or steel alloys containing less than 0.1% carbon and are comparatively thin. With higher carbon contents the depths to which the chromium layers penetrate are small, and even with carbon contents less than 0.1% satisfactory results are not obtained at the usual temperatures and with the usual periods of diffusion if the articles are thick.
- An important object of this invention is to improve the chromium diffusion, whatever the carbon content of the alloy.
- Another object of the invention is to provide articles more suitable for chromium diffusion than hitherto.
- the alloys from which the iron or steel articles are made alloys containing one or more elements having an affinity for carbon greater than that of chromium.
- the alloys may contain titanium in an amount between 0.1 and 1.0%, but other elements that may be used are columbium, tantalum, zirconium and any similar element having the power of binding the carbon.
- the said element or elements should be used that the migration of carbon throughout the crosssection of the article during the diffusion process is substantially wholly suppressed.
- Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium which comprises including from 0.1 to 1.0% titanium in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing the ferrous metal article from such composition, and diffusing chromium into the surface of the article.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
Patented Sept. 9, 1941 PROCESS WHICH CONSISTS IN CAUSING CHROMIUM TO DIFFUSE Karl Daeves and Gottfried Becker, Dusseldorf, and Fritz Steinberg, Krefeld, Germany No Drawing.
Application March 20, 1939, Serial No. 263,060. In Germany March 23, 1938 Claims.
this invention relates to the introduction of chromium into iron and steel articles by diffusion. One method of doing this consists in packing the articles in containers with compounds or alloys of chromium, for example ferrochrom-e, and substances, for example barium chloride, which enter into gaseous combination with the chromium at temperatures of about 900 to 1100 C., and heating the containers. Another method, which is the best so far developed, is to cause a gaseous chromium compound, for example chrom um chloride, to flow over the articles at temperatures of about 900 to 1100 C.
It has been found that the chromium layers formed on the surfaces of the article are excellent only if the articles are made from iron or steel alloys containing less than 0.1% carbon and are comparatively thin. With higher carbon contents the depths to which the chromium layers penetrate are small, and even with carbon contents less than 0.1% satisfactory results are not obtained at the usual temperatures and with the usual periods of diffusion if the articles are thick.
An important object of this invention is to improve the chromium diffusion, whatever the carbon content of the alloy.
Another object of the invention is to provide articles more suitable for chromium diffusion than hitherto. I
It has now been found that, to produce layers containing mixed crystals of iron and chromium that are thick enough to be really useful from both the physical and chemical point of view, it is necessary to take into account not only the proportion of carbon but-also the total amount of the carbon in the article, or at least in the section of it beneath the surface under treatment. It has most surprisingly been found that, as the chromium penetrates into the surface of the article, migration of the carbon from the insidev to the surface takes place, and this migration is the stronger, the greater the carbon content and the thicker the article. Even with iron alloys comparatively low in carbon, the surface layers that can be produced are not very satisfactory from the physical and chemical point of view if the wall thickness of the article exceeds a certain size.
Basing ourselves on this discovery, we use as the alloys from which the iron or steel articles are made alloys containing one or more elements having an affinity for carbon greater than that of chromium. Advantageously the alloys may contain titanium in an amount between 0.1 and 1.0%, but other elements that may be used are columbium, tantalum, zirconium and any similar element having the power of binding the carbon. For the best results, so much of the said element or elements should be used that the migration of carbon throughout the crosssection of the article during the diffusion process is substantially wholly suppressed.
We have further discovered that the product H of the carbon content C of the article in percent and the thickness d of the article in millimetres is an important factor. If this product H (=C.d) exceeds 0.12 when the diffusion is carried on under the usual conditions and for the usual time, i. e. for from 5 to 6 hours at 900 to 1100 C., satisfactory layers cannot be obtained with ordinary carbon steels. Accordingly it is for articles with a value of H greater than 0.12 that it is important to use steels containing titanium or equivalent element. Naturally, the greater the value of H, the greater should be the titanium or equivalent content. The amount of any given element to be used depends upon its aflinity for carbon and the tendency of its carbides to go into solid solution under the conditions of the diffusion.
The action of the titanium or equivalent element can be increased by ensuring that the proportions of those constituents of the alloys that are often called impurities are appropriate. In particular, it is desirable that the silicon content should be between 0.1 and 0.5%, the phosphorus content more than 0.03% and the manganese content not more than 0.3%. Moreover, aluminium contents of more than 0.005% seem to lead to good results.
We claim:
1. Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium, which comprises substantially suppressing the migration of carbon, by including, in quantity suflicient to bind all the carbon, a carbon-binding alloy element of greater affinity for carbon than chromium, in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing from such composition the ferrous metal article, and diffusing chromium into the surface of the article.
2. Method of producing carbon-containing ferrous metal articles having surfaces containing diffused chromium, which comprises including from 0.1 to 1.0% titanium in a carbon-containing ferrous metal composition in which the carbon content in per cent multiplied by the thickness of the article in millimeters exceeds 0.12, producing the ferrous metal article from such composition, and diffusing chromium into the surface of the article.
3. A method according to claim 1, in which from 0.1 to 0.5% silicon is also included in the ferrous metal compositiom 4. A method according to claim 1, in which greater than 0.03% phosphorous is also included in the ferrous metal composition.
5. A method according to claim 1, in which more than 0.005% aluminum is also included in 5 the ferrous metal composition.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE2255482X | 1938-03-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US2255482A true US2255482A (en) | 1941-09-09 |
Family
ID=7992567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US263060A Expired - Lifetime US2255482A (en) | 1938-03-23 | 1939-03-20 | Process which consists in causing chromium to diffuse |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US2255482A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2415078A (en) * | 1940-07-17 | 1947-02-04 | Becker Gottfried | Process for chroming steel articles |
| US2809127A (en) * | 1948-11-19 | 1957-10-08 | Metal Gas Company Ltd | Surface treatment of metals |
| US2875090A (en) * | 1953-12-22 | 1959-02-24 | Onera (Off Nat Aerospatiale) | Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces |
| US3108013A (en) * | 1960-01-28 | 1963-10-22 | Pfaudler Permutit Inc | Method of chromizing |
| US3449159A (en) * | 1966-02-14 | 1969-06-10 | Alloy Surfaces Co Inc | Process for forming metal coatings |
| US3767456A (en) * | 1971-09-07 | 1973-10-23 | Fansteel Inc | Chemical vapor deposition of steel with tantalum and columbium |
| US3969550A (en) * | 1973-08-13 | 1976-07-13 | National Steel Corporation | Chromizing process using columbium as stabilizer |
| US4042426A (en) * | 1975-03-10 | 1977-08-16 | National Steel Corporation | Chromized steel substrate |
-
1939
- 1939-03-20 US US263060A patent/US2255482A/en not_active Expired - Lifetime
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2415078A (en) * | 1940-07-17 | 1947-02-04 | Becker Gottfried | Process for chroming steel articles |
| US2809127A (en) * | 1948-11-19 | 1957-10-08 | Metal Gas Company Ltd | Surface treatment of metals |
| US2875090A (en) * | 1953-12-22 | 1959-02-24 | Onera (Off Nat Aerospatiale) | Methods of forming superficial diffusion alloys on metal pieces and especially refractory metal pieces |
| US3108013A (en) * | 1960-01-28 | 1963-10-22 | Pfaudler Permutit Inc | Method of chromizing |
| US3449159A (en) * | 1966-02-14 | 1969-06-10 | Alloy Surfaces Co Inc | Process for forming metal coatings |
| US3767456A (en) * | 1971-09-07 | 1973-10-23 | Fansteel Inc | Chemical vapor deposition of steel with tantalum and columbium |
| US3969550A (en) * | 1973-08-13 | 1976-07-13 | National Steel Corporation | Chromizing process using columbium as stabilizer |
| US4042426A (en) * | 1975-03-10 | 1977-08-16 | National Steel Corporation | Chromized steel substrate |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Bindal et al. | Characterization of borides formed on impurity-controlled chromium-based low alloy steels | |
| US1836317A (en) | Corrosion resistant alloys | |
| US2255482A (en) | Process which consists in causing chromium to diffuse | |
| US3806374A (en) | Process for boriding steel | |
| US2399848A (en) | Process for the introduction of chromium into steel articles | |
| Howes | Metal-oxide interface morphology for a range of Fe-Cr alloys | |
| US2157594A (en) | Method of chromizing | |
| US2756489A (en) | Metal alloy | |
| Cuthill et al. | Nitriding phenomena in titanium and the 6Al-4V titanium alloy | |
| US1892316A (en) | Noncorrosive steel alloy | |
| US2142941A (en) | Impregnation of metals with silicon | |
| DE1902209A1 (en) | Method of surface hardening | |
| US2415078A (en) | Process for chroming steel articles | |
| DE2149835A1 (en) | Process to improve the fatigue strength and wear resistance, the sliding properties and the corrosion resistance of workpiece surfaces made of iron and steel | |
| US2955933A (en) | Inoculants for cast iron | |
| US1697083A (en) | Ferrous base article of manufacture | |
| US1919211A (en) | Alloy steel | |
| SU1633015A1 (en) | Boriding composition | |
| US1723015A (en) | Molybdenum nitriding steels and process of nitriding same | |
| SU747906A1 (en) | Paste for carburization of titanium alloy articles | |
| US2139516A (en) | Alloys for addition to iron and steel | |
| US1509624A (en) | Alloy | |
| US1835151A (en) | Steel alloy | |
| SU390196A1 (en) | YoIal ^ O7-EaA | |
| SU668975A1 (en) | Composition for boron treatment of steel articles |