US2252104A - Noncorrosive alloy - Google Patents

Noncorrosive alloy Download PDF

Info

Publication number
US2252104A
US2252104A US339114A US33911440A US2252104A US 2252104 A US2252104 A US 2252104A US 339114 A US339114 A US 339114A US 33911440 A US33911440 A US 33911440A US 2252104 A US2252104 A US 2252104A
Authority
US
United States
Prior art keywords
alloy
lead
copper
cable
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US339114A
Inventor
Albert H Walde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US339114A priority Critical patent/US2252104A/en
Application granted granted Critical
Publication of US2252104A publication Critical patent/US2252104A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/08Alloys based on lead with antimony or bismuth as the next major constituent
    • C22C11/10Alloys based on lead with antimony or bismuth as the next major constituent with tin

Definitions

  • the object of the invention is to provide an improved non-corrosive alloy, and more specifically an alloy in which lead is the dominant constituent.
  • Such alloy it has long-been recognized should theoretically attain wide usage, as for instance in the grids; terminals and cable connectors of storage batteries in which an electrolyte of sulphuric acid is employed, also in and about the seashore, on shipboard for certain metal fittings and in similar localities, where objects are constantly subjected to the corrosion resulting from the presence of chlorine in the air, and the deposits of salt from ocean spra-y which greatly accelerate oxidation as well.
  • Other uses might be enumerated, such as objects used in the presence of alkalis, but the foregoing examples will be sufilcient for the purpose of this application.
  • alloys in which lead occupies the dominant part are notably brittle, crystalline, low in tensile strength, soft and therefore incapable of retaining well defined shapes and edges, as for instance bolt and nut angularities, screw threads and the like.
  • battery plates are subject to buckling, terminals and cable connectors break under the strain of a suddenly applied force or when too tightly screwed, screw threads strip and the angles of both bolt and nut heads easily become rounded.
  • a further object consists in the provision of analloy principally of lead, which is characterized by a high degree of conductivity, and conversely a low degree of electrical resistance and resultingly minimum tendency to heat under relatively heavy currents; to provide an alloy and the high percentage of lead; copper imparts conductivity, ductility and flexi ility to the alloy; and the arsenic makes the alloy flow and solidify with a finer grain.
  • lead alloy which can be readily cast, rolled, or otherwiseformed around electrical conductors and other objects (as when used in ship fittings), and which during such casting will flow into the smallest interstices as between the strands of a cable or the like, thereby creating a most inti+ mate union between the assembled metals, through which union there is also an exceedingly high degree of electrical conductivity.
  • the object is to provide an alloy possessing the above listed characteristics, comprising lead, tin, antimony, copper and arsenic,
  • the lead provides a non-corrosive base or body;
  • the antimony imparts to the alloy the desired degree of hardness;
  • the tin co-acts with the lead and antimony to impart to the alloy 2.
  • high dereeof toughness, flexibility and resiliency while at the same time efiecting a more intimate union between the relatively small percentage of copper the lead in molten state thereto and thoroughly mixed the same together. Having accomplished this union between the copper and the lead, additional lead is added until the desired final rela-'* tionship is attained between these two metals.
  • the new alloy is not subject to corrosion, even I when exposed to the efiects of sulphuric acid, and
  • the alloy when cast around the end of a stranded copper cable, has the property of flowing into the interstices between and about the individual strands, and resultingly cooperates therewith to form a complete and intimate union with the cable in a manner similar to that of a weld.
  • This intimate union between the cable and a terminal or other element formed of said alloy accordingly serves to very substantially improve the electrical conductivity between the parts.
  • the new alloy may be used to directly constitute the cable, either solid or stranded, and which may be cast, rolled or drawn, and in turn united integrally with a terminal or other element formed of the same alloy, thereby eiiecting a high degree of electrical conductivity for both the cable and the added element.
  • Such a structure eliminates mechanical losses, minimizes electrical resistance and resulting heat, and at the same time avoids all possibility of corrosion under the attack of air-borne and other acids.
  • the said alloy can be employed as a sheathing for either one or a group of cables formed of the same or difierent metal.. Additionally it has been found by actual test that an immersion of a terminal (forexample) formed of the new alloy in sulphuric acid, having a specific gravity of 1.285 at room temperature over a period of twelve days,
  • a terminal formed from the same united in accordance with accepted practise to the end of a copper cable showed the following. results, when compared with identically the same type of union between a copper terminal and the
  • siliency such, for instance, as cable terminals, which are designed to surround and securely grip the terminal posts of a storage battery when formed of the new alloy, possess all of the resiliency and flexibility that can be desired, thereby resulting in a uniform connection between the battery posts and cables connected thereto, and at the same time resisting all tendency to become loosened therefrom, due to vibration, as
  • the new alloy after the new alloy has once been compounded, it should be melted for pouring and casting only at temperatures ranging substantially between 900 F. and 950 F., in order that the entire portion of each constituent metal will become molten and thereby insure nonseparation and permanent homoge- 'neity. Within this temperature range, even the copper appears to melt in association with the other metals present.
  • other known alloys having a preponderance of lead as the basic metal, melt and satisfactorily cast at 450 F. to 500 F. Therefore, a melting point between 900 F. and 950 F. is considered an essential characteristic of the improved alloy, and the appended claims should be so interpreted with re- 1.75% copper, substantially 0.05%-0.25% arsenic,
  • said copper cable comprising a 19-inch length of 127 strands of 22 gauge copper wire:
  • a non-corrosive alloy of lead for cast batter terminals and similar objects comprising substantially 5.65% tin, substantially 5.35% antimony, substantially 1.65% copper, substantially 0.15% arsenic, and substantially 87.20% lead.
  • a non-corrosive alloy of lead for cast storage battery grids, posts and similar objects comprising substantially 5.50% tin, substantially 5.30%

Description

Patented Aug. 12, 1941 NONCORROSIVE AL0Y Albert II. Waldo, Philadelphia, Pa.
No Drawing.
Application June 6, 1940,
Serial No. 339,114
3 Claims.
The object of the invention is to provide an improved non-corrosive alloy, and more specifically an alloy in which lead is the dominant constituent.
Such alloy it has long-been recognized should theoretically attain wide usage, as for instance in the grids; terminals and cable connectors of storage batteries in which an electrolyte of sulphuric acid is employed, also in and about the seashore, on shipboard for certain metal fittings and in similar localities, where objects are constantly subjected to the corrosion resulting from the presence of chlorine in the air, and the deposits of salt from ocean spra-y which greatly accelerate oxidation as well. Other uses might be enumerated, such as objects used in the presence of alkalis, but the foregoing examples will be sufilcient for the purpose of this application.
Quite generally, alloys in which lead occupies the dominant part are notably brittle, crystalline, low in tensile strength, soft and therefore incapable of retaining well defined shapes and edges, as for instance bolt and nut angularities, screw threads and the like. As a result, battery plates are subject to buckling, terminals and cable connectors break under the strain of a suddenly applied force or when too tightly screwed, screw threads strip and the angles of both bolt and nut heads easily become rounded.
A further object consists in the provision of analloy principally of lead, which is characterized by a high degree of conductivity, and conversely a low degree of electrical resistance and resultingly minimum tendency to heat under relatively heavy currents; to provide an alloy and the high percentage of lead; copper imparts conductivity, ductility and flexi ility to the alloy; and the arsenic makes the alloy flow and solidify with a finer grain.
While this improved alloy may be employed in automatic die casting machines, it has been found that it 'is particularly adapted to the so-- called gravity pour, in which case the cast article is substantially less brittle and more resilient tions having anywhere near as wide variation as those present in the instant case. In fact, to produce the new alloy, it is necessary to add substantially equal parts of copper and lead, after having first melted the copper at its characteristic temperature of 1981.5 F., and having added principally of lead, which is similarly character- I ized by a negligible degree of contractability and expansibility; to, provide such an alloy having high thermal conductivity; to provide a. lead alloy which can be readily cast, rolled, or otherwiseformed around electrical conductors and other objects (as when used in ship fittings), and which during such casting will flow into the smallest interstices as between the strands of a cable or the like, thereby creating a most inti+ mate union between the assembled metals, through which union there is also an exceedingly high degree of electrical conductivity.
More specificallytthe object is to provide an alloy possessing the above listed characteristics, comprising lead, tin, antimony, copper and arsenic, In this combination of elemental metals, the lead provides a non-corrosive base or body; the antimony imparts to the alloy the desired degree of hardness; the tin co-acts with the lead and antimony to impart to the alloy 2. high dereeof toughness, flexibility and resiliency, while at the same time efiecting a more intimate union between the relatively small percentage of copper the lead in molten state thereto and thoroughly mixed the same together. Having accomplished this union between the copper and the lead, additional lead is added until the desired final rela-'* tionship is attained between these two metals.
The temperature of the copper-lead combination 7 then being lowered and the antimony added'in the desired proportion, following which either the tin or arsenic may be united to the molten mass and finally the other of said last two men tioned metals added to produce an alloy within the limits of the proportions herein set forth.
For those purposes to which the new alloy has been applied to date, the preferred proportions range approximately as follows:
Per cent Tin 4.75't0 6,00 Antimony 4.50 to 5.75 Copper-. 0.25 to 1.75 Arsenic 0.05 to 0.25 Lead 90.45 t0 86.25
For the casting of storage battery grids and similar objects, which are characterized by relatively slender parts, subjected constantly to the action of sulphuric acid or equally corrosive' chemicals, the following formula is preferred with relatively slight; variations:
' For the casting of battery and cable terminals, where more tensile strength, elasticity and resiliency are required, while subjected indirectly to the normally corrosive action of copper sulphate and the like, the following formula is'preferred with relatively slight variations:
The new alloy is not subject to corrosion, even I when exposed to the efiects of sulphuric acid, and
also possesses substantially negligible coeflicients of contraction and expansion. The alloy, when cast around the end of a stranded copper cable, has the property of flowing into the interstices between and about the individual strands, and resultingly cooperates therewith to form a complete and intimate union with the cable in a manner similar to that of a weld. This intimate union between the cable and a terminal or other element formed of said alloy accordingly serves to very substantially improve the electrical conductivity between the parts. The new alloy, furthermore, may be used to directly constitute the cable, either solid or stranded, and which may be cast, rolled or drawn, and in turn united integrally with a terminal or other element formed of the same alloy, thereby eiiecting a high degree of electrical conductivity for both the cable and the added element. Such a structure eliminates mechanical losses, minimizes electrical resistance and resulting heat, and at the same time avoids all possibility of corrosion under the attack of air-borne and other acids. In the same manner, the said alloy can be employed as a sheathing for either one or a group of cables formed of the same or difierent metal.. Additionally it has been found by actual test that an immersion of a terminal (forexample) formed of the new alloy in sulphuric acid, having a specific gravity of 1.285 at room temperature over a period of twelve days,
resulted in a loss in weight of only 0.057 gram,-
as compared with a loss of 0.272 gram of a bronze terminal of the same size, other conditions being identical, while a like test upon a lead covered when the several elements are mounted in an au- 7 terminal having a steel insert or core lost 1.057
grams of its weight,
With regard to electrical conductivity of the new alloy, a terminal formed from the same united in accordance with accepted practise to the end of a copper cable, showed the following. results, when compared with identically the same type of union between a copper terminal and the In addition to the foregoing, it should be noted siliency such, for instance, as cable terminals, which are designed to surround and securely grip the terminal posts of a storage battery when formed of the new alloy, possess all of the resiliency and flexibility that can be desired, thereby resulting in a uniform connection between the battery posts and cables connected thereto, and at the same time resisting all tendency to become loosened therefrom, due to vibration, as
tomobile or other vehicle, which is repeatedly subjected to high rates of vibration.
While fairly specific limits have been hereinbeiore set for the several ingredients of which the new alloy is formed, it is to be understood that somewhat wider variations may be made therein for accommodating the alloy .to various other uses, in addition to those in which it has already been tested, wherefore such variations are anticipated within the scope of the present invention and the appended claims,'so long as the resulting alloy conforms to the general advantages herein set forth.
Also, it should be noted that after the new alloy has once been compounded, it should be melted for pouring and casting only at temperatures ranging substantially between 900 F. and 950 F., in order that the entire portion of each constituent metal will become molten and thereby insure nonseparation and permanent homoge- 'neity. Within this temperature range, even the copper appears to melt in association with the other metals present. By contrast, other known alloys, having a preponderance of lead as the basic metal, melt and satisfactorily cast at 450 F. to 500 F. Therefore, a melting point between 900 F. and 950 F. is considered an essential characteristic of the improved alloy, and the appended claims should be so interpreted with re- 1.75% copper, substantially 0.05%-0.25% arsenic,
said copper cable, the cable comprising a 19-inch length of 127 strands of 22 gauge copper wire:
. Terminal CgPpcr termiformed from n connected new alloy in with copper connection cable with copper cable Resistance .000117 ll Conductance 8550 8770 000 4 and the remainder lead.
2. A non-corrosive alloy of lead for cast batter terminals and similar objects, comprising substantially 5.65% tin, substantially 5.35% antimony, substantially 1.65% copper, substantially 0.15% arsenic, and substantially 87.20% lead.
3. A non-corrosive alloy of lead for cast storage battery grids, posts and similar objects, comprising substantially 5.50% tin, substantially 5.30%
antimony, substantially 1.60% copper, substantizltlly 0.10% arsenic, and substantially 87.50%
ALBERT H. WALDE.
US339114A 1940-06-06 1940-06-06 Noncorrosive alloy Expired - Lifetime US2252104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US339114A US2252104A (en) 1940-06-06 1940-06-06 Noncorrosive alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US339114A US2252104A (en) 1940-06-06 1940-06-06 Noncorrosive alloy

Publications (1)

Publication Number Publication Date
US2252104A true US2252104A (en) 1941-08-12

Family

ID=23327559

Family Applications (1)

Application Number Title Priority Date Filing Date
US339114A Expired - Lifetime US2252104A (en) 1940-06-06 1940-06-06 Noncorrosive alloy

Country Status (1)

Country Link
US (1) US2252104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678341A (en) * 1953-11-05 1954-05-11 Electric Storage Battery Co Storage battery and grid therefor
US2791619A (en) * 1955-11-22 1957-05-07 Accumulatorenfabrik Ag Lead alloy for accumulator grid
US2821565A (en) * 1955-10-19 1958-01-28 John J Lander Battery grid and plate
US2953619A (en) * 1958-07-31 1960-09-20 Gould National Batteries Inc Battery grid alloy
DK89791C (en) * 1953-08-25 1960-10-03 Chloride Electrical Storage Co Grid for lead-acid batteries.
US5352549A (en) * 1992-08-19 1994-10-04 Gnb Battery Technologies Inc. Lead oxide composition for use in lead-acid batteries
CN102787255A (en) * 2012-07-30 2012-11-21 江苏南瓷绝缘子有限公司 Alloy cement formula and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK89791C (en) * 1953-08-25 1960-10-03 Chloride Electrical Storage Co Grid for lead-acid batteries.
US2678341A (en) * 1953-11-05 1954-05-11 Electric Storage Battery Co Storage battery and grid therefor
US2821565A (en) * 1955-10-19 1958-01-28 John J Lander Battery grid and plate
US2791619A (en) * 1955-11-22 1957-05-07 Accumulatorenfabrik Ag Lead alloy for accumulator grid
US2953619A (en) * 1958-07-31 1960-09-20 Gould National Batteries Inc Battery grid alloy
US5352549A (en) * 1992-08-19 1994-10-04 Gnb Battery Technologies Inc. Lead oxide composition for use in lead-acid batteries
CN102787255A (en) * 2012-07-30 2012-11-21 江苏南瓷绝缘子有限公司 Alloy cement formula and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4971758A (en) Copper-based alloy connector for electrical devices
JP3089303B2 (en) Electrical connector pair
CN105742850A (en) High-performance aluminum alloy cable connection terminal
US2252104A (en) Noncorrosive alloy
US7230186B2 (en) Covered wire and automobile-use wire harness
KR20010106204A (en) Electrical conductive metal strip and connector
KR20010106203A (en) Electrical conductive metal strip and connector manufactured from the same
JP2724903B2 (en) High-strength copper alloy for electrical conduction with excellent bending resistance
CN104294096A (en) Al-Fe-Cu-Mg-Cr series aluminum alloy for cables for coal mines and aluminum alloy cable
JPH0352523B2 (en)
JPS62199741A (en) Copper alloy for terminal and connector having superior migration resistance
KR960005628A (en) Cu- Mg- Sn Copper Alloy Conductor with High Strength Heat and Wear Resistance
US1934875A (en) Alloy, method of making the same, and article made therefrom
JPH06336632A (en) High strength copper alloy for electric conduction
JPS63262437A (en) Copper alloy having excellent electroconductivity and strength
JP3313832B2 (en) High corrosion resistance and high strength amorphous copper alloy
JPH01225005A (en) Bus bar for electric connection box
JPH042653B2 (en)
JPS6256218B2 (en)
JPS6119697B2 (en)
JPS6164835A (en) Copper alloy having high strength, heat resistance and electric conductivity
US1630999A (en) Wrought-metal article
JPS606042B2 (en) Dissimilar metal coated aluminum alloy conductor
JP3010906B2 (en) Copper alloy wire
JP5375384B2 (en) Method for producing plated material having plated layer of Sn or Sn alloy and plated material thereof