US2250581A - Receiver volume control - Google Patents

Receiver volume control Download PDF

Info

Publication number
US2250581A
US2250581A US296589A US29658939A US2250581A US 2250581 A US2250581 A US 2250581A US 296589 A US296589 A US 296589A US 29658939 A US29658939 A US 29658939A US 2250581 A US2250581 A US 2250581A
Authority
US
United States
Prior art keywords
elements
temperature
input terminals
volume control
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US296589A
Inventor
Heinecke Curt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken AG
Original Assignee
Telefunken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken AG filed Critical Telefunken AG
Application granted granted Critical
Publication of US2250581A publication Critical patent/US2250581A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0035Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using continuously variable impedance elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/02Manually-operated control
    • H03G3/14Manually-operated control in frequency-selective amplifiers
    • H03G3/16Manually-operated control in frequency-selective amplifiers having discharge tubes

Definitions

  • the voltage divider may hardly be mounted anywhere else than at close proximity tothe' volume control ⁇ knob. In fact, remote control is comparatively diiicult, and will in most 'cases be accomplished only by the aid of a motor.
  • the voltage divider consists of two temperature-dependent, indirectly heated, series-connected resistances, the coils of which are traversed by regulatory currents in such a way that the total resistance of the voltage divider stays substantially unaltered in the course of regulation.
  • Fig. 1 shows a' receiver circuit embodying the invention
  • Fig. 2 illustrates a modication
  • the part H of the re- (ci. 25o- 20) DC converter apparatus contains the radio frequency portion associated with the aerial.
  • the network H includes the oscillator-mixing stage, and the usual I. F. amplifier, the latter has its output end H' connected with the signal rectifier diode E.
  • the non-grounded end of the load resistance R of the diode is connected by Way of a decoupling resistance R', which at'the same time together witn the line capacitance C serves to filter the radio frequency currents, and the blocking condenser Clc with series-connected, indirectly heated, temperature-dependent resistances U1 and U2 consisting of uranium dioxide or the like.
  • the point where these two resistances are joined is brought to the control grid of the rst, or input, tube of the audio amplifier, while the lower end of lresistance U2 is connected' with the grounded return.
  • the twoheater coils Hl and H2 are connected in series withl each other and a source of voltage supply Q,a terminal of thechange-over switch S, and a variable resistanceRl which is adjusted by the volume control knob'of the receiver set to regulate the heating current.
  • the said two resistances Ul and U2 one has a positiveV and the other one a negative temperature coeicient so that, upon variation ofthe joint heating current, the resistances 4will be varied in opposite senses, While yet the aggregate resistance remains practically constant.
  • the changeover, or double-throw, switch S is'shifted into the position indicated by the dash line with theresult that the regulating resistance R2 is cut into the heating circuit, the said resistance R2 being mounted at the remote control point.
  • the lead may consist of a single conductor cable since the-groundedA lead to resistance R2 may be representedvby the grounded sheath of the cable.
  • the switch S may be mechanically interlocked with other switches for the purpose of effecting a change to remote operation. It will be'understood that also'volume control is feasible from several remote points.
  • the change from the conventional control to remote control in this case may be effected by providing at the remote control point a voltage divider also connected with the terminals of the voltage supply source, and by connecting the ends of the heating coils which are here interconnectnected between said detector and utilization network, means independent of the signal currents in the receiving system for varying the temperatures of said elements, and said elements being chosen to present a substantially constant resistance magnitude across said detector over a wide range of temperature variation thereof.
  • a receiving system oi the typeincluding a detector and an audio utilization network; the improvement which comprises at least two temperature-dependent resistor elements connected between said detector and utilization network, said utilization network having its input terminals coupled solely across one of the elements, means independent of the signal currents in the recelving system for varying the temperature of said elements, and said elements being chosen tol present a substantially constant resistance magnitude across said detector over a widey range of temperature variation thereof.
  • a receiving system of the type including a detector and an audio utilization network
  • the improvement which comprises at least two temperature-dependent resistor elements connected between said detector and utilization network, said elements being arranged in series across the detector output terminals, solely one of the elements being connected to the utilization network input terminals, means independent of the' signal currents in the receiving system for lvarying the temperature of said elements, and said elements being chosen to present a substantially constant resistance magnitude across said detector over a wide range ofrtemperature variation thereof.
  • a receiving system of the type including a ⁇ detector and an audio utilization network; the improvement which comprises at least two temperature-dependent resistor elements com nected between said detector and utilization network, means independent of the signal currents inthe receiving system for varying the temperature of said elements, and said elements being chosen of opposite temperature coeiicients thereby to present a substantially constant resistance magnitude across said detector over a wide range of vtemperature variation thereof.
  • a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements and means independent of the ⁇ signal currents in the circuits of said receiver 0 for regulating the temperatures of said elements.
  • a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across -a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, said elements being of opposite temperature coefficients, and means for regulating the temperatures of said elements.
  • a modulated carrier receiver a demodulato'r'h'aving carrier input terminals and modulation volta-ge output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, said elements being of like temperature coeicients, and means for regulating the temperatures of said elements in opposite senses.
  • a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across solely a. portion of the path, said portion and at least a second portion of the path being temperaturedependent resistive elements, and means remote from the receiver and completely independent of the carrier and modulation voltage circuits of the receiver for regulating the temperatures of said elements.
  • a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, and means for regulating the temperatures of said elements, said last means comprising heater lelements operatively associated with their respective resistive elements, and a control device in circuit with the heater elements for varying the energization thereof.
  • a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, and means for regulating the temperatures of said elements, said last means comprising heater elements operatively associated with their respective resistive elements, and a remote control device in circuit with the heater elements for varying the energization thereof.

Description

C. HEINECKE RECEIYER VOLUME CONTROL Filed Sept. 26, 1939 July 29, 1941.
Patented July 29, 1941 ,RECEIVER VOLUME CONTROL Curt Heinecke,Berlin, Germany, assignor to Telefunken Gesellschaft fr Drahtlose Telegraphie, m. b..H., Berlin, Germany, a corporation of Germany e Application september zo, 1939, serial No. 296,589 1 VIn Germany October 21, 1938 ohniic voltage divider in the form of a rotary re#- sistance Vfor volume regulation, the alternating potential output of the signal rectifier diode being impressed across the said resistance whose shii'table tap is connected with the controlgrid ofthe following audio amplifier tube.
The-disadvantage of such an arrangement in the first place is that the slider, especially after long periods Vof use, will cause scratching Vnoises and interruptions as a result of unavoidable oxidation on the contact surface. Another shortcoming is that the voltage divider may hardly be mounted anywhere else than at close proximity tothe' volume control` knob. In fact, remote control is comparatively diiicult, and will in most 'cases be accomplished only by the aid of a motor. According to the present invention the voltage divider consists of two temperature-dependent, indirectly heated, series-connected resistances, the coils of which are traversed by regulatory currents in such a way that the total resistance of the voltage divider stays substantially unaltered in the course of regulation. The use of directly,Y or indirectly, heated resistances for voliime control, to be sure, is fundamentally known in the'ai't. However, the arrangement here disclosed offers a number of special advantages over circuits of this kind known in the earlier art. These advantages particularly may be seen to residev inthe high aggregate resistance which will staystable and constant also upon regulation, and in the'wide regulation range, Inasmuchas each of the said two resistances may be 'adjusted to a very low value while the respective other resistance is adjusted to a very high resistance value, it is possible to feed to the audio amplifier practically the entire alternating potential furnished from the signal rectifier diode as well as a very small fraction of this potential. Since the total resistance incidentally does Ynot vary at all, or only very slightly so, the alternating 'current load of the signal rectiiier diode remains "constant, and this particularly in the present case, contradistinct to amplifier tubes, is very important from the viewpoint of avoiding distortion'. Crackling noises during regulation will Vnot arise even after prolonged use of the apparatus. inasmuch as the regulation is veffected'by a current, the mounting of the operating knob is independent of the arrangement of the voltage divider so that remote control means maybe mounted in a simple way.
In the drawing:
Fig. 1 shows a' receiver circuit embodying the invention,
Fig. 2 illustrates a modication.
Referring to the exemplified embodiment of the invention shown in Fig. 1, the part H of the re- (ci. 25o- 20) ceiver apparatus contains the radio frequency portion associated with the aerial. The network H includes the oscillator-mixing stage, and the usual I. F. amplifier, the latter has its output end H' connected with the signal rectifier diode E. The non-grounded end of the load resistance R of the diode is connected by Way of a decoupling resistance R', which at'the same time together witn the line capacitance C serves to filter the radio frequency currents, and the blocking condenser Clc with series-connected, indirectly heated, temperature-dependent resistances U1 and U2 consisting of uranium dioxide or the like. The point where these two resistances are joined is brought to the control grid of the rst, or input, tube of the audio amplifier, while the lower end of lresistance U2 is connected' with the grounded return. j The twoheater coils Hl and H2 are connected in series withl each other and a source of voltage supply Q,a terminal of thechange-over switch S, and a variable resistanceRl which is adjusted by the volume control knob'of the receiver set to regulate the heating current. Of the said two resistances Ul and U2, one has a positiveV and the other one a negative temperature coeicient so that, upon variation ofthe joint heating current, the resistances 4will be varied in opposite senses, While yet the aggregate resistance remains practically constant.
For the purpose of remote control, the changeover, or double-throw, switch S is'shifted into the position indicated by the dash line with theresult that the regulating resistance R2 is cut into the heating circuit, the said resistance R2 being mounted at the remote control point. The lead may consist of a single conductor cable since the-groundedA lead to resistance R2 may be representedvby the grounded sheath of the cable.
- In case that also the tuning is to be effected by Aremote'control and that also other regulatory means of'the receiver are to be remote controlled, the switch S may be mechanically interlocked with other switches for the purpose of effecting a change to remote operation. It will be'understood that also'volume control is feasible from several remote points.
Anotherschemeis to use similar o-r equivalent resistances for UI Vand U2, the temperature coefficients of which are both positive or both'negative, provided that the heating currents are regulated in contrary senses. As shown in Fig. 2, this is accomplished, for instance, by having the ends of the two heater windings which are not connected with each other, connected with the ends, or terminals, of a. voltage source of supply, While the interconnected ends are brought to a shiitable tap of a voltage divider associated with the terminals of the source of voltage supply. The change from the conventional control to remote control in this case may be effected by providing at the remote control point a voltage divider also connected with the terminals of the voltage supply source, and by connecting the ends of the heating coils which are here interconnectnected between said detector and utilization network, means independent of the signal currents in the receiving system for varying the temperatures of said elements, and said elements being chosen to present a substantially constant resistance magnitude across said detector over a wide range of temperature variation thereof.
2. In a receiving system oi the typeincluding a detector and an audio utilization network; the improvement which comprises at least two temperature-dependent resistor elements connected between said detector and utilization network, said utilization network having its input terminals coupled solely across one of the elements, means independent of the signal currents in the recelving system for varying the temperature of said elements, and said elements being chosen tol present a substantially constant resistance magnitude across said detector over a widey range of temperature variation thereof.
3. In a receiving system of the type including a detector and an audio utilization network;
the improvement which comprises at least two temperature-dependent resistor elements connected between said detector and utilization network, said elements being arranged in series across the detector output terminals, solely one of the elements being connected to the utilization network input terminals, means independent of the' signal currents in the receiving system for lvarying the temperature of said elements, and said elements being chosen to present a substantially constant resistance magnitude across said detector over a wide range ofrtemperature variation thereof.
4. In a receiving system of the type including a` detector and an audio utilization network; the improvement which comprises at least two temperature-dependent resistor elements com nected between said detector and utilization network, means independent of the signal currents inthe receiving system for varying the temperature of said elements, and said elements being chosen of opposite temperature coeiicients thereby to present a substantially constant resistance magnitude across said detector over a wide range of vtemperature variation thereof.
5. In a modulated carrier receiver, a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements and means independent of the `signal currents in the circuits of said receiver 0 for regulating the temperatures of said elements. 7
6. In a modulated carrier receiver, a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across -a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, said elements being of opposite temperature coefficients, and means for regulating the temperatures of said elements.
7. In a modulated carrier receiver, a demodulato'r'h'aving carrier input terminals and modulation volta-ge output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, said elements being of like temperature coeicients, and means for regulating the temperatures of said elements in opposite senses.
8. In a modulated carrier receiver, a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across solely a. portion of the path, said portion and at least a second portion of the path being temperaturedependent resistive elements, and means remote from the receiver and completely independent of the carrier and modulation voltage circuits of the receiver for regulating the temperatures of said elements.
9. In a modulated carrier receiver, a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, and means for regulating the temperatures of said elements, said last means comprising heater lelements operatively associated with their respective resistive elements, and a control device in circuit with the heater elements for varying the energization thereof.
10. In a modulated carrier receiver, a demodulator having carrier input terminals and modulation voltage output terminals, a modulation voltage network having input terminals, a volume control device comprising a resistive path connected to said output terminals, said network input terminals being connected across a portion of the path, said portion and at least a second portion of the path being temperature-dependent resistive elements, and means for regulating the temperatures of said elements, said last means comprising heater elements operatively associated with their respective resistive elements, and a remote control device in circuit with the heater elements for varying the energization thereof.
CURT HEIN'ECKE.
US296589A 1938-10-21 1939-09-26 Receiver volume control Expired - Lifetime US2250581A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2250581X 1938-10-21

Publications (1)

Publication Number Publication Date
US2250581A true US2250581A (en) 1941-07-29

Family

ID=7992338

Family Applications (1)

Application Number Title Priority Date Filing Date
US296589A Expired - Lifetime US2250581A (en) 1938-10-21 1939-09-26 Receiver volume control

Country Status (1)

Country Link
US (1) US2250581A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548913A (en) * 1946-04-17 1951-04-17 Edmund D Schreiner Radio receiver with logarithmic response circuit
US2572424A (en) * 1947-09-11 1951-10-23 Du Mont Allen B Lab Inc Frequency modulation ratio detector
US2856751A (en) * 1956-12-13 1958-10-21 Gen Time Corp Automatic crescendo alarm
US3105202A (en) * 1961-05-25 1963-09-24 Lignes Telegraph Telephon Amplifier with regulated output level
US3218570A (en) * 1963-01-28 1965-11-16 Northern Electric Co Automatic variable attenuator circuit
US3544901A (en) * 1967-12-22 1970-12-01 Gen Motors Corp Radio volume and tone controls using field effect transistors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2548913A (en) * 1946-04-17 1951-04-17 Edmund D Schreiner Radio receiver with logarithmic response circuit
US2572424A (en) * 1947-09-11 1951-10-23 Du Mont Allen B Lab Inc Frequency modulation ratio detector
US2856751A (en) * 1956-12-13 1958-10-21 Gen Time Corp Automatic crescendo alarm
US3105202A (en) * 1961-05-25 1963-09-24 Lignes Telegraph Telephon Amplifier with regulated output level
US3218570A (en) * 1963-01-28 1965-11-16 Northern Electric Co Automatic variable attenuator circuit
US3544901A (en) * 1967-12-22 1970-12-01 Gen Motors Corp Radio volume and tone controls using field effect transistors

Similar Documents

Publication Publication Date Title
US3581122A (en) All-pass filter circuit having negative resistance shunting resonant circuit
US2250581A (en) Receiver volume control
US3093802A (en) Controllable signal transmission network
US2264715A (en) Tone control circuits
US3153189A (en) Attenuation network automatically controlled by level of signal carrier
US2920291A (en) Signal transmission systems
US2488410A (en) Control circuits for alternating current transmission networks
US2256071A (en) Audio amplifier volume control circuit
US2074852A (en) Combined volume and bass tone compensation control device
US2848603A (en) Automatic gain control system
US2972114A (en) Amplifier circuit
US2462551A (en) Amplitude control
US2210381A (en) Automatic control of band width in band-pass filters
US3105942A (en) Automatic gain control amplifier system
US2058565A (en) Wave signal receiver
US1954059A (en) Radio receiving apparatus
US2927204A (en) Multiple unit transistor circuit with means for maintaining common zone at a fixed reference potential
US1990512A (en) Radioreceiver
US1978182A (en) Automatic volume control
US2208110A (en) Automatic gain control circuit
US2216168A (en) Distortion correction circuits
US2538150A (en) Noise limiter for radio receivers
US2602851A (en) Remote-control system for radio apparatus
US1768658A (en) Amplifying system
US3480871A (en) Radio frequency amplifier with variable-gain stage for overload protection