US2244255A - Well clearing system - Google Patents

Well clearing system Download PDF

Info

Publication number
US2244255A
US2244255A US309594A US30959439A US2244255A US 2244255 A US2244255 A US 2244255A US 309594 A US309594 A US 309594A US 30959439 A US30959439 A US 30959439A US 2244255 A US2244255 A US 2244255A
Authority
US
United States
Prior art keywords
tubing
well
congealed
bodies
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US309594A
Inventor
Iris C Looman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRICAL TREATING Co
Original Assignee
ELECTRICAL TREATING Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRICAL TREATING Co filed Critical ELECTRICAL TREATING Co
Priority to US309594A priority Critical patent/US2244255A/en
Priority to US337031A priority patent/US2244256A/en
Application granted granted Critical
Publication of US2244255A publication Critical patent/US2244255A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/04Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters

Definitions

  • This invention has to do generally with the removing of congealed paraffinic and asphaltic bodies in oil wells, and relates particularly to an improved system for electrically heating wells whereby it is made possible to eiectively remove such congealed bodies at whatever location they may occur in the well.
  • This application is a continuation-impart of my abandoned copending application Ser. No. 251,606, namelyd January 18, 1939, on Well clearing means.
  • the apparatus features of the invention are claimed in a copending application, Ser. No, 337,031, ⁇ i'lled May 24, 1940, on Apparatus for clearing wells.
  • My primary object is to provide an improved and, in fact, characteristically diierent type of well heating system whereby it is possible to remove congealed bodies from any location or locations in which they may occur within the Well or iiow tubing, and to so control the heating as .to be able to limit or 'confine the application of heat to particular or pre-determined portions of the well or tubing where heating is necessary.
  • heat is supplied to the well fluid by passing electrical current through a conductor run in the well and directly contacting the well fluid.
  • This conductor ordinarily and preferably comprises simply the usual ow tubing, which is of uniform thickness and conductivity so that a given amount of specially generated or transformed electric current of high amperage and suiiicient voltage may be introduced to permit a necessary pre-determined degree of heat to be maintained throughout the heated length of the tubing, and which is provided with insulators to maintain the tubing in spaced relation to the wall of the well or casing. Provision is made for heating only a portion and variable length of the tubing from a point above its lower end, by suitable means such as a conductor or adapter carried by the tubing and engaging the wall of the well, the position of the conductor being adjustable and variable longitudinally of the tubing.
  • the heated section of the tubing may be confined and limited to rthe necessary A section or depth of the Well that requires heating.
  • This system has the further advantage of permitting less than the entire length of the tubing to be heated, and therefore with a given potential of current, which is variably controlled,
  • the invention is also distinguished from prior well heating systems in that it is operable in conjunction with any known method'of production and especially a well pump carried by the tubing.
  • the pump serves a purpose in addition to its usual function, of providing valve means for retaining pressure in the well, and alternately, it also enables production to be maintained, if desired, While the well is being heated, due to the fact that the entire length of the tubing above the adapter may be heated and uniform heating of the traveling fluid maintained until the iiuid is exhausted at the surface.
  • the Texas Panhandle has many wells in which the formation of parafne is considered to be one of the major production problems.
  • the last string of casing may be set at a point approximating 2700 feet and then the well is drilled to a total depth ranging upwards from 180 feet below the casing.
  • the tubing string is run toa point within say 5 feet of the bottom of the hole, and thus to a depth
  • the present system may be used to advantage not only for the removal of paraiiine but also for purposes of restoring production in wells that have ceased to iiow.
  • the uid shows definite heat losses as it is pumped through these points of low ⁇ temperature, and further heat losses are caused by the expansion of gases carried by the fluid at elevations of reduced pressures, so that the temperature of the fluid drops below that of the bottom hole temperature and paraiiine begins to congeal in the tubing.
  • the iiuid level in the well may extend up into the cooler zones so that the fluid toward the top may be conbottom of the hole.
  • Darafline will collect on the outside of the tubing from the iiuid level down to that point at which the iiuid again becomes warm enough to -keep the parane in solution. Under such conditions it is necessary to be able to place the conductor at any point either above or below the fluid level, and either Within the casing string, or below it, in
  • Fig. 1 is a vertical section showing the upper portion of a cased well containing the flow pipe equipped with insulators and connected with a source of electrical current;
  • Fig. 2 is a lower continuation of Fig. 1 showing the bottomA portion of the tubing string and the adapter or conductor;
  • Fg.l3 is a view similar to Fig. 2 showing the tubing and adapter lowered in open hole below the casing;
  • Fig. 4 is an enlarged cross section on line 4--4 of Fig. 1;
  • Fig. 5 is'an enlarged cross section on line 5-5 of Fig. 2.
  • the well bore I is shown to contain lthe usual casing II carrying at its lower end a screen or perforated liner I2.
  • the upper end ofthe casing carries the usual head I3 which may have any suitable number and arrangement of kfluid connections shown typically as the valved lines Ill and I5.
  • Lowered within the casing is the usual tubing string I6 which may be supported on the casing head I3 by any of the usual forms of tubing hangers, as for example the conventionally illustrated type comprising a flange II receiving the tubing coupling I8 and resting on an annulus I9- of suitable electrical insulating mate' rial within the upper end I3a. of the casing head.
  • the tubing I6 carries at its lower end the usual well pump generally indicated at20 and shown typically to comprise a barrel 2I connected to the tubing by coupling 22 and having at its lower end .a strainer 23 below the ball check foot valve denoted generally at 24.
  • the pump barrel 2I contains the ordinary tubular plunger 25 carrying the downwardly seating ball check valve 26, the plunger being operated by the usual rods 21 extended upwardly through the tubing to the ground surface.
  • any suitable means may be employed to maintain the tubing I6 in spaced and electrically insulatedprelation to the wall of the casing II or the wall 28 of the well bore where the tubing extends down in open hole as shown in Fig. 3.
  • the latter is shown to carry longitudinally spaced insulators 29 each comprising a sleeve 30 of rubber or other suitable insulating material placed about and receiving within its interior recess 3I the tubing coupling 32.
  • the ends of the insulator sleeve may be beveled as at 33 to facilitate movement past irregularities in the well, and the sleeve is provided with suitable openings such as continuously extending, circularly spaced passages 34 to permit upward flow and escape of gases past the insulators within the space 35 between the tubing and casing or well bore.
  • any suitable source such as avariably'controlled motor generator unit or specially built and variably controlled transformer conventionally illustrated at 36 and connected by lead wire 31 with the tubing above the casing head I3, as illustrated.
  • the opposite pole of the generator may be connected'with the casing I I through the lead wire shown at 38.
  • 'I'he vertical extent of the electrical circuit through the tubing, and therefore the length of tubing heated by the current is determined by the location of an adapter or electrical connection generally indicated at 3Q, carried by the tubing and engageable with the casing or well bore, depending upon the location ofthe adapter.
  • any suitable means or attachment may be employed for maintainingan adjustably variable electrical connection between the tubing and the wall of the well.
  • the adapter 39 is shown to comprise a plurality of bowed springs 40 having their upper ends 40a seated and secured within recesses 4I of coupling 32a, the lower ends 40h of the lsprings similarly being secured to a sleeve 42 that is slidable longitudinally on the tubing to accommodate Varying expansion and contraction of the springs as they pass through different diameter portions of the well bore.
  • the adapter may be located at any position on the tubing intermediate its upper and lower ends and with reference to the well itself, it may be positioned at substantially the liquid level in the well, or any desired distance above or below that level, all depending upon the location of the congealed paraflinic or asphaltic bodies in the Well at the outside of the tubing, as explained in the introductory discussion. t may be ⁇ mentioned that in the majority of instances the adapter will be positioned a substantial distance above the lower end of the tubing or pump.
  • the heated length of the tubing may be confined to within the well casing il, for example the upper section of the tubing shown above the adapter in Figs. 1 and 2. or the heated length of tubing may extend any desired distance within the unlined well bore 28 below the casing, as illustrated in Fig. 3.
  • the adapter heats that section of tubing and produces adirect transference of heat from the tube to the surrounding well fluid, suiicient to raise the temperature of the fluids both inside and outside the tubing to melt the congealed bodies and thus effect their removal fromA the zones being heated.
  • the heating may serve not only to remove congealed bodies in the well, but also to free the formation of clogging bodies and thereby increase production.
  • check valve 24 serves to support within the tubing a column of fluid that may extend any distance up to the ground surface, and above the level of liquid standing in the well, the liquid ⁇ column in the tubing thus providing, in effect, a hydrostatic back pressure which must be overcome by the pressure in the well before further flow into the, tubing will occur.
  • the fixed resistance in order to gain the required amperage, that the voltage could not be controlled or properly insulated within the tubing string.
  • high voltages would arc across and
  • the tubing may be heated to around 120 F. by using a current of 50 volts and 750 amperes, or 37,500 watts, for a period of 35 to 40 minutes.
  • a properly wound transformer may be used, instead of a generator unit, to supply current at relatively high amperage and low voltage, as indicated.

Description

l. LOOMAN WELL CLEARING SYSTEM June 3, 1941.
Original Filed Jan. 18, 1959 2 Sheets-Sheet 1 EEE .June 3, 1941. l. c. LooMAN WELL CLEARING SYSTEM Original Filed Jan. 18, 1959 2 Sheets-Sheet 2 Patented June 3, 1941 2,244,255 WELL CLEARING SYSTEM Iris C. Looman, Borger, Tex., assigner to Electrical Treating Company, Dallas, Tex., a corporation of Texas Original application January 18, 1939, Serial Nc.
251,606. Divided and this application December 16, 1939, Serial No. 309,594
6 Claims.
This invention has to do generally with the removing of congealed paraffinic and asphaltic bodies in oil wells, and relates particularly to an improved system for electrically heating wells whereby it is made possible to eiectively remove such congealed bodies at whatever location they may occur in the well. This application is a continuation-impart of my abandoned copending application Ser. No. 251,606, iiled January 18, 1939, on Well clearing means. The apparatus features of the invention are claimed in a copending application, Ser. No, 337,031, `i'lled May 24, 1940, on Apparatus for clearing wells.
Heretofore it has been proposed Ato electrically heat wells interiorally, or to so heat the production fluid Within the ow pipe or tubing, by the use of various specific forms of heating apparatus and for various particular purposes. In the comparatively early development of the art it was proposed to heat the uid in the bottom of a Well by an electrically energized heater sus-l pended on a pipe or cable, and in at least one instance to supply electric current to the heater through a suspension means without the latter however being itself utilized as a heating element. These methods in which heating elements have been used are generally, or to the best of my knowledge wholly impractical and ineilicient because it has been necessary to confine the hea-ting action to a very limited space. Consequently it has not been possible to heat enough uid so that the required temperature may be maintained as the fluid passes through the low temperature zones considerable distances above the heating element, Where it is found that because of the temperature drop the substances begin to congeal. And, further, such devices are unsuited to my purposes in that all of the heat concentration is Within such a short space that it is impossible to heat the uid at that point sufficiently to cause the uid to maintain the desired temperatures in the normally cooler zonesabove, as the fluid passes upwardly through them or to attempt to do so Without over-heating the oil or causing congealed bodies to become so plastic as to have excessive adherence to the tubing at the high temperatures. To lattempt to supply locally all the heat necessary to elevate the fluid temperatures in other parts of thewell,
above the melting or softening point of the con-v gealed' bodies; would also involve dangerously overheating the tubing itself. Another proposal has been to heat the well uid being discharged through the tubing by an electrical-conductor run down within and spaced from the tubing.
iiuids. While perhaps beingsuitable as a means of melting or removing meltable congealed bodies in the bottom of the well or within the flow tubing, such prior systems are not adaptable, and insofar as I know have never been attempted to be used, for the purpose of removing accumula` tions of congealed parainic and asphaltic bodies from any or all the various locations where they may occur in a well, and. from which these bodies must be removed if satisfactory production and operating conditions are to be maintained.
` My primary object is to provide an improved and, in fact, characteristically diierent type of well heating system whereby it is possible to remove congealed bodies from any location or locations in which they may occur within the Well or iiow tubing, and to so control the heating as .to be able to limit or 'confine the application of heat to particular or pre-determined portions of the well or tubing where heating is necessary. In accordance with the invention, heat is supplied to the well fluid by passing electrical current through a conductor run in the well and directly contacting the well fluid. This conductor ordinarily and preferably comprises simply the usual ow tubing, which is of uniform thickness and conductivity so that a given amount of specially generated or transformed electric current of high amperage and suiiicient voltage may be introduced to permit a necessary pre-determined degree of heat to be maintained throughout the heated length of the tubing, and which is provided with insulators to maintain the tubing in spaced relation to the wall of the well or casing. Provision is made for heating only a portion and variable length of the tubing from a point above its lower end, by suitable means such as a conductor or adapter carried by the tubing and engaging the wall of the well, the position of the conductor being adjustable and variable longitudinally of the tubing. By positioning the conductor with proper relation to the pre-determined location of the congealed bodies to -be melted in the well, the heated section of the tubing may be confined and limited to rthe necessary A section or depth of the Well that requires heating. This system has the further advantage of permitting less than the entire length of the tubing to be heated, and therefore with a given potential of current, which is variably controlled,
' order to meet all the requirements.
the degree of heat necessary is conned to that section of the tubing through which the current is passed and eliminates the possibility of intense or excessive heating.-
The invention is also distinguished from prior well heating systems in that it is operable in conjunction with any known method'of production and especially a well pump carried by the tubing. As will appear later, the pump serves a purpose in addition to its usual function, of providing valve means for retaining pressure in the well, and alternately, it also enables production to be maintained, if desired, While the well is being heated, due to the fact that the entire length of the tubing above the adapter may be heated and uniform heating of the traveling fluid maintained until the iiuid is exhausted at the surface.
The advantages of the invention willperhaps be better appreciated by referring briefly to illustrative conditions that have been encountered in actual operations, and the manner in which the present system has operated to improve them. For example, the Texas Panhandle has many wells in which the formation of parafne is considered to be one of the major production problems. In these wells the last string of casing may be set at a point approximating 2700 feet and then the well is drilled to a total depth ranging upwards from 180 feet below the casing. The tubing string is run toa point within say 5 feet of the bottom of the hole, and thus to a depth The present system may be used to advantage not only for the removal of paraiiine but also for purposes of restoring production in wells that have ceased to iiow. In many instances parafline congeals in the tubing to the extent that it has been necessary to run a parafne knife or to use chemicals. Frequently the bottom hole gas pressure is overcome by the hydrostatic presconsiderably below`the casing. Fluid levels are usually at varying-points up to 1500 feet. In most cases, the bottom hole temperatures are suflicient to keep the parafline in solution, but as the fluid is being pumped through the tubing, it passes through locations in the well at which the temperatures are considerably lower than bottom hole temperature. These colderzones may be below the usual fluid level or they may be above it. The uid shows definite heat losses as it is pumped through these points of low` temperature, and further heat losses are caused by the expansion of gases carried by the fluid at elevations of reduced pressures, so that the temperature of the fluid drops below that of the bottom hole temperature and paraiiine begins to congeal in the tubing. Also it is often found that the iiuid level in the well may extend up into the cooler zones so that the fluid toward the top may be conbottom of the hole. In such cases, when the Well is started pumping andthe fluid level is lowered, Darafline will collect on the outside of the tubing from the iiuid level down to that point at which the iiuid again becomes warm enough to -keep the parane in solution. Under such conditions it is necessary to be able to place the conductor at any point either above or below the fluid level, and either Within the casing string, or below it, in
It is also found that when some wells l are pumped from time to timeand their normal fluid levels are depressed, the expansion of gases liberated and escaping from the formation will lower .the temperature of the remaining fluid in the Well and cause a settling out of parafline ir`i\the formation. l:By properly setting the conductor above the bottom of the tubing string it is possible to heat the remaining iiuids in the hole to a temperature suiiicient to -re-dissolve the congealed material, and thereby clean the surfaceof lthe formation and allow the paraine tn .be removed from the well bore by the method of production being used.
l5o siderably lower in temperature than that at they sure of an accumulated column of fluid so that the well 'ceases to iiow and it is necessary to use a swab or compressor, or some other artificial means for causing the well to flow until it becomes live enough to produce of its own accord. These usual artificial methods require considerable time, special equipment, and are at best expensive. By installing the conductor of my system some distance below the top of the fluid level andlprovlding a standing valve in the tubing string to permit upward flow of the uid and gas but prevent downward flow, and then by heating the tubing and thereby generating gas from the fluid in the well, the expansion of the confined gases between the casing and tubing caused by the heat creates a downward pressure on the well liquid, giving somewhat the same effect as a compressor or swab, sufficient to cause the well to iiow. At the same time I eliminate the accumulated paraine much more cheaply and efficiently than. by the usual chemical, or parafiine knife procedure.
In some Oklahoma and other fields a very bad paraine condition is experienced both inside and outside the tubing. The outside accumulation of parafline is caused by the lowering of the fluid in the hole, and cooling as a result of the expansion of gas liberated from the fluid. The accumulation of paraiiine between the casing and tubing is in many cases so great that it becomes necessary to remove the tubing from the hole and spend weeks and even months with cable tools cleaning or removing the parailine from the casing. By placing the adapter well in the bottom of the hole at proper depth it is easily possible to heat the tubing sufficiently to raise the temperature of the fluid in the hole to re-dissolve the congealed paraine and ,permit it to be pumped, flowed, or removed from the hole by any suitablemethod. Ordinarily, it is unnecessary at any time to heat the tubing string above F. in
rorder to accomplish the Vdesired result. This amount of heat is in no way detrimental to the tubing or to the fluids, but is suiiicient to cause an enormous generation of gas.
All the above mentioned features and objects of the invention, as well as the details of a typical and illustrative embodiment thereof, will be understood to better advantage from the description to follow. Throughout the description reference-is had to the accompanying drawings in which:
Fig. 1 is a vertical section showing the upper portion of a cased well containing the flow pipe equipped with insulators and connected with a source of electrical current;
Fig. 2 is a lower continuation of Fig. 1 showing the bottomA portion of the tubing string and the adapter or conductor;
Fg.l3 is a view similar to Fig. 2 showing the tubing and adapter lowered in open hole below the casing;
Fig. 4 is an enlarged cross section on line 4--4 of Fig. 1; and
Fig. 5 is'an enlarged cross section on line 5-5 of Fig. 2.
Referring first to Figs. 1 and 2 of the drawings, ,4
the well bore I is shown to contain lthe usual casing II carrying at its lower end a screen or perforated liner I2. The upper end ofthe casing carries the usual head I3 which may have any suitable number and arrangement of kfluid connections shown typically as the valved lines Ill and I5. Lowered within the casing is the usual tubing string I6 which may be supported on the casing head I3 by any of the usual forms of tubing hangers, as for example the conventionally illustrated type comprising a flange II receiving the tubing coupling I8 and resting on an annulus I9- of suitable electrical insulating mate' rial within the upper end I3a. of the casing head. The tubing I6 carries at its lower end the usual well pump generally indicated at20 and shown typically to comprise a barrel 2I connected to the tubing by coupling 22 and having at its lower end .a strainer 23 below the ball check foot valve denoted generally at 24. The pump barrel 2I contains the ordinary tubular plunger 25 carrying the downwardly seating ball check valve 26, the plunger being operated by the usual rods 21 extended upwardly through the tubing to the ground surface. f
Any suitable means may be employed to maintain the tubing I6 in spaced and electrically insulatedprelation to the wall of the casing II or the wall 28 of the well bore where the tubing extends down in open hole as shown in Fig. 3. As typical means for so spacing and electrically insulating the tubing, the latter is shown to carry longitudinally spaced insulators 29 each comprising a sleeve 30 of rubber or other suitable insulating material placed about and receiving within its interior recess 3I the tubing coupling 32. The ends of the insulator sleeve may be beveled as at 33 to facilitate movement past irregularities in the well, and the sleeve is provided with suitable openings such as continuously extending, circularly spaced passages 34 to permit upward flow and escape of gases past the insulators within the space 35 between the tubing and casing or well bore.
Electrical current is supplied to the tubing I6 from any suitable source, such as avariably'controlled motor generator unit or specially built and variably controlled transformer conventionally illustrated at 36 and connected by lead wire 31 with the tubing above the casing head I3, as illustrated. The opposite pole of the generator may be connected'with the casing I I through the lead wire shown at 38. 'I'he vertical extent of the electrical circuit through the tubing, and therefore the length of tubing heated by the current is determined by the location of an adapter or electrical connection generally indicated at 3Q, carried by the tubing and engageable with the casing or well bore, depending upon the location ofthe adapter. Again, any suitable means or attachment may be employed for maintainingan adjustably variable electrical connection between the tubing and the wall of the well. As typical, the adapter 39 is shown to comprise a plurality of bowed springs 40 having their upper ends 40a seated and secured within recesses 4I of coupling 32a, the lower ends 40h of the lsprings similarly being secured to a sleeve 42 that is slidable longitudinally on the tubing to accommodate Varying expansion and contraction of the springs as they pass through different diameter portions of the well bore. Springs 40 frictionally engage the wall of the well to maintain an electrical connection from the tubing and the adapter may be located at any position on the tubing intermediate its upper and lower ends and with reference to the well itself, it may be positioned at substantially the liquid level in the well, or any desired distance above or below that level, all depending upon the location of the congealed paraflinic or asphaltic bodies in the Well at the outside of the tubing, as explained in the introductory discussion. t may be `mentioned that in the majority of instances the adapter will be positioned a substantial distance above the lower end of the tubing or pump.
As previously observed, the heated length of the tubing may be confined to within the well casing il, for example the upper section of the tubing shown above the adapter in Figs. 1 and 2. or the heated length of tubing may extend any desired distance within the unlined well bore 28 below the casing, as illustrated in Fig. 3. In either instance, passage of current through the tubing above, the adapter heats that section of tubing and produces adirect transference of heat from the tube to the surrounding well fluid, suiicient to raise the temperature of the fluids both inside and outside the tubing to melt the congealed bodies and thus effect their removal fromA the zones being heated. Where the tubing and adapter are run in the unlined hole with the formation engaged by the adapter being used to complete the circuit as in Fig. 3, the heating may serve not only to remove congealed bodies in the well, but also to free the formation of clogging bodies and thereby increase production.
It will be understood that the described h?- ingv operations may be carried on either wfile the well-is being pumped, or when pumping has A stopped, at any suitable intervall and for lengths have previously referred to the fact'that heating of the well fluids in accordance with the present system may be employed to develop pressure within space 35 between the tubing and casing to facilitate downward displacement of the melted bodies vto higher temperature zones and' thence to the lower end of the tubing or pump for removal from the well in the production stream. Capacity' for such pressure development is inherent in the system for the reason that check valve 24 serves to support within the tubing a column of fluid that may extend any distance up to the ground surface, and above the level of liquid standing in the well, the liquid` column in the tubing thus providing, in effect, a hydrostatic back pressure which must be overcome by the pressure in the well before further flow into the, tubing will occur.
It is important that the source 0f current supply have certain power characteristics for proper and most efficient heating of the tubing, A
lthe effect would be uncontrollable.
. the fixed resistance in order to gain the required amperage, that the voltage could not be controlled or properly insulated within the tubing string. In the small spaces between the tubing and casing, high voltages would arc across and To obtain current of desirable high amperage and low voltage, I use a variably controlled generating unit or transformer, of which the designation at 36 may be taken as illustrative, capable of supplying relatively high amperage 'and low voltage current Within the ranges required for all operating conditions. To illustrate, with the adapter set at 1500 feet on 2 inch tubing, the tubing may be heated to around 120 F. by using a current of 50 volts and 750 amperes, or 37,500 watts, for a period of 35 to 40 minutes. As will be understood, where a source of alternating current is available, a properly wound transformer may be used, instead of a generator unit, to supply current at relatively high amperage and low voltage, as indicated.
It will\be understood that the drawings are to be regarded merely as typical and illustrative, and that various changes and modifications may .be made Without departure from the invention in its intended spirit and scope.
I claim:
1. 'I'he methodof clearing congealed parafne or asphaltic bodies within an oil well from which production is taken through the usual ow tubing lowered deep in the well and directly exposed to the fluid therein, which comprises passing through a continuous length of the exposed ow Y tubing extending downwardly from near the top of the well -to the location of said congealed bodies, electric current of suilciently high arnperage to heat said length of the tubing to a temperature sufiicient to melt said congealed bodies in the well.
2. The method of clearing 'congealed'parafne or asphaltic bodies within an oil well from which production is taken through the usual owtubing lowered deep in the well and directly exposed to the fluid therein which comprises passing through a continuous length of the exposed flow tubing extending downwardly from near the top of the Well to the location of said congealed bodies and to a depth above the liquid level in the well outside the tubing, electric current of suiciently high amperage to heat said length of the tubing to a temperature in the neighborhood of 120 F., at which said congealed bodies will melt.
3. The method of clearing congealed parailine or asphaltlc bodies within an oil well from which production is taken through the usual flow tubing lowered deep in the well and directly exposed to the iiuid therein, which comprises passing through a continuous length of the exposed ow tubing extending downwardly from near the top of the well to the location of said congealed bodies, electric current of suflciently high amperage to heat said length of the tubing to a temperature suflicient to melt said congealed bodies in the well, and substantially terminating the passage of the electric current at an intermediate portion of the tubing determined in accordance with the locationof said congealed bodies whereby the length of the tubing heated to a melting temperature does not substantially exceed a length necessary to melt said congealed bodies.
4. 'Ihe method of clearing congealed paraiiine tubing a column of liquid extending a considy erable distance' above the well liquid level outside the tubing, and terminating the passage of current through the tubing at a depth above said well .liquid level.
5. The method of clearing congealed parafne or asphaltic bodies within an oil well from which production is taken through the usual flow tubing lowered deep in the well and directly exposed to' the fluid therein which comprises passing through a continuous length of the exposed flow tubing extending downwardly from near the top of the Well to the location of said congealed bodies, electric current of suiilciently high amperage to heat said length of the tubing to a temperature sulcient to melt said congealed bodies in the well, and pumping the well liquid upwardly through said heated length of the flow tubing and thereby maintaining the pumped liquid at a temperature above that at which said congealed bodies will form.
6 The method of clearing congealed parafne or asphaltic bodies within an oil ,well from which production is taken through the usual ow tubing lowered deep in the well and directly exposed to the fluid therein, which comprises passing through a continuous length of the exposed Iiow tubing extending downwardlyvfrom near the top of the well to the location of said congealed bodies, electric current of suiliciently high amperage to heat said length of the tubing to a temperature sufficient to melt said l congealed bodies in the well and at the same time keeping the well closed so that the pressure therein will increase due to the heating of the Well fluid.
IRIS C. LOOMAN.
US309594A 1939-01-18 1939-12-16 Well clearing system Expired - Lifetime US2244255A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US309594A US2244255A (en) 1939-01-18 1939-12-16 Well clearing system
US337031A US2244256A (en) 1939-12-16 1940-05-24 Apparatus for clearing wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25160639A 1939-01-18 1939-01-18
US309594A US2244255A (en) 1939-01-18 1939-12-16 Well clearing system

Publications (1)

Publication Number Publication Date
US2244255A true US2244255A (en) 1941-06-03

Family

ID=26941713

Family Applications (1)

Application Number Title Priority Date Filing Date
US309594A Expired - Lifetime US2244255A (en) 1939-01-18 1939-12-16 Well clearing system

Country Status (1)

Country Link
US (1) US2244255A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647196A (en) * 1950-11-06 1953-07-28 Union Oil Co Apparatus for heating oil wells
US4319632A (en) * 1979-12-04 1982-03-16 Gkj, Inc. Oil recovery well paraffin elimination means
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
WO2002086284A1 (en) * 2001-04-24 2002-10-31 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US20030183390A1 (en) * 2001-10-24 2003-10-02 Peter Veenstra Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US20050051334A1 (en) * 2003-09-05 2005-03-10 Baugh Benton F. Electrical tubing control and remediation
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394917B2 (en) * 2011-10-18 2016-07-19 Los Alamos National Security, Llc Cooling devices and methods for use with electric submersible pumps
US9797402B2 (en) 2011-10-18 2017-10-24 Chevron U.S.A. Inc. Cooling devices and methods for use with electric submersible pumps
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Cited By (315)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647196A (en) * 1950-11-06 1953-07-28 Union Oil Co Apparatus for heating oil wells
US4319632A (en) * 1979-12-04 1982-03-16 Gkj, Inc. Oil recovery well paraffin elimination means
US4790375A (en) * 1987-11-23 1988-12-13 Ors Development Corporation Mineral well heating systems
EP0317719A1 (en) * 1987-11-23 1989-05-31 Uentech Corporation Heating systems for boreholes
US8789586B2 (en) 2000-04-24 2014-07-29 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US20110088904A1 (en) * 2000-04-24 2011-04-21 De Rouffignac Eric Pierre In situ recovery from a hydrocarbon containing formation
US8225866B2 (en) 2000-04-24 2012-07-24 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US8485252B2 (en) 2000-04-24 2013-07-16 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US6918443B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US8608249B2 (en) 2001-04-24 2013-12-17 Shell Oil Company In situ thermal processing of an oil shale formation
US20030102124A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal processing of a blending agent from a relatively permeable formation
US20030102126A1 (en) * 2001-04-24 2003-06-05 Sumnu-Dindoruk Meliha Deniz In situ thermal recovery from a relatively permeable formation with controlled production rate
US20030111223A1 (en) * 2001-04-24 2003-06-19 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation using horizontal heat sources
US20030116315A1 (en) * 2001-04-24 2003-06-26 Wellington Scott Lee In situ thermal processing of a relatively permeable formation
US20030130136A1 (en) * 2001-04-24 2003-07-10 Rouffignac Eric Pierre De In situ thermal processing of a relatively impermeable formation using an open wellbore
US20030131995A1 (en) * 2001-04-24 2003-07-17 De Rouffignac Eric Pierre In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20030131993A1 (en) * 2001-04-24 2003-07-17 Etuan Zhang In situ thermal processing of an oil shale formation with a selected property
US20030131994A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing and solution mining of an oil shale formation
US20030131996A1 (en) * 2001-04-24 2003-07-17 Vinegar Harold J. In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20030136558A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a desired product
US20030136559A1 (en) * 2001-04-24 2003-07-24 Wellington Scott Lee In situ thermal processing while controlling pressure in an oil shale formation
US20030141067A1 (en) * 2001-04-24 2003-07-31 Rouffignac Eric Pierre De In situ thermal processing of an oil shale formation to increase permeability of the formation
US20030141068A1 (en) * 2001-04-24 2003-07-31 Pierre De Rouffignac Eric In situ thermal processing through an open wellbore in an oil shale formation
US20030142964A1 (en) * 2001-04-24 2003-07-31 Wellington Scott Lee In situ thermal processing of an oil shale formation using a controlled heating rate
US20030141066A1 (en) * 2001-04-24 2003-07-31 Karanikas John Michael In situ thermal processing of an oil shale formation while inhibiting coking
US20030146002A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US20030148894A1 (en) * 2001-04-24 2003-08-07 Vinegar Harold J. In situ thermal processing of an oil shale formation using a natural distributed combustor
US20030155111A1 (en) * 2001-04-24 2003-08-21 Shell Oil Co In situ thermal processing of a tar sands formation
US6964300B2 (en) 2001-04-24 2005-11-15 Shell Oil Company In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US20030173078A1 (en) * 2001-04-24 2003-09-18 Wellington Scott Lee In situ thermal processing of an oil shale formation to produce a condensate
US20030209348A1 (en) * 2001-04-24 2003-11-13 Ward John Michael In situ thermal processing and remediation of an oil shale formation
US6782947B2 (en) 2001-04-24 2004-08-31 Shell Oil Company In situ thermal processing of a relatively impermeable formation to increase permeability of the formation
US20040211554A1 (en) * 2001-04-24 2004-10-28 Vinegar Harold J. Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US7066254B2 (en) 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
US7055600B2 (en) 2001-04-24 2006-06-06 Shell Oil Company In situ thermal recovery from a relatively permeable formation with controlled production rate
US7051811B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal processing through an open wellbore in an oil shale formation
US7051807B2 (en) 2001-04-24 2006-05-30 Shell Oil Company In situ thermal recovery from a relatively permeable formation with quality control
US6951247B2 (en) 2001-04-24 2005-10-04 Shell Oil Company In situ thermal processing of an oil shale formation using horizontal heat sources
US7040398B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively permeable formation in a reducing environment
US20040211557A1 (en) * 2001-04-24 2004-10-28 Cole Anthony Thomas Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US20030102130A1 (en) * 2001-04-24 2003-06-05 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation with quality control
US6877555B2 (en) 2001-04-24 2005-04-12 Shell Oil Company In situ thermal processing of an oil shale formation while inhibiting coking
US6880633B2 (en) 2001-04-24 2005-04-19 Shell Oil Company In situ thermal processing of an oil shale formation to produce a desired product
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of an oil shale formation using a controlled heating rate
US7032660B2 (en) 2001-04-24 2006-04-25 Shell Oil Company In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US6915850B2 (en) 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US6918442B2 (en) 2001-04-24 2005-07-19 Shell Oil Company In situ thermal processing of an oil shale formation in a reducing environment
US20030100451A1 (en) * 2001-04-24 2003-05-29 Messier Margaret Ann In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6923257B2 (en) 2001-04-24 2005-08-02 Shell Oil Company In situ thermal processing of an oil shale formation to produce a condensate
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US6948562B2 (en) 2001-04-24 2005-09-27 Shell Oil Company Production of a blending agent using an in situ thermal process in a relatively permeable formation
WO2002086284A1 (en) * 2001-04-24 2002-10-31 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US20030164239A1 (en) * 2001-04-24 2003-09-04 Wellington Scott Lee In situ thermal processing of an oil shale formation in a reducing environment
US20030102125A1 (en) * 2001-04-24 2003-06-05 Wellington Scott Lee In situ thermal processing of a relatively permeable formation in a reducing environment
US7004251B2 (en) 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US7004247B2 (en) 2001-04-24 2006-02-28 Shell Oil Company Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US6966374B2 (en) 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030098605A1 (en) * 2001-04-24 2003-05-29 Vinegar Harold J. In situ thermal recovery from a relatively permeable formation
US20030098149A1 (en) * 2001-04-24 2003-05-29 Wellington Scott Lee In situ thermal recovery from a relatively permeable formation using gas to increase mobility
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030080604A1 (en) * 2001-04-24 2003-05-01 Vinegar Harold J. In situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US20100270015A1 (en) * 2001-04-24 2010-10-28 Shell Oil Company In situ thermal processing of an oil shale formation
US7735935B2 (en) 2001-04-24 2010-06-15 Shell Oil Company In situ thermal processing of an oil shale formation containing carbonate minerals
US6997518B2 (en) 2001-04-24 2006-02-14 Shell Oil Company In situ thermal processing and solution mining of an oil shale formation
US7225866B2 (en) 2001-04-24 2007-06-05 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6981548B2 (en) 2001-04-24 2006-01-03 Shell Oil Company In situ thermal recovery from a relatively permeable formation
AU2002224779B2 (en) * 2001-04-24 2007-02-01 Shell Internationale Research Maatschappij B.V. Electrical well heating system and method
US6994169B2 (en) 2001-04-24 2006-02-07 Shell Oil Company In situ thermal processing of an oil shale formation with a selected property
US6991032B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing of an oil shale formation using a pattern of heat sources
US6991033B2 (en) 2001-04-24 2006-01-31 Shell Oil Company In situ thermal processing while controlling pressure in an oil shale formation
US6991036B2 (en) 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US20030196810A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. Treatment of a hydrocarbon containing formation after heating
US6991045B2 (en) 2001-10-24 2006-01-31 Shell Oil Company Forming openings in a hydrocarbon containing formation using magnetic tracking
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US20030196801A1 (en) * 2001-10-24 2003-10-23 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6932155B2 (en) 2001-10-24 2005-08-23 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7165615B2 (en) 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20050092483A1 (en) * 2001-10-24 2005-05-05 Vinegar Harold J. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US20040040715A1 (en) * 2001-10-24 2004-03-04 Wellington Scott Lee In situ production of a blending agent from a hydrocarbon containing formation
US20030205378A1 (en) * 2001-10-24 2003-11-06 Wellington Scott Lee In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030201098A1 (en) * 2001-10-24 2003-10-30 Karanikas John Michael In situ recovery from a hydrocarbon containing formation using one or more simulations
US7114566B2 (en) 2001-10-24 2006-10-03 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US8627887B2 (en) 2001-10-24 2014-01-14 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7461691B2 (en) 2001-10-24 2008-12-09 Shell Oil Company In situ recovery from a hydrocarbon containing formation
US7086465B2 (en) 2001-10-24 2006-08-08 Shell Oil Company In situ production of a blending agent from a hydrocarbon containing formation
US7063145B2 (en) 2001-10-24 2006-06-20 Shell Oil Company Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7066257B2 (en) 2001-10-24 2006-06-27 Shell Oil Company In situ recovery from lean and rich zones in a hydrocarbon containing formation
US20030183390A1 (en) * 2001-10-24 2003-10-02 Peter Veenstra Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7156176B2 (en) 2001-10-24 2007-01-02 Shell Oil Company Installation and use of removable heaters in a hydrocarbon containing formation
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US7077198B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ recovery from a hydrocarbon containing formation using barriers
US20030173085A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. Upgrading and mining of coal
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7128153B2 (en) 2001-10-24 2006-10-31 Shell Oil Company Treatment of a hydrocarbon containing formation after heating
US7051808B1 (en) 2001-10-24 2006-05-30 Shell Oil Company Seismic monitoring of in situ conversion in a hydrocarbon containing formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US20030173081A1 (en) * 2001-10-24 2003-09-18 Vinegar Harold J. In situ thermal processing of an oil reservoir formation
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US7219734B2 (en) 2002-10-24 2007-05-22 Shell Oil Company Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7121341B2 (en) 2002-10-24 2006-10-17 Shell Oil Company Conductor-in-conduit temperature limited heaters
US7073578B2 (en) 2002-10-24 2006-07-11 Shell Oil Company Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8238730B2 (en) 2002-10-24 2012-08-07 Shell Oil Company High voltage temperature limited heaters
US8224164B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Insulated conductor temperature limited heaters
US7360588B2 (en) 2003-04-24 2008-04-22 Shell Oil Company Thermal processes for subsurface formations
US8579031B2 (en) 2003-04-24 2013-11-12 Shell Oil Company Thermal processes for subsurface formations
US7640980B2 (en) 2003-04-24 2010-01-05 Shell Oil Company Thermal processes for subsurface formations
US7942203B2 (en) 2003-04-24 2011-05-17 Shell Oil Company Thermal processes for subsurface formations
US7121342B2 (en) 2003-04-24 2006-10-17 Shell Oil Company Thermal processes for subsurface formations
US20050051334A1 (en) * 2003-09-05 2005-03-10 Baugh Benton F. Electrical tubing control and remediation
US7025131B2 (en) * 2003-09-05 2006-04-11 Baugh Benton F Electrical tubing control and remediation apparatus and method of use
US8355623B2 (en) 2004-04-23 2013-01-15 Shell Oil Company Temperature limited heaters with high power factors
US7357180B2 (en) 2004-04-23 2008-04-15 Shell Oil Company Inhibiting effects of sloughing in wellbores
US20050269089A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Temperature limited heaters using modulated DC power
US20050269095A1 (en) * 2004-04-23 2005-12-08 Fairbanks Michael D Inhibiting reflux in a heated well of an in situ conversion system
US20050269094A1 (en) * 2004-04-23 2005-12-08 Harris Christopher K Triaxial temperature limited heater
US20050269088A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Inhibiting effects of sloughing in wellbores
US7510000B2 (en) 2004-04-23 2009-03-31 Shell Oil Company Reducing viscosity of oil for production from a hydrocarbon containing formation
US20050269093A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Variable frequency temperature limited heaters
US20050269077A1 (en) * 2004-04-23 2005-12-08 Sandberg Chester L Start-up of temperature limited heaters using direct current (DC)
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US7353872B2 (en) 2004-04-23 2008-04-08 Shell Oil Company Start-up of temperature limited heaters using direct current (DC)
US20050269092A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Vacuum pumping of conductor-in-conduit heaters
US20060005968A1 (en) * 2004-04-23 2006-01-12 Vinegar Harold J Temperature limited heaters with relatively constant current
US7370704B2 (en) 2004-04-23 2008-05-13 Shell Oil Company Triaxial temperature limited heater
US7383877B2 (en) 2004-04-23 2008-06-10 Shell Oil Company Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269313A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with high power factors
US7424915B2 (en) 2004-04-23 2008-09-16 Shell Oil Company Vacuum pumping of conductor-in-conduit heaters
US7431076B2 (en) 2004-04-23 2008-10-07 Shell Oil Company Temperature limited heaters using modulated DC power
US20050269090A1 (en) * 2004-04-23 2005-12-08 Vinegar Harold J Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
AU2005238944B2 (en) * 2004-04-23 2008-10-23 Shell Internationale Research Maatschappij B.V. Temperature limited heaters with thermally conductive fluid used to heat subsurface formations
US20050269091A1 (en) * 2004-04-23 2005-12-08 Guillermo Pastor-Sanz Reducing viscosity of oil for production from a hydrocarbon containing formation
US7481274B2 (en) 2004-04-23 2009-01-27 Shell Oil Company Temperature limited heaters with relatively constant current
US7490665B2 (en) 2004-04-23 2009-02-17 Shell Oil Company Variable frequency temperature limited heaters
US20060289536A1 (en) * 2004-04-23 2006-12-28 Vinegar Harold J Subsurface electrical heaters using nitride insulation
US20070133961A1 (en) * 2005-04-22 2007-06-14 Fairbanks Michael D Methods and systems for producing fluid from an in situ conversion process
US7527094B2 (en) 2005-04-22 2009-05-05 Shell Oil Company Double barrier system for an in situ conversion process
US7500528B2 (en) 2005-04-22 2009-03-10 Shell Oil Company Low temperature barrier wellbores formed using water flushing
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
US20080217321A1 (en) * 2005-04-22 2008-09-11 Vinegar Harold J Temperature limited heater utilizing non-ferromagnetic conductor
US20070144732A1 (en) * 2005-04-22 2007-06-28 Kim Dong S Low temperature barriers for use with in situ processes
US20070137857A1 (en) * 2005-04-22 2007-06-21 Vinegar Harold J Low temperature monitoring system for subsurface barriers
US20070137856A1 (en) * 2005-04-22 2007-06-21 Mckinzie Billy J Double barrier system for an in situ conversion process
US20070133959A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J Grouped exposed metal heaters
US8233782B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Grouped exposed metal heaters
US8230927B2 (en) 2005-04-22 2012-07-31 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070133960A1 (en) * 2005-04-22 2007-06-14 Vinegar Harold J In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7575052B2 (en) 2005-04-22 2009-08-18 Shell Oil Company In situ conversion process utilizing a closed loop heating system
US7575053B2 (en) 2005-04-22 2009-08-18 Shell Oil Company Low temperature monitoring system for subsurface barriers
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
US20070119098A1 (en) * 2005-04-22 2007-05-31 Zaida Diaz Treatment of gas from an in situ conversion process
US20070108200A1 (en) * 2005-04-22 2007-05-17 Mckinzie Billy J Ii Low temperature barrier wellbores formed using water flushing
US20070108201A1 (en) * 2005-04-22 2007-05-17 Vinegar Harold J Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US8070840B2 (en) 2005-04-22 2011-12-06 Shell Oil Company Treatment of gas from an in situ conversion process
US8027571B2 (en) 2005-04-22 2011-09-27 Shell Oil Company In situ conversion process systems utilizing wellbores in at least two regions of a formation
US7986869B2 (en) 2005-04-22 2011-07-26 Shell Oil Company Varying properties along lengths of temperature limited heaters
US20070045267A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Subsurface connection methods for subsurface heaters
US7942197B2 (en) 2005-04-22 2011-05-17 Shell Oil Company Methods and systems for producing fluid from an in situ conversion process
US20070045266A1 (en) * 2005-04-22 2007-03-01 Sandberg Chester L In situ conversion process utilizing a closed loop heating system
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
US20070045268A1 (en) * 2005-04-22 2007-03-01 Vinegar Harold J Varying properties along lengths of temperature limited heaters
US7831134B2 (en) 2005-04-22 2010-11-09 Shell Oil Company Grouped exposed metal heaters
US20070045265A1 (en) * 2005-04-22 2007-03-01 Mckinzie Billy J Ii Low temperature barriers with heat interceptor wells for in situ processes
US7591310B2 (en) 2005-10-24 2009-09-22 Shell Oil Company Methods of hydrotreating a liquid stream to remove clogging compounds
US8151880B2 (en) 2005-10-24 2012-04-10 Shell Oil Company Methods of making transportation fuel
US20110168394A1 (en) * 2005-10-24 2011-07-14 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7559368B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Solution mining systems and methods for treating hydrocarbon containing formations
US7559367B2 (en) 2005-10-24 2009-07-14 Shell Oil Company Temperature limited heater with a conduit substantially electrically isolated from the formation
US7635025B2 (en) 2005-10-24 2009-12-22 Shell Oil Company Cogeneration systems and processes for treating hydrocarbon containing formations
US7556095B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Solution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7562706B2 (en) 2005-10-24 2009-07-21 Shell Oil Company Systems and methods for producing hydrocarbons from tar sands formations
US7556096B2 (en) 2005-10-24 2009-07-07 Shell Oil Company Varying heating in dawsonite zones in hydrocarbon containing formations
US8606091B2 (en) 2005-10-24 2013-12-10 Shell Oil Company Subsurface heaters with low sulfidation rates
US7549470B2 (en) 2005-10-24 2009-06-23 Shell Oil Company Solution mining and heating by oxidation for treating hydrocarbon containing formations
US7581589B2 (en) 2005-10-24 2009-09-01 Shell Oil Company Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7584789B2 (en) 2005-10-24 2009-09-08 Shell Oil Company Methods of cracking a crude product to produce additional crude products
US7673786B2 (en) 2006-04-21 2010-03-09 Shell Oil Company Welding shield for coupling heaters
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7785427B2 (en) 2006-04-21 2010-08-31 Shell Oil Company High strength alloys
US8857506B2 (en) 2006-04-21 2014-10-14 Shell Oil Company Alternate energy source usage methods for in situ heat treatment processes
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7631689B2 (en) 2006-04-21 2009-12-15 Shell Oil Company Sulfur barrier for use with in situ processes for treating formations
US7683296B2 (en) 2006-04-21 2010-03-23 Shell Oil Company Adjusting alloy compositions for selected properties in temperature limited heaters
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
US7610962B2 (en) 2006-04-21 2009-11-03 Shell Oil Company Sour gas injection for use with in situ heat treatment
US7912358B2 (en) 2006-04-21 2011-03-22 Shell Oil Company Alternate energy source usage for in situ heat treatment processes
US7604052B2 (en) 2006-04-21 2009-10-20 Shell Oil Company Compositions produced using an in situ heat treatment process
US7866385B2 (en) 2006-04-21 2011-01-11 Shell Oil Company Power systems utilizing the heat of produced formation fluid
US7635023B2 (en) 2006-04-21 2009-12-22 Shell Oil Company Time sequenced heating of multiple layers in a hydrocarbon containing formation
US8083813B2 (en) 2006-04-21 2011-12-27 Shell Oil Company Methods of producing transportation fuel
US7845411B2 (en) 2006-10-20 2010-12-07 Shell Oil Company In situ heat treatment process utilizing a closed loop heating system
US7677310B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Creating and maintaining a gas cap in tar sands formations
US7717171B2 (en) 2006-10-20 2010-05-18 Shell Oil Company Moving hydrocarbons through portions of tar sands formations with a fluid
US7841401B2 (en) 2006-10-20 2010-11-30 Shell Oil Company Gas injection to inhibit migration during an in situ heat treatment process
US7562707B2 (en) 2006-10-20 2009-07-21 Shell Oil Company Heating hydrocarbon containing formations in a line drive staged process
US7644765B2 (en) 2006-10-20 2010-01-12 Shell Oil Company Heating tar sands formations while controlling pressure
US20100276141A1 (en) * 2006-10-20 2010-11-04 Shell Oil Company Creating fluid injectivity in tar sands formations
US8555971B2 (en) 2006-10-20 2013-10-15 Shell Oil Company Treating tar sands formations with dolomite
US7703513B2 (en) 2006-10-20 2010-04-27 Shell Oil Company Wax barrier for use with in situ processes for treating formations
US8191630B2 (en) 2006-10-20 2012-06-05 Shell Oil Company Creating fluid injectivity in tar sands formations
US7730946B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Treating tar sands formations with dolomite
US7635024B2 (en) 2006-10-20 2009-12-22 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US7730945B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7730947B2 (en) 2006-10-20 2010-06-08 Shell Oil Company Creating fluid injectivity in tar sands formations
US7631690B2 (en) 2006-10-20 2009-12-15 Shell Oil Company Heating hydrocarbon containing formations in a spiral startup staged sequence
US7540324B2 (en) 2006-10-20 2009-06-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US7681647B2 (en) 2006-10-20 2010-03-23 Shell Oil Company Method of producing drive fluid in situ in tar sands formations
US7673681B2 (en) 2006-10-20 2010-03-09 Shell Oil Company Treating tar sands formations with karsted zones
US7677314B2 (en) 2006-10-20 2010-03-16 Shell Oil Company Method of condensing vaporized water in situ to treat tar sands formations
US7841408B2 (en) 2007-04-20 2010-11-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
US8327681B2 (en) 2007-04-20 2012-12-11 Shell Oil Company Wellbore manufacturing processes for in situ heat treatment processes
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
US8381815B2 (en) 2007-04-20 2013-02-26 Shell Oil Company Production from multiple zones of a tar sands formation
US7931086B2 (en) 2007-04-20 2011-04-26 Shell Oil Company Heating systems for heating subsurface formations
US8042610B2 (en) 2007-04-20 2011-10-25 Shell Oil Company Parallel heater system for subsurface formations
US8459359B2 (en) 2007-04-20 2013-06-11 Shell Oil Company Treating nahcolite containing formations and saline zones
US7849922B2 (en) 2007-04-20 2010-12-14 Shell Oil Company In situ recovery from residually heated sections in a hydrocarbon containing formation
US7841425B2 (en) 2007-04-20 2010-11-30 Shell Oil Company Drilling subsurface wellbores with cutting structures
US7832484B2 (en) 2007-04-20 2010-11-16 Shell Oil Company Molten salt as a heat transfer fluid for heating a subsurface formation
US7798220B2 (en) 2007-04-20 2010-09-21 Shell Oil Company In situ heat treatment of a tar sands formation after drive process treatment
US8662175B2 (en) 2007-04-20 2014-03-04 Shell Oil Company Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8791396B2 (en) 2007-04-20 2014-07-29 Shell Oil Company Floating insulated conductors for heating subsurface formations
US9181780B2 (en) 2007-04-20 2015-11-10 Shell Oil Company Controlling and assessing pressure conditions during treatment of tar sands formations
US8240774B2 (en) 2007-10-19 2012-08-14 Shell Oil Company Solution mining and in situ treatment of nahcolite beds
US8272455B2 (en) 2007-10-19 2012-09-25 Shell Oil Company Methods for forming wellbores in heated formations
US7866386B2 (en) 2007-10-19 2011-01-11 Shell Oil Company In situ oxidation of subsurface formations
US8162059B2 (en) 2007-10-19 2012-04-24 Shell Oil Company Induction heaters used to heat subsurface formations
US8196658B2 (en) 2007-10-19 2012-06-12 Shell Oil Company Irregular spacing of heat sources for treating hydrocarbon containing formations
US8536497B2 (en) 2007-10-19 2013-09-17 Shell Oil Company Methods for forming long subsurface heaters
US7866388B2 (en) 2007-10-19 2011-01-11 Shell Oil Company High temperature methods for forming oxidizer fuel
US8276661B2 (en) 2007-10-19 2012-10-02 Shell Oil Company Heating subsurface formations by oxidizing fuel on a fuel carrier
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US20090194333A1 (en) * 2007-10-19 2009-08-06 Macdonald Duncan Ranging methods for developing wellbores in subsurface formations
US8146669B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Multi-step heater deployment in a subsurface formation
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8011451B2 (en) 2007-10-19 2011-09-06 Shell Oil Company Ranging methods for developing wellbores in subsurface formations
US8151907B2 (en) 2008-04-18 2012-04-10 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8172335B2 (en) 2008-04-18 2012-05-08 Shell Oil Company Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US8162405B2 (en) 2008-04-18 2012-04-24 Shell Oil Company Using tunnels for treating subsurface hydrocarbon containing formations
US8636323B2 (en) 2008-04-18 2014-01-28 Shell Oil Company Mines and tunnels for use in treating subsurface hydrocarbon containing formations
US9528322B2 (en) 2008-04-18 2016-12-27 Shell Oil Company Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en) 2008-04-18 2014-06-17 Shell Oil Company Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8562078B2 (en) 2008-04-18 2013-10-22 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US20100071904A1 (en) * 2008-04-18 2010-03-25 Shell Oil Company Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8353347B2 (en) 2008-10-13 2013-01-15 Shell Oil Company Deployment of insulated conductors for treating subsurface formations
US8267185B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8220539B2 (en) 2008-10-13 2012-07-17 Shell Oil Company Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US20100206570A1 (en) * 2008-10-13 2010-08-19 Ernesto Rafael Fonseca Ocampos Circulated heated transfer fluid systems used to treat a subsurface formation
US8881806B2 (en) 2008-10-13 2014-11-11 Shell Oil Company Systems and methods for treating a subsurface formation with electrical conductors
US9129728B2 (en) 2008-10-13 2015-09-08 Shell Oil Company Systems and methods of forming subsurface wellbores
US8281861B2 (en) 2008-10-13 2012-10-09 Shell Oil Company Circulated heated transfer fluid heating of subsurface hydrocarbon formations
US20100147521A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Perforated electrical conductors for treating subsurface formations
US20100147522A1 (en) * 2008-10-13 2010-06-17 Xueying Xie Systems and methods for treating a subsurface formation with electrical conductors
US8267170B2 (en) 2008-10-13 2012-09-18 Shell Oil Company Offset barrier wells in subsurface formations
US20100224368A1 (en) * 2008-10-13 2010-09-09 Stanley Leroy Mason Deployment of insulated conductors for treating subsurface formations
US8261832B2 (en) 2008-10-13 2012-09-11 Shell Oil Company Heating subsurface formations with fluids
US9022118B2 (en) 2008-10-13 2015-05-05 Shell Oil Company Double insulated heaters for treating subsurface formations
US8256512B2 (en) 2008-10-13 2012-09-04 Shell Oil Company Movable heaters for treating subsurface hydrocarbon containing formations
US9051829B2 (en) 2008-10-13 2015-06-09 Shell Oil Company Perforated electrical conductors for treating subsurface formations
US20100258265A1 (en) * 2009-04-10 2010-10-14 John Michael Karanikas Recovering energy from a subsurface formation
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
US8434555B2 (en) 2009-04-10 2013-05-07 Shell Oil Company Irregular pattern treatment of a subsurface formation
US8448707B2 (en) 2009-04-10 2013-05-28 Shell Oil Company Non-conducting heater casings
US20100258290A1 (en) * 2009-04-10 2010-10-14 Ronald Marshall Bass Non-conducting heater casings
US20100258291A1 (en) * 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US20110042084A1 (en) * 2009-04-10 2011-02-24 Robert Bos Irregular pattern treatment of a subsurface formation
US20100258309A1 (en) * 2009-04-10 2010-10-14 Oluropo Rufus Ayodele Heater assisted fluid treatment of a subsurface formation
US8851170B2 (en) 2009-04-10 2014-10-07 Shell Oil Company Heater assisted fluid treatment of a subsurface formation
US8485847B2 (en) * 2009-10-09 2013-07-16 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US20110124228A1 (en) * 2009-10-09 2011-05-26 John Matthew Coles Compacted coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
US20110124223A1 (en) * 2009-10-09 2011-05-26 David Jon Tilley Press-fit coupling joint for joining insulated conductors
US20110132661A1 (en) * 2009-10-09 2011-06-09 Patrick Silas Harmason Parallelogram coupling joint for coupling insulated conductors
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US20110134958A1 (en) * 2009-10-09 2011-06-09 Dhruv Arora Methods for assessing a temperature in a subsurface formation
US8816203B2 (en) 2009-10-09 2014-08-26 Shell Oil Company Compacted coupling joint for coupling insulated conductors
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8859942B2 (en) 2010-04-09 2014-10-14 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US9399905B2 (en) 2010-04-09 2016-07-26 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8967259B2 (en) 2010-04-09 2015-03-03 Shell Oil Company Helical winding of insulated conductor heaters for installation
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9022109B2 (en) 2010-04-09 2015-05-05 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8485256B2 (en) 2010-04-09 2013-07-16 Shell Oil Company Variable thickness insulated conductors
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US9337550B2 (en) 2010-10-08 2016-05-10 Shell Oil Company End termination for three-phase insulated conductors
US9755415B2 (en) 2010-10-08 2017-09-05 Shell Oil Company End termination for three-phase insulated conductors
US8586866B2 (en) 2010-10-08 2013-11-19 Shell Oil Company Hydroformed splice for insulated conductors
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8732946B2 (en) 2010-10-08 2014-05-27 Shell Oil Company Mechanical compaction of insulator for insulated conductor splices
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9048653B2 (en) 2011-04-08 2015-06-02 Shell Oil Company Systems for joining insulated conductors
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9226341B2 (en) 2011-10-07 2015-12-29 Shell Oil Company Forming insulated conductors using a final reduction step after heat treating
US9080917B2 (en) 2011-10-07 2015-07-14 Shell Oil Company System and methods for using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
US9080409B2 (en) 2011-10-07 2015-07-14 Shell Oil Company Integral splice for insulated conductors
US9394917B2 (en) * 2011-10-18 2016-07-19 Los Alamos National Security, Llc Cooling devices and methods for use with electric submersible pumps
US9797402B2 (en) 2011-10-18 2017-10-24 Chevron U.S.A. Inc. Cooling devices and methods for use with electric submersible pumps
US10047594B2 (en) 2012-01-23 2018-08-14 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation

Similar Documents

Publication Publication Date Title
US2244255A (en) Well clearing system
US2244256A (en) Apparatus for clearing wells
US3149672A (en) Method and apparatus for electrical heating of oil-bearing formations
US3547193A (en) Method and apparatus for recovery of minerals from sub-surface formations using electricity
US4790375A (en) Mineral well heating systems
US2670802A (en) Reviving or increasing the production of clogged or congested oil wells
US4412585A (en) Electrothermal process for recovering hydrocarbons
US3133592A (en) Apparatus for the application of electrical energy to subsurface formations
US2472445A (en) Apparatus for treating oil and gas bearing strata
US3605888A (en) Method and apparatus for secondary recovery of oil
US2757738A (en) Radiation heating
US4296969A (en) Thermal recovery of viscous hydrocarbons using arrays of radially spaced horizontal wells
US4716960A (en) Method and system for introducing electric current into a well
US4570715A (en) Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US5070533A (en) Robust electrical heating systems for mineral wells
US4730671A (en) Viscous oil recovery using high electrical conductive layers
US4319632A (en) Oil recovery well paraffin elimination means
US8265468B2 (en) Inline downhole heater and methods of use
US2749989A (en) Method and means of completing a well
US2914124A (en) Oil well heating system
US2980184A (en) Method and apparatus for producing wells
US4378846A (en) Enhanced oil recovery apparatus and method
US2363269A (en) Method for sealing borehole casings
US20060051080A1 (en) Oilfield tool annulus heater
US2530966A (en) Well completion apparatus