US2244075A - Mineral oil product - Google Patents
Mineral oil product Download PDFInfo
- Publication number
- US2244075A US2244075A US234605A US23460538A US2244075A US 2244075 A US2244075 A US 2244075A US 234605 A US234605 A US 234605A US 23460538 A US23460538 A US 23460538A US 2244075 A US2244075 A US 2244075A
- Authority
- US
- United States
- Prior art keywords
- oil
- sample
- groups
- mineral oil
- oil product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002480 mineral oil Substances 0.000 title description 4
- 235000010446 mineral oil Nutrition 0.000 title description 4
- 239000003921 oil Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 150000002430 hydrocarbons Chemical class 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000002966 varnish Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical class [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical class [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical class [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Chemical class 0.000 description 1
- 239000011651 chromium Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Chemical class 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 125000000853 cresyl group Chemical group C1(=CC=C(C=C1)C)* 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M1/00—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
- C10M1/08—Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/16—Naphthenic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/086—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing sulfur atoms bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/06—Groups 3 or 13
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/14—Group 7
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/16—Groups 8, 9, or 10
Definitions
- the present invention relates to improved mineral oil products and more especially to oils, greases and the like which contain addition agents to improve their properties.
- the invention will be fully understood from the following description.
- R and R" represent hydrocarbon or substituted hydrocarbon groups which will be described more fully below and X represents a hydrogen atom or some other substituent group, more especially nitro groups, amino and hydroxy groups.
- X represents a hydrogen atom or some other substituent group, more especially nitro groups, amino and hydroxy groups.
- the benzene ring appearing in the above mentioned formula is preferred, but other aromatic radicals may be employed such as naphthalene, anthracene and phenanthrene rings or their alkylated derivatives.
- the groups R and R may be hydrocarbon groups, for example alkyl groups such as methyl, ethyl, 'propyl, butyl or higher alkyl groups and the compounds containing these groups are desirable in reducing the oxidation rate of the oil.
- R and R" are preferably aromatic groups such as phenyl, naphthyl, cresyl; benzyl orvarious alkylated aromatic groups. Compounds of this type are preferred to those in which R and R" are aliphatic because they are particularly desirable and effective in maintaining a clean engine condition.
- the said aromatic groups may be entirely of a hydrocarbon nature or they may be substituted, that is to say containing elements or radicals with atoms other than hydrogen or carbon.
- the aromatic groups may be phenolic, containing a free hydroxyl group, or they may be sulfides or .disulfides. They may likewise contain nitro or amino groups.
- the atom or radical marked X in the above said group may be in other positions as well or,
- the compounds described above may be added to the oil or grease in proportions from about .10 or 1.5 or 2.0%. In this proportion they reduce the corrosive action of oils on alloy bearings such as those composed of copper, lead, cadmium, silver or the likes They likewise reduce the oxida tion very markedly and improve the carbon depositing tendency of the oil under high temperature conditions.
- the reagents referred to above may be added to oils of all types whether derived from paraffinic, naphthenlc or mixed base crudes and may be used either alone or in combination with other well known agents, for example, soaps, heavy metal salts such as naphthenates, or other soluble salts of aluminum, cobalt, nickel, calcium, barium or chromium. They may be used along with dyes, pour point depressants, thickening agentsnoiliness or extreme pressure compounds.
- Example I A lubricating oil of SAE No. 20.wa.s used as a blank and denoted as sample 1. To a sample of this oil was added .25% of di-n-butyl o-nitrobenzene-sulfenamide. This sample was designated sample 2. The formula of the compound added is as follows:
- Oxidation rates were determined on the blank and on sample 2 by bubbling oxygen which was passed in a circulatory path including a 10 cc. sample of the 011 while held at 200 C.
- Oxidation rate Sample 1 74403528 Sample 2 15-17-16-14 Two samples 1a and 211, similar to those used above except made up with mineral oil of SAE 40 grade, were then tasted for carbon depositing tendency. In this test the oil was slowly dropped into a heated steel cone, having a circumferential groove milled cut in a screw fashion on an inside periphery so as to allow a time of contact of about one minute between the heated surface and the oil. A total volume of 60 cc. of oil is dropped from a dropping funnel during a period of 2 hours to obtain this time of contact. The temperature of the cone may be held at any desired point, but for ordinary testing 250 C. seems preferable because it best approximates The results 7 Cone dlata,
- Example II Using the blank oil of Example'l, a third sainple, No. 3, was madeaup containing 25% of phenyl-a-naphthyl o-nitrobenzene-sulfenamide:
- Oxidation rate Sample 3 10-12l313 It was likewise found to be non-cgrrosive to the copper strip test.
- Example III each part of the piston'was examined, for example, the condition of the rings, the ring slits, ring grooves, as well as the total amount of carbon formed, the carbon on the under side of the piston, and the presence or absence of varnish on piston skirt. Separate ratings were given on the basis of these examinations and a composite overall demerit rating was given for the piston. In the following table, this data is summarized:
- An improved. lubricant comprising a hydrocarbon oil and a small amount of an aromatic sulfenamide.
- An improved lubricant comprising a hydrocarbon oil and a small amount of a compound of the formula:
- R and R" are hydrocarbon groups.
- An improved lubricant comprising a hydrocarbon oil and a small amount of a compound of a formula:
- R and R" are hydrocarbon groups and X is a substituent selected from the class consisting of -NO2, -OH and NH: groups.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Description
Patented June 3, 1941 MINERAL OIL PRODUCT Louis A. Mikeska, Westfield, N. J., asslgnor to Standard Oil Development Company, a corporation of Delaware No Drawing. Application October 12, 1938, Serial No. 234,605
9 Claims.
The present invention relates to improved mineral oil products and more especially to oils, greases and the like which contain addition agents to improve their properties. The invention will be fully understood from the following description.
Many addition agents for lubricating oils or greases have been suggested to improve various properties, especially stability, but few have been found ,which have the marked advantage in preserving the oils under elevated temperatures, such as are encountered in internal combustion engines and in maintaining a clean engine condition. In the present instance, a new class of chemical substances has been suggested for this purpose and it has been found that these agents are very powerful in reducing carbon formation,
where R and R" represent hydrocarbon or substituted hydrocarbon groups which will be described more fully below and X represents a hydrogen atom or some other substituent group, more especially nitro groups, amino and hydroxy groups. As indicated above, the benzene ring appearing in the above mentioned formula is preferred, but other aromatic radicals may be employed such as naphthalene, anthracene and phenanthrene rings or their alkylated derivatives. The groups R and R may be hydrocarbon groups, for example alkyl groups such as methyl, ethyl, 'propyl, butyl or higher alkyl groups and the compounds containing these groups are desirable in reducing the oxidation rate of the oil. In the formula mentioned above R and R" are preferably aromatic groups such as phenyl, naphthyl, cresyl; benzyl orvarious alkylated aromatic groups. Compounds of this type are preferred to those in which R and R" are aliphatic because they are particularly desirable and effective in maintaining a clean engine condition. The said aromatic groups may be entirely of a hydrocarbon nature or they may be substituted, that is to say containing elements or radicals with atoms other than hydrogen or carbon. Thus the aromatic groups may be phenolic, containing a free hydroxyl group, or they may be sulfides or .disulfides. They may likewise contain nitro or amino groups.
The atom or radical marked X in the above said group may be in other positions as well or,
indeed, if desired no substituent is necessary. The compounds described above may be added to the oil or grease in proportions from about .10 or 1.5 or 2.0%. In this proportion they reduce the corrosive action of oils on alloy bearings such as those composed of copper, lead, cadmium, silver or the likes They likewise reduce the oxida tion very markedly and improve the carbon depositing tendency of the oil under high temperature conditions.
The reagents referred to above may be added to oils of all types whether derived from paraffinic, naphthenlc or mixed base crudes and may be used either alone or in combination with other well known agents, for example, soaps, heavy metal salts such as naphthenates, or other soluble salts of aluminum, cobalt, nickel, calcium, barium or chromium. They may be used along with dyes, pour point depressants, thickening agentsnoiliness or extreme pressure compounds.
Example I A lubricating oil of SAE No. 20.wa.s used as a blank and denoted as sample 1. To a sample of this oil was added .25% of di-n-butyl o-nitrobenzene-sulfenamide. This sample was designated sample 2. The formula of the compound added is as follows:
Oxidation rates were determined on the blank and on sample 2 by bubbling oxygen which was passed in a circulatory path including a 10 cc. sample of the 011 while held at 200 C. The
amount of oxygen absorbed was determined at intervals of -15 minutes by difference from the amount remaining uncom-bined. were as follows:
Oxidation rate Sample 1 74403528 Sample 2 15-17-16-14 Two samples 1a and 211, similar to those used above except made up with mineral oil of SAE 40 grade, were then tasted for carbon depositing tendency. In this test the oil was slowly dropped into a heated steel cone, having a circumferential groove milled cut in a screw fashion on an inside periphery so as to allow a time of contact of about one minute between the heated surface and the oil. A total volume of 60 cc. of oil is dropped from a dropping funnel during a period of 2 hours to obtain this time of contact. The temperature of the cone may be held at any desired point, but for ordinary testing 250 C. seems preferable because it best approximates The results 7 Cone dlata,
Grams Sample la .50 Sample 2a .09
It willbe understood that the larger demerit rating indicates a poorer engine "condition, and
naturally smaller amounts of carbonindicate better performance.
It will thus be seen that the addition agent has greatly improved the carbon deposit tendency of this oil.
Sample of coil containing the addition agent was found to be non-corrosive according to the ordinary copper-strip test, in spite of the addition of the sulfur in the compound added, and
when sample 2 was subjected to the known Underwood test, it was found to be much less corrosive to alloy bearings than was the blank sample 1.
Example II Using the blank oil of Example'l, a third sainple, No. 3, was madeaup containing 25% of phenyl-a-naphthyl o-nitrobenzene-sulfenamide:
The oxidation rate of this sample was determined just as in Example I, with the following results:
Oxidation rate Sample 3 10-12l313 It was likewise found to be non-cgrrosive to the copper strip test.
Example III each part of the piston'was examined, for example, the condition of the rings, the ring slits, ring grooves, as well as the total amount of carbon formed, the carbon on the under side of the piston, and the presence or absence of varnish on piston skirt. Separate ratings were given on the basis of these examinations and a composite overall demerit rating was given for the piston. In the following table, this data is summarized:
From the test data, it will be seen that the addition of 25% of the reagent has greatly improved the. performance of the oil. As a whole, the piston condition is considerably better and in each'respect it is also improved. For example,
the sticking of rings has been eliminated and the slits and grooves are both improved. The total amount of carbon is greatly diminished and the carbon on the under side of the piston is also diminshed. There is likewise less varnish on the skirt. In all, it is clear that the condition of the engine is much better with the oil to which the agent ha been added.
The present invention is not to be limited by any theory of the mechanism of-,;the engine improvement or the particular agents, which have been added, but only by thev following claims.
I claim: g
1. An improved. lubricant comprising a hydrocarbon oil and a small amount of an aromatic sulfenamide.
2. An improved lubricant comprising a hydrocarbon oil and a small amount of a compound of the formula:
where R and R" are hydrocarbon groups.
3. An improved lubricant according to claim 2 in which R and R are aliphatic hydrocarbon radicals.
4. An improved lubricant comprising a hydrocarbon oil and a small amount of a compound of a formula:
where R and R" are hydrocarbon groups and X is a substituent selected from the class consisting of -NO2, -OH and NH: groups.
5. An improved lubricant according to claim 4 in which the groups R and R" of the added compound are aliphatic.
6. An improved lubricant-"comp Demerits Piston 35 2' Ring Ring Eggs? Varnish (arbon overall Stuck mg slits grooves I piston skirt formed Gram: Reference ll SAE N0. 40 4. 81 3 810 7. 33 6. 00 4. 5 5 7. 35 Ditto +34% of inhibitor 1.59 0 ii 1.00 4.00 3 l 4 1.50
LOUIS A. MIKESKA.
. ising a eral lubricating oilari'd 1. magmati ubstit t d
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US234605A US2244075A (en) | 1938-10-12 | 1938-10-12 | Mineral oil product |
FR857719D FR857719A (en) | 1938-10-12 | 1939-07-12 | Advanced lubricant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US234605A US2244075A (en) | 1938-10-12 | 1938-10-12 | Mineral oil product |
Publications (1)
Publication Number | Publication Date |
---|---|
US2244075A true US2244075A (en) | 1941-06-03 |
Family
ID=22882051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US234605A Expired - Lifetime US2244075A (en) | 1938-10-12 | 1938-10-12 | Mineral oil product |
Country Status (2)
Country | Link |
---|---|
US (1) | US2244075A (en) |
FR (1) | FR857719A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2554097A (en) * | 1947-09-04 | 1951-05-22 | Phillips Petroleum Co | N-long chain dialkyl-sulfenamides and preparation thereof |
US2606842A (en) * | 1947-10-25 | 1952-08-12 | Hercules Powder Co Ltd | Stabilized rosin size |
US2671804A (en) * | 1948-12-28 | 1954-03-09 | Phillips Petroleum Co | Preparation and use of alkylene polyamine sulfenamides and thiosulefnamides |
US3867441A (en) * | 1970-10-30 | 1975-02-18 | Hoffmann La Roche | Nitro-substituted phenylthio dopamines |
US4054603A (en) * | 1976-08-31 | 1977-10-18 | Eli Lilly And Company | 4-Amino-3,5-dinitrobenzenesulfenamides and sulfinamides |
US20090001739A1 (en) * | 2007-06-26 | 2009-01-01 | Risch Thomas M | Food Serving Utensil |
-
1938
- 1938-10-12 US US234605A patent/US2244075A/en not_active Expired - Lifetime
-
1939
- 1939-07-12 FR FR857719D patent/FR857719A/en not_active Expired
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2554097A (en) * | 1947-09-04 | 1951-05-22 | Phillips Petroleum Co | N-long chain dialkyl-sulfenamides and preparation thereof |
US2606842A (en) * | 1947-10-25 | 1952-08-12 | Hercules Powder Co Ltd | Stabilized rosin size |
US2671804A (en) * | 1948-12-28 | 1954-03-09 | Phillips Petroleum Co | Preparation and use of alkylene polyamine sulfenamides and thiosulefnamides |
US3867441A (en) * | 1970-10-30 | 1975-02-18 | Hoffmann La Roche | Nitro-substituted phenylthio dopamines |
US4054603A (en) * | 1976-08-31 | 1977-10-18 | Eli Lilly And Company | 4-Amino-3,5-dinitrobenzenesulfenamides and sulfinamides |
US20090001739A1 (en) * | 2007-06-26 | 2009-01-01 | Risch Thomas M | Food Serving Utensil |
US8061749B2 (en) | 2007-06-26 | 2011-11-22 | Liquid Motion, Inc. | Food serving utensil |
Also Published As
Publication number | Publication date |
---|---|
FR857719A (en) | 1940-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE22910E (en) | E-oxcxs-m | |
USRE23229E (en) | Compounded lubricating oil | |
US2236168A (en) | Lubricant | |
US2174248A (en) | Stabilized lubricating composition | |
US2216752A (en) | Stabilized lubricating oil composition | |
US2353491A (en) | Lubricating oil composition | |
US2322376A (en) | Lubricating oil | |
US2467713A (en) | Lubricating oil composition | |
US2366074A (en) | Corrosion resistant composition | |
US2244075A (en) | Mineral oil product | |
US2293445A (en) | Lubricant with high temperature stability | |
US2344988A (en) | Compounded mineral oil | |
US2320287A (en) | Lubricating oil | |
US2058343A (en) | Petroleum product and method of making same | |
US2344886A (en) | Lubricant composition | |
US2458526A (en) | Mineral oil composition | |
US2692858A (en) | Castor oil lubricating composition | |
US2902450A (en) | Lubricating oil composition | |
US2181913A (en) | Improved hydrocarbon composition | |
US2363012A (en) | Compounded mineral oil | |
US2295053A (en) | Hydrocarbon oils containing organic trisulphides as oxidation inhibitors | |
US2480450A (en) | Inhibiting oxidation | |
US2913412A (en) | Lubricating oil compositions | |
US2419360A (en) | Lubricating oil composition | |
US2394954A (en) | Lubricant |