US2223932A - Lubricating oil - Google Patents

Lubricating oil Download PDF

Info

Publication number
US2223932A
US2223932A US180830A US18083037A US2223932A US 2223932 A US2223932 A US 2223932A US 180830 A US180830 A US 180830A US 18083037 A US18083037 A US 18083037A US 2223932 A US2223932 A US 2223932A
Authority
US
United States
Prior art keywords
oil
acetone
zinc
lubricating oil
naphthenoyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US180830A
Inventor
Charles C Towne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US180830A priority Critical patent/US2223932A/en
Application granted granted Critical
Publication of US2223932A publication Critical patent/US2223932A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M1/00Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants
    • C10M1/08Liquid compositions essentially based on mineral lubricating oils or fatty oils; Their use as lubricants with additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/09Metal enolates, i.e. keto-enol metal complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/06Groups 3 or 13
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14

Definitions

  • Patented Dec. 3, 1940 UNITED STATES LUBRIOATING on.
  • This invention relates to a lubricant, and more particularly to a lubricating oil of the character of a motor oil.
  • One of the principal objects of the invention is to provide an improved lubricating oil of this character which is effective to reduce normal engine wear.
  • Another object ofthis invention is to provide certainnovel compounds which are valuable as additives for lubricating oil for this purpose.
  • a small proportion of a polyvalent metallic derivative of a beta-diketone is added to the lubricating oil to improve its lubricating qualities.
  • the metallic beta-diketones of this invention have the following structural formula:
  • M is a polyvalent metal
  • R1 is an alkene or naphthene group containing six or more carbon 25 atoms
  • R2 is an alkyl group.
  • R1 is preferably oleyl or naphthenyl, or homologues thereof.
  • R2 is generally methyl, but may be a higher homologue thereof such as ethyl, propyl, etc.
  • M is preferably copper, zinc, aluminum, tin, calcium or cadmium.
  • Examples of metallic beta-diketones which have been found effective in accordance with the present invention include, aluminum naphthenoyl acetone, zinc naphthenoyl acetone, zinc oleoyl acetone and tin naphthenoyl acetone.
  • the zinc oleoyl acetone was prepared as follows: Methyl oleoyl ketone was first prepared by passing a mix of one part of oleic acid and two parts of acetic acid througha catalyst bed of pumice containing deposited manganese oxideat a temperature of 425 F. The reaction products were condensed and ether and caustic soda solution added. The ether layer containing the dissolved methyl oleoyl ketone was separated and stripped of the ether. This methyl oleoyl ketone was refluxed with commercial ethylacetate con- (Cl.
  • the zinc salt was prepared by dissolving the oleoyl acetone in ethyl alcohol containing dissolved potassium hydroxide, and then solid zinc chloride added and the mix stirred. 0r the zinc chloride may be first dissolved in alcohol, before being added to the alcoholic solution of caustic potash containing the oleoyl acetone. A precipitate of the zinc oleoyl acetone was thereby obtained, which was extracted with benzol and stripped to obtain the purified zinc oleoyl acetone as a brown liquid.
  • methyl naphthenoyl ketone was first prepared by passing a mixture of about one part of naphth'enic acids obtained from heavy residual naphthene base mineral oil and two parts of acetic acid through a catalyst bed of pumice containing deposited manganese oxide at a temperature of 400 F.
  • the condensate obtained stratified into an oil layer and an aqueous layer which were separated, and the oil layer shaken with caustic soda, washed with water and then extracted with ether.
  • the extract was stripped of the etherto obtain aluminumand tin salts were prepared by dissolving the naphthenoyl acetone in benzene and adding anhydrous aluminum chloride and stannic chloride respectively. Water wasadded, and the top layer formed upon stratification in each case was decanted and filtered through clay to remove suspended impurities; The clear filtrate was dehydrated by shaking with anhydrous potassium carbonate, and the benzene then stripped off to obtain the aluminum naphthenoyl acetone as a brown sticky residue, and the stannic naphthenoyl acetone also as a brown sticky residue;
  • beta-diketones of the saturated fatty acids such as acetyl acetone from acetic acid andpal- "mitoyl' acetone from palmitic acid, and certain metallic derivatives thereof, have heretofore been prepared.
  • the saturated fatty acids such as acetyl acetone from acetic acid andpal- "mitoyl' acetone from palmitic acid, and certain metallic derivatives thereof.
  • beta-diketones of higher unsaturated fatty acids such as oleic acid, and or naphthenic, acids such as obtained from petroleum, and their corresponding metallic derivatives, are novel products. These latter compounds are superior to the previously known products of this class for purposes of this invention in that they have greater solubility in mineral lubricating oil, and also possess greater efiectiveness in reducing engine wear when compounded in a motor oil. 1
  • the metallic diketones of this invention are dissolved in a mineral lubricating oil in a proportion of 0.1-5.0% by weight. Generally a. proportion of about 0.501.0% is preferred.
  • the compounded oil is found to be markedly improved with respect to engine wear when used as a crankcase lubricant for an internal combustion engine. This is illustrated by tests made on a single cylinder 0. F. R. engine operating with a jacket temperature of 80 F. for a period of hours with fully opened throttle. Before the test, the engine is taken down, the piston rings cleaned and weighed. After the test, the engine is again taken down, and the rings cleaned and weighed. The difference in weight is computed as mgs. of ring wear.
  • crankcase oil after the test is also analyzed for total iron in the oil, this giving an, indication of the combined wear of the piston, cylinder, piston rings and related parts.
  • unblended reference oil is first run, then a blended oil to be compared therewith is run, following which an un- Oil tested Ring wear Iron in oil Ma. Ma.
  • a lubricant comprising a mineral lubricating oil containing iii-5.0% by weight of zinc naphthenoyl acetone.
  • a lubricant comprising a mineral lubricating 011 containing 0.1-5.0% by weight of aluminum naphthenoyl acetone.
  • a lubricant comprising a mineral lubricating oil containing (LL-5.0% by weight of zinc oleoyl acetone.
  • a new product in accordance with claim 5 in which M is selected from the-group consisting of copper, zinc, aluminum, tin, calciumand cadmium, and in which R1 is naphthenyl.
  • M is selected from the group consisting of copper, zinc, aluminum, tin, calcium and cadmium, and in which the metallic beta-diketone is present in the proportion of (Ll-5.0% by weight.
  • a motor 011 comprising a mineral lubricating oil containing a small proportion of a polyvalent metal derivative of a beta-diketone containing a. hydrocarbon group derived from one of the class consisting of the higher unsaturated fatty acids and naphthenic acids.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

Patented Dec. 3, 1940 UNITED STATES LUBRIOATING on.
Charles C. Towne, Beacon, N. Y., assignor to The Texas Company, New York, N. Y., a corporation of Delaware No Drawing.
Application December 20, 1937,
Serial No. 180,830
11 Claims.
This invention relates to a lubricant, and more particularly to a lubricating oil of the character of a motor oil.
One of the principal objects of the invention is to provide an improved lubricating oil of this character which is effective to reduce normal engine wear.
Another object ofthis invention is to provide certainnovel compounds which are valuable as additives for lubricating oil for this purpose.
Other objects and advantages of the invention will be apparent from the following description and the accompanying claims:
In accordance with the present invention, a small proportion of a polyvalent metallic derivative of a beta-diketone is added to the lubricating oil to improve its lubricating qualities. The metallic beta-diketones of this invention have the following structural formula:
in which M is a polyvalent metal, R1 is an alkene or naphthene group containing six or more carbon 25 atoms, and R2 is an alkyl group. R1 is preferably oleyl or naphthenyl, or homologues thereof. R2 is generally methyl, but may be a higher homologue thereof such as ethyl, propyl, etc. M is preferably copper, zinc, aluminum, tin, calcium or cadmium. Wherever the above formula is used in the description and the claims, it is to be understood that this is set forth in the simplest form with M representing a 'monovalent metal satisfying the second valence of the oxygen atom attached to the carbon of one of the ketone groups; and that in the case of a polyvalent metal derivative, where the metal has a valence in excess of one, the additional valences of the metal are satisfied by linking to additional simi- 40 lar di-ketone groups through the oxygen attached to the carbon of each respective di-ketone group. Examples of metallic beta-diketones which have been found effective in accordance with the present invention include, aluminum naphthenoyl acetone, zinc naphthenoyl acetone, zinc oleoyl acetone and tin naphthenoyl acetone.
In order to definitely identify the above enumerated compounds, the method of manufacturing the same is described.
The zinc oleoyl acetone was prepared as follows: Methyl oleoyl ketone was first prepared by passing a mix of one part of oleic acid and two parts of acetic acid througha catalyst bed of pumice containing deposited manganese oxideat a temperature of 425 F. The reaction products were condensed and ether and caustic soda solution added. The ether layer containing the dissolved methyl oleoyl ketone was separated and stripped of the ether. This methyl oleoyl ketone was refluxed with commercial ethylacetate con- (Cl. 252-53) taining a small amount of ethyl alcohol in the presence of metallic sodium, and then poured into water and acidified with acetic acid. The top layer of ethylacetate containing the dissolved dike tone was separated, and the ethyl acetate evaporated to leave the oleoyl acetone as a residue. The zinc salt was prepared by dissolving the oleoyl acetone in ethyl alcohol containing dissolved potassium hydroxide, and then solid zinc chloride added and the mix stirred. 0r the zinc chloride may be first dissolved in alcohol, before being added to the alcoholic solution of caustic potash containing the oleoyl acetone. A precipitate of the zinc oleoyl acetone was thereby obtained, which was extracted with benzol and stripped to obtain the purified zinc oleoyl acetone as a brown liquid.
In the manufacture of the aluminum, zinc and tin naphthenoyl acetones, methyl naphthenoyl ketone was first prepared by passing a mixture of about one part of naphth'enic acids obtained from heavy residual naphthene base mineral oil and two parts of acetic acid through a catalyst bed of pumice containing deposited manganese oxide at a temperature of 400 F. The condensate obtained stratified into an oil layer and an aqueous layer which were separated, and the oil layer shaken with caustic soda, washed with water and then extracted with ether.
The extract was stripped of the etherto obtain aluminumand tin salts were prepared by dissolving the naphthenoyl acetone in benzene and adding anhydrous aluminum chloride and stannic chloride respectively. Water wasadded, and the top layer formed upon stratification in each case was decanted and filtered through clay to remove suspended impurities; The clear filtrate was dehydrated by shaking with anhydrous potassium carbonate, and the benzene then stripped off to obtain the aluminum naphthenoyl acetone as a brown sticky residue, and the stannic naphthenoyl acetone also as a brown sticky residue;
The beta-diketones of the saturated fatty acids, such as acetyl acetone from acetic acid andpal- "mitoyl' acetone from palmitic acid, and certain metallic derivatives thereof, have heretofore been prepared. However, so far as I am aware, the
beta-diketones of higher unsaturated fatty acids, such as oleic acid, and or naphthenic, acids such as obtained from petroleum, and their corresponding metallic derivatives, are novel products. These latter compounds are superior to the previously known products of this class for purposes of this invention in that they have greater solubility in mineral lubricating oil, and also possess greater efiectiveness in reducing engine wear when compounded in a motor oil. 1
The metallic diketones of this invention are dissolved in a mineral lubricating oil in a proportion of 0.1-5.0% by weight. Generally a. proportion of about 0.501.0% is preferred. The compounded oil is found to be markedly improved with respect to engine wear when used as a crankcase lubricant for an internal combustion engine. This is illustrated by tests made on a single cylinder 0. F. R. engine operating with a jacket temperature of 80 F. for a period of hours with fully opened throttle. Before the test, the engine is taken down, the piston rings cleaned and weighed. After the test, the engine is again taken down, and the rings cleaned and weighed. The difference in weight is computed as mgs. of ring wear. The crankcase oil after the test is also analyzed for total iron in the oil, this giving an, indication of the combined wear of the piston, cylinder, piston rings and related parts. In making this test the unblended reference oil is first run, then a blended oil to be compared therewith is run, following which an un- Oil tested Ring wear Iron in oil Ma. Ma.
Reference oil-furfural refined dewnxed Mid-Continent lubricating oil, 8. A. E.
20 (average of 5 runs) 191 303 Reference oil+l.07 zinc oleoyl acetone (average of 5 runsg 72 213 Reference oil (average of 3 runs) 151 Reference oil+l.0% zinc naphthenoylacetone (average of 3 runs) 95 Reference oil (avers e of 5 runs) 298 603 Reference oil+1.0 0 aluminum naphthenoyl acetone (average of 3 runs) 164 397 Second reference oil (average of 3 runs)... 193 520 Second reference oil+0.5% stannlc naphthenoyl acetone (average of 2 runs) 148 463 These results may be summarized as percentage better than the reference oil as follow Additive I Ring wear Iron in oil Percent Percent 1.0% zinc oleogl acetone 63 1.0% zinc nap thenoyl acetone 37 1.0% aluminum naylsuhthenoyl acetone. 45 p 51 0.5% stannic napht enoyl acetone 29A 7 While the above enumerated tests show somewhat erratic results, by taking an average of a number of runs for any particular reference oil or any particular blended oil, and by also alternating a run on a reference oil with a run on a blended oil, an accurate trend of the effectiveness of the additive in reducing engine wear is indicated. It is felt that this constitutes the most accurate practical test for showing engine wear yet developed; and the results clearly indicate a decided reduction in wear for the oil compounded with the metallic diketones of the present invention.
' ing oil containing a small proportion of a metallic beta-diketone having the formula 0M Ri- J=cn-oom in which M is a polyvalent metal, R1 is a hydrocarbon group selected from the class consisting of alkene derived from the higher unsaturated fatty acids, and naphthene derived from naphthenic acids, and R2 is an alkyl group.
2. A lubricant comprising a mineral lubricating oil containing iii-5.0% by weight of zinc naphthenoyl acetone.
3. A lubricant comprising a mineral lubricating 011 containing 0.1-5.0% by weight of aluminum naphthenoyl acetone.
4. A lubricant comprising a mineral lubricating oil containing (LL-5.0% by weight of zinc oleoyl acetone.
5. As a new product, a metallic beta-diketone having the formula OM Ri( J=CHC -I in which M is a polyvalent metal, R1 is a hydrocarbon group selected from theclass consisting of alkene derived from the higher unsaturated fatty acids, and naphthene derived from naphthenic acids, and R2 is an alkyl group.
6. A new product in accordance with claim 5 in which M is selected from the-group consisting of copper, zinc, aluminum, tin, calciumand cadmium, and in which R1 is naphthenyl.
7. The method of lubricating the bearings and cylinders of an internal combustion engine which comprises supplying to the bearings and cylin ders of said engine a mineral lubricating oil containing a small proportion of a. metallic betadiketone having the formula in =CH-COR: A in which M is apolyvalent metal, R1 is a hydrocarbon group selected from the class consisting of alkene derived from the higher unsaturated fatty acids, and naphthene derived from naphthenic acids, and R: is an alkyl group.
8. The method as defined in claim '7 in which M is selected from the group consisting of copper, zinc, aluminum, tin, calcium and cadmium, and in which the metallic beta-diketone is present in the proportion of (Ll-5.0% by weight.
9. A motor 011 comprising a mineral lubricating oil containing a small proportion of a polyvalent metal derivative of a beta-diketone containing a. hydrocarbon group derived from one of the class consisting of the higher unsaturated fatty acids and naphthenic acids.
10. A motor oil as defined in claim 9 in which the hydrocarbon group is naphthenyl.
11. A motor oil as defined in claim 9 in which the hydrocarbon group is oleyl.
US180830A 1937-12-20 1937-12-20 Lubricating oil Expired - Lifetime US2223932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US180830A US2223932A (en) 1937-12-20 1937-12-20 Lubricating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US180830A US2223932A (en) 1937-12-20 1937-12-20 Lubricating oil

Publications (1)

Publication Number Publication Date
US2223932A true US2223932A (en) 1940-12-03

Family

ID=22661903

Family Applications (1)

Application Number Title Priority Date Filing Date
US180830A Expired - Lifetime US2223932A (en) 1937-12-20 1937-12-20 Lubricating oil

Country Status (1)

Country Link
US (1) US2223932A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894805A (en) * 1949-12-06 1959-07-14 Louis B Werner Separation process for actinide elements and compounds thereof
US3030416A (en) * 1957-08-30 1962-04-17 Unilever Ltd Beta-diketones and preparation thereof
US3082071A (en) * 1958-12-30 1963-03-19 Gulf Research Development Co Metal chelates and fuel oil compositions containing same
US3412028A (en) * 1966-12-13 1968-11-19 Texaco Inc Synthetic ester base lubricating composition containing a copper or cobalt acetylacetonate
US3919275A (en) * 1970-05-28 1975-11-11 Us Agriculture Chelated beta dicarbonyl compounds
US4590299A (en) * 1981-08-20 1986-05-20 Pfizer Inc. 2-guanidino-4-heteroarylthiazoles
WO2009065785A2 (en) * 2007-11-21 2009-05-28 Nematel Gmbh & Co. Kg Lubricant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2894805A (en) * 1949-12-06 1959-07-14 Louis B Werner Separation process for actinide elements and compounds thereof
US3030416A (en) * 1957-08-30 1962-04-17 Unilever Ltd Beta-diketones and preparation thereof
US3082071A (en) * 1958-12-30 1963-03-19 Gulf Research Development Co Metal chelates and fuel oil compositions containing same
US3412028A (en) * 1966-12-13 1968-11-19 Texaco Inc Synthetic ester base lubricating composition containing a copper or cobalt acetylacetonate
US3919275A (en) * 1970-05-28 1975-11-11 Us Agriculture Chelated beta dicarbonyl compounds
US4590299A (en) * 1981-08-20 1986-05-20 Pfizer Inc. 2-guanidino-4-heteroarylthiazoles
WO2009065785A2 (en) * 2007-11-21 2009-05-28 Nematel Gmbh & Co. Kg Lubricant
WO2009065785A3 (en) * 2007-11-21 2009-11-12 Nematel Gmbh & Co. Kg Lubricant

Similar Documents

Publication Publication Date Title
US2813830A (en) Hydrocarbon oil compositions
US2265851A (en) Compounded lubricant
US2362289A (en) Lubricating compositions
DE1594355A1 (en) Alkaline lubricant washable with water
US2322376A (en) Lubricating oil
US2223932A (en) Lubricating oil
US2579037A (en) Lubricating composition
US2289795A (en) Lubricant
US2221162A (en) Lubricating oil
US2432095A (en) Lubricating composition
DE723649C (en) lubricant
US2292308A (en) Lubricating oil composition
US2363513A (en) Lubricating composition and the like
US2469003A (en) Lubricating oil compositions
US2374559A (en) Lubricating oil
US2676926A (en) Stabilizer for petroleum products
US2228671A (en) Compounded mineral oil
US2347547A (en) Lubricating oil composition
US2695273A (en) Lubricating oil compositions
US2366817A (en) Lubricating oil
US2342431A (en) Mineral oil lubricating composition and an improvement agent therefor and its method of preparation
US2440375A (en) Lubricating oil
US2320228A (en) Lubricant
US2356685A (en) Compounded oils
US2776260A (en) Lubricant compositions