US2223173A - Noninductive condenser - Google Patents

Noninductive condenser Download PDF

Info

Publication number
US2223173A
US2223173A US186786A US18678638A US2223173A US 2223173 A US2223173 A US 2223173A US 186786 A US186786 A US 186786A US 18678638 A US18678638 A US 18678638A US 2223173 A US2223173 A US 2223173A
Authority
US
United States
Prior art keywords
insulating
condenser
strips
strip
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US186786A
Inventor
Haase Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken AG
Original Assignee
Telefunken AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken AG filed Critical Telefunken AG
Application granted granted Critical
Publication of US2223173A publication Critical patent/US2223173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/26Folded capacitors

Definitions

  • This invention relates to a new and noninductive electrical condenser.
  • Another known method of constructing an electrical condenser consists of introducing thin leaves of conducting material in the folds of a ribbon made of insulating material having its folds open alternately on opposite sides, whereby the conducting leaves on one side of the folded insulator ribbon form one plate of the condenser and those on the other side of the insulator ribbon form the other plate.
  • This construction makes for very low inductance, but similar to the rolled type condenser, it has the disadvantage, that its construction is cumbersome inasmuch as a continuous strip of tinfoil can not be used and finally the individual tinfoil leaves must be soldered together, which fact practically excludes the use of metals such as aluminum which resist soldering or can only be soldered with difficulty.
  • a condenser constructed according to these principles has the advantage that it has practically no induction, assuring its successful application even in short wave circuits.
  • An additional advantage of this construction is the fact 10 that the material from which the condenser is built up can be employed in a continuous ribbon form without the necessity of cutting and aligning of the individual layers, as is, for instance, the case with mica condensers.
  • Fig. 1 is a section of a partial condenser of this invention
  • Fig. 2 is a detail of an insulating strip
  • Fig. 3 is a detail of a metal foil
  • Fig. 4 is an insulating strip and metal band placed one over the other;
  • Fig. 5 is a plan view of a complete condenser stack.
  • Fig. 1 illustrates on enlarged scale (actual thickness not being more than about 0.03 to 0.1 mm.) a cross section of the two folded ribbons from which a condenser is built up.
  • the first ribbon consisting of insulating bands i and 45 metal foil 2, is folded over in a zigzag fashion, crosswise over the band consisting of insulating bands I and metal foil 4.
  • Fig. 2 illustrates an example of the insulating strip i or 3, which. may be made of paper, as it would appear in unrolled and flattened out condition. At equal intervals openings 5 are punched in the paper strip in the shape of an elongated hexagon, so that only the edges indicated by the dotted line I are left solid.
  • Fig. 3 illustrates a metal foil such as 2 or 4 which can be made of rolled copper for example, as it would appear in unrolled and flattened out condition.
  • This metal foil also has hexagonal openings l0 punched in its body, which are much narrower, however, than the corresponding openings on the paper strip, so that after the folding of the metal foil, its edges protrude on both sides of the paper strip.
  • the square'formed by the two sides of the metal foil 2 and the two dotted lines ll again illustrate the electrically effective surface I of Fig. 2.
  • the folding of the metal foil is accomplished along the hinges likewise marked by dotted lines I 2.
  • additional guide holes I! are provided which Just fit over the pins passing through them during the construction.
  • the central opening ll punched in the metal foil between the hexagonal punchings III has somewhat larger diameter tact with the metal foil at any place.
  • Fig. 4 illustrates an insulator and a metal strip placed one over the other.
  • the reference numbers of this figure apply to the corresponding parts of Figs. 2 and 3.
  • Fig. 5 illustrates, with.
  • bands used in the construction of the condenser consist of separate individual strips of insulator and metal foils. It is possible, of course, to first manufacture the bands in any length consisting of a metal foil placed between two insulator foils and then proceed with theconstruction of the condensers from such bands. Naturally, a possi bility must be provided for the attaching of terminal clips. In the aforegoing example, openings were punched in the metal foil to make for small readily flexible hinges, but the same can be accomplished by simply perforating the metal foil at the corresponding bending places.
  • a noninductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a plurality of circular and hexagonal apertures, said circular aperturesbeing alternately arranged with respect to said hexagonal apertures, the circular apertures in said metallic strip being substantially larger than the circular apertures in said insulating strip, and the hexagonal apertures in said metallic strip being substantially smaller than the hexagonal apertures in said insulating I strip, the metallic strips of each group positioned within two of said insulating strips with the large circular aperture located on the same center line as the small circular aperture in said insulating strips, said groups being folded at the centers of 1 circular apertures to bind the folded groups 15 together.
  • a nonin'ductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a binrality of circular and hexagonal apertures, said circular apertures in said insulating strips being small with respect to the circular apertures in said metallic strips and the hexagonal apertures in said insulating strips being large with respect to the hexagonal apertures in said metallic strips, said large hexagonal apertures of each insulating strip being alternately arranged with respect to the small circular apertures, said large circular apertures of each metal strip being alternately arranged with respect to the small hexagonal apertures, the metallic strip of each group being positioned with its circular aperture centrally with the circular aperture in said insulating strips, each one of said groups being folded at the center position of said hexagonal aperture in the insulating, strips and arranged alternately in zig-zag fashion sothat one group is located at right angles to the other group, and clamping means passing through said circular apertures in thelnsulating strips for binding the two groups together.
  • a noninductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a plurality of circular apertures and approximately rectangular slots, the circular apertures in said insulating strips being small with respect to the circular apertures in said metallic strips and the rectangular slots in said insulating strips being large with respect to the rectangular slots in said metallic strips, said large rectangular slots of each insulating strip being alternately arranged with respect to the small circular apertures, said large circular apertures of each metal strip being alternately arranged with respect to the small rectangular slots, the metallic strip on each group being positioned with its circular aperture centrally with the circular aperture in said insulating strips, each one of said groups being folded at the center position of said rectangular slot in the insulating strips and arranged alternately in zig-zag fashion so that one group is located at right angles to the other group, and clamping means passing through the circular apertures in the insulating strips for binding the two groups together.

Description

NOV. 26, 1940. w HAASE 2,223,173
NONINDUCTIVE CONDENSER Filed Jan. 25, 1938 3 INVENTOR WALTER ASE BY ATTO R N EY Patented Nov. 26, 1946:
UNITED STATES PATENT OFFiCE 2,223,173 NONINDUCTIVE CONDENSER many Application January 25, 1938, Serial No. 186,786 In Germany January 25, 1937 3Claims.
This invention relates to a new and noninductive electrical condenser.
The prior art condensers used in the communication technique are almost exclusively of the 5 rolled type. j Such rolled type condensers have o rectangular pieces of tinfoil are piled alternately upon rectangular pieces of mica and are clamped or bolted together so tightly that practically no air can passbetween the layers. The construction of such condensers is somewhat cumbersome, so that this arrangement notwithstanding its otherwise good electrical properties, does not satisfy the requirements of a cheap and simple construction method imder preservation of the other electrical properties that a good condenser must possess.
Another known method of constructing an electrical condenser consists of introducing thin leaves of conducting material in the folds of a ribbon made of insulating material having its folds open alternately on opposite sides, whereby the conducting leaves on one side of the folded insulator ribbon form one plate of the condenser and those on the other side of the insulator ribbon form the other plate. This construction makes for very low inductance, but similar to the rolled type condenser, it has the disadvantage, that its construction is cumbersome inasmuch as a continuous strip of tinfoil can not be used and finally the individual tinfoil leaves must be soldered together, which fact practically excludes the use of metals such as aluminum which resist soldering or can only be soldered with difficulty.
The disadvantages of the aforedescribed condenser construction can be overcome on grounds of the invention under consideration by using strips of conducting material such as tinfoil or aluminum foil placed between two strips of insulating material and then folding two ribbons made up in this manner, crosswise, one over the other.
Before folding, a portion of the material is punched out at places where the ribbon is to be folded. This facilitates at the same time, the folding of the ribbon along the edges on each side. To further simplify the construction, it is desirable to punch further holes in the metal strip as well as in the insulating strip for the introduction of pins, which will facilitate the proper alignment of the layers as they are folded one over the other. After folding, the so-constructed condenser pack is pressed tight from both sides by a clamping arrangement or by a bolt and, if necessary, the ready pack can be subsequently impregnated.
A condenser constructed according to these principles has the advantage that it has practically no induction, assuring its successful application even in short wave circuits. An additional advantage of this construction is the fact 10 that the material from which the condenser is built up can be employed in a continuous ribbon form without the necessity of cutting and aligning of the individual layers, as is, for instance, the case with mica condensers. Nor is it neces- 15 sary to resort to soldering of the conducting plates together, so that metals that resist soldering or can only be soldered with difllculty, can be employed without trouble in the described condenser construction.
Should itbecome necessary to use insulating material which can not be made up in a ribbon form, as for instance is the case with mica, then under such circumstances it may sufllce to fold the two metal ribbons crosswise m a zigzag fash- 25 ion and place the insulating plates of suitable size between the metal surfaces.
The accompanying figures illustrate the construction method of a condenser consisting of the sum of two crosswise, one over the other, folded ribbons of three layers each-(one insulating layer, one metal layer, one insulating layer).
Fig. 1 is a section of a partial condenser of this invention;
Fig. 2 is a detail of an insulating strip;
Fig. 3 is a detail of a metal foil;
Fig. 4 is an insulating strip and metal band placed one over the other;
Fig. 5 is a plan view of a complete condenser stack.
Fig. 1 illustrates on enlarged scale (actual thickness not being more than about 0.03 to 0.1 mm.) a cross section of the two folded ribbons from which a condenser is built up. The first ribbon, consisting of insulating bands i and 45 metal foil 2, is folded over in a zigzag fashion, crosswise over the band consisting of insulating bands I and metal foil 4.
Fig. 2 illustrates an example of the insulating strip i or 3, which. may be made of paper, as it would appear in unrolled and flattened out condition. At equal intervals openings 5 are punched in the paper strip in the shape of an elongated hexagon, so that only the edges indicated by the dotted line I are left solid. The
paper strip is folded along these edges. Midway between the hexagonal openings are punched round holes I through which a pin can be introduced to facilitate the proper alignment of the layers during the folding process. After the condenser is completely folded, a bolt can be introduced through the central aperture, which by means of two side plates holds the foldings pressed tight together. The dotted square I shows the electrically effective surface of the tinfoil or metal between two insulating strips in the completed'condenser.
Fig. 3 illustrates a metal foil such as 2 or 4 which can be made of rolled copper for example, as it would appear in unrolled and flattened out condition. This metal foil also has hexagonal openings l0 punched in its body, which are much narrower, however, than the corresponding openings on the paper strip, so that after the folding of the metal foil, its edges protrude on both sides of the paper strip. The square'formed by the two sides of the metal foil 2 and the two dotted lines ll again illustrate the electrically effective surface I of Fig. 2. The folding of the metal foil is accomplished along the hinges likewise marked by dotted lines I 2. In order to assure a properly aligned folding of the two ribbons, additional guide holes I! are provided which Just fit over the pins passing through them during the construction. The central opening ll punched in the metal foil between the hexagonal punchings III, has somewhat larger diameter tact with the metal foil at any place. Finally,
Fig, 4 illustrates an insulator and a metal strip placed one over the other. The reference numbers of this figure apply to the corresponding parts of Figs. 2 and 3. Fig. 5 illustrates, with.
same reference numbers as apply to the previous figures, how the condenser is built up from alternately crosswise one over the other folded layers of the two bands.
In the herein illustrated example, the ,two
bands used in the construction of the condenser, consist of separate individual strips of insulator and metal foils. It is possible, of course, to first manufacture the bands in any length consisting of a metal foil placed between two insulator foils and then proceed with theconstruction of the condensers from such bands. Naturally, a possi bility must be provided for the attaching of terminal clips. In the aforegoing example, openings were punched in the metal foil to make for small readily flexible hinges, but the same can be accomplished by simply perforating the metal foil at the corresponding bending places.
What is claimed is:
l. A noninductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a plurality of circular and hexagonal apertures, said circular aperturesbeing alternately arranged with respect to said hexagonal apertures, the circular apertures in said metallic strip being substantially larger than the circular apertures in said insulating strip, and the hexagonal apertures in said metallic strip being substantially smaller than the hexagonal apertures in said insulating I strip, the metallic strips of each group positioned within two of said insulating strips with the large circular aperture located on the same center line as the small circular aperture in said insulating strips, said groups being folded at the centers of 1 circular apertures to bind the folded groups 15 together.
2. A nonin'ductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a binrality of circular and hexagonal apertures, said circular apertures in said insulating strips being small with respect to the circular apertures in said metallic strips and the hexagonal apertures in said insulating strips being large with respect to the hexagonal apertures in said metallic strips, said large hexagonal apertures of each insulating strip being alternately arranged with respect to the small circular apertures, said large circular apertures of each metal strip being alternately arranged with respect to the small hexagonal apertures, the metallic strip of each group being positioned with its circular aperture centrally with the circular aperture in said insulating strips, each one of said groups being folded at the center position of said hexagonal aperture in the insulating, strips and arranged alternately in zig-zag fashion sothat one group is located at right angles to the other group, and clamping means passing through said circular apertures in thelnsulating strips for binding the two groups together.
3. A noninductive electrical condenser comprising two groups of two insulating strips with a metallic strip interposed therebetween, said insulating and metallic strips each having a plurality of circular apertures and approximately rectangular slots, the circular apertures in said insulating strips being small with respect to the circular apertures in said metallic strips and the rectangular slots in said insulating strips being large with respect to the rectangular slots in said metallic strips, said large rectangular slots of each insulating strip being alternately arranged with respect to the small circular apertures, said large circular apertures of each metal strip being alternately arranged with respect to the small rectangular slots, the metallic strip on each group being positioned with its circular aperture centrally with the circular aperture in said insulating strips, each one of said groups being folded at the center position of said rectangular slot in the insulating strips and arranged alternately in zig-zag fashion so that one group is located at right angles to the other group, and clamping means passing through the circular apertures in the insulating strips for binding the two groups together.
WALTER HAASE.
US186786A 1937-01-25 1938-01-25 Noninductive condenser Expired - Lifetime US2223173A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2223173X 1937-01-25

Publications (1)

Publication Number Publication Date
US2223173A true US2223173A (en) 1940-11-26

Family

ID=7990958

Family Applications (1)

Application Number Title Priority Date Filing Date
US186786A Expired - Lifetime US2223173A (en) 1937-01-25 1938-01-25 Noninductive condenser

Country Status (1)

Country Link
US (1) US2223173A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512874A (en) * 1944-07-06 1950-06-27 Julian L Reynolds Coated electrical condenser
US2580399A (en) * 1948-06-15 1952-01-01 Joseph B Brennan Electrode and electrolytic condenser
US2755418A (en) * 1951-10-05 1956-07-17 Joseph B Brennan Electrode and electrolytic condenser
US3098955A (en) * 1959-07-31 1963-07-23 Benjamin L Davis Tape capacitor
US20160035489A1 (en) * 2014-08-04 2016-02-04 Point Engineering Co., Ltd. Multi-layered aluminum oxide capacitor
US20160049251A1 (en) * 2014-08-18 2016-02-18 Point Engineering Co., Ltd. Folding type capacitor comprising through hole

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2512874A (en) * 1944-07-06 1950-06-27 Julian L Reynolds Coated electrical condenser
US2580399A (en) * 1948-06-15 1952-01-01 Joseph B Brennan Electrode and electrolytic condenser
US2755418A (en) * 1951-10-05 1956-07-17 Joseph B Brennan Electrode and electrolytic condenser
US3098955A (en) * 1959-07-31 1963-07-23 Benjamin L Davis Tape capacitor
US20160035489A1 (en) * 2014-08-04 2016-02-04 Point Engineering Co., Ltd. Multi-layered aluminum oxide capacitor
US10163567B2 (en) * 2014-08-04 2018-12-25 Point Engineering Co., Ltd. Multi-layered aluminum oxide capacitor
US20160049251A1 (en) * 2014-08-18 2016-02-18 Point Engineering Co., Ltd. Folding type capacitor comprising through hole
CN105374556A (en) * 2014-08-18 2016-03-02 普因特工程有限公司 Folding type capacitor comprising through hole
US9773617B2 (en) * 2014-08-18 2017-09-26 Point Engineering Co., Ltd. Folding type capacitor comprising through hole
CN105374556B (en) * 2014-08-18 2019-01-04 普因特工程有限公司 Folded form capacitor including through-hole

Similar Documents

Publication Publication Date Title
US3239916A (en) Ribbon cable
DE19927948B4 (en) Chip thermistors and methods of making the same
US4633369A (en) Power factor correction capacitor
DE19953162B4 (en) Method of making thermistor chips
ES541880A0 (en) IMPROVEMENTS IN AN ELECTRIC CONDENSER
DE2843581C2 (en) Electric film capacitor and process for its manufacture
DE2502214C2 (en) Method of manufacturing laminated busbars
US2223173A (en) Noninductive condenser
US1926842A (en) Method of making electrical condensers
DE3912697A1 (en) NOISE PROTECTION FILTER
DE4420060C2 (en) Stripline filter
US2666254A (en) Method of manufacturing electrical windings
US2535674A (en) Die for cutting electrical units
JPH0669040A (en) Laminated chip inductor and its manufacture
US2622054A (en) Method of making an electrical unit
US2839816A (en) Method of making stacked type capacitors
DE2746591C2 (en) Electric capacitor
US1650395A (en) Fixed capacity condenser and method for making the same
US2522713A (en) Small mica assembly
EP0187921B2 (en) Electrical capacitor
US2878433A (en) Units for suppression of electrical interference
US2765517A (en) Method of making stacked type capacitors from metallized dielectric
US2736677A (en) Metallized insulators
WO2001046973A1 (en) Method for production of a regular multi-layer construction, in particular for electrical double layer capacitors and the corresponding device
US4101361A (en) Method of manufacturing laminated buses