US2218110A - Spraying nozzle - Google Patents

Spraying nozzle Download PDF

Info

Publication number
US2218110A
US2218110A US196010A US19601038A US2218110A US 2218110 A US2218110 A US 2218110A US 196010 A US196010 A US 196010A US 19601038 A US19601038 A US 19601038A US 2218110 A US2218110 A US 2218110A
Authority
US
United States
Prior art keywords
nozzle
chamber
fluid
spin
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US196010A
Inventor
Harrison W Hosmer
Stafford Earl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arthur D Little Inc
Original Assignee
Arthur D Little Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arthur D Little Inc filed Critical Arthur D Little Inc
Priority to US196010A priority Critical patent/US2218110A/en
Application granted granted Critical
Publication of US2218110A publication Critical patent/US2218110A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3405Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl
    • B05B1/341Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet
    • B05B1/3421Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber
    • B05B1/3426Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to produce swirl before discharging the liquid or other fluent material, e.g. in a swirl chamber upstream the spray outlet with channels emerging substantially tangentially in the swirl chamber the channels emerging in the swirl chamber perpendicularly to the outlet axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/65Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
    • B05B15/658Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits the spraying apparatus or its outlet axis being perpendicular to the flow conduit

Definitions

  • This invention relates to an improved nozzle foruse in the spraying and dispersing of liquids.
  • the nozzle of this invention is of the spin or whirl chamber type wherein the spin or rotative 5 motion of the fluid in the chamber before entering the discharge orifice is eflected by tangential entry of the fluid into the spin chamber.
  • Objects and advantages of this invention include a more effective utilization of the energy of the fluid due to the pressure at which it is supplied to the nozzle, and the simplification of design, installation, maintenance and use, in comparison with nozzles now available.
  • the spin is ordinarily imparted in one or the other of two ways.
  • One way is by the use of spiral vanes within the nozzle in the path of the fluid; these vanes are essentially coaxial (with the spin 7 chamber and the discharge'port, and serve .to impart spin to the fluid.
  • The'other way is by the conduction of the fluid through a side entry port in a tangential direction with respect to the axis of the spin chamber of the nozzle, thereby imparting spin or rotative motion to the fluid in the spinzchambe'r.
  • the present invention constitutes an improvement upon nozzles of the latter, or tangential-entry, class.
  • Nozzles of this latter class are further subdivided into two types, as to their general design with respect tothe fluid passages leading to the spin chamber from the supply chamber,- which may be a reservoir, supply pipe, or other means for conducting fluid to the nozzle as- I sembly.
  • the direction of flow of the fluid entering the nozzle assembly is substantially parallel to and usually coincident with the axis .of the w spin chamber and the body of the spray;
  • This type of nozzle is more commonly used where only a single nozzle is mounted on the supply pipe and where the coaxial position of so the supply pipe, nozzle body, and spray oiler structural and design advantages, as for instance in oil burners and spray dryers in which it is desirable to supply an air stream annularly and symmetrically to the mass of spray.
  • the initial flow in the connection to the supply pipe is in the same general direction as in the tangential entry port itself.
  • This type is frequently'called non-clogging on account of the more direct and larger 10 passages leading to the tangential ports of the spin chamber.v As a rule, this passage is of much greater length and cross sectional area than that of the entry port to the spin chamber,
  • Nozzles of this type are frequently used in multiple in spray chamber or "spray pond installations in which-a number of of the fluid must be changed substantially.
  • nozzles are mounted on a single supply pipe, or go manifold,'the direct connection being either to the side outlet of-Ts or to threaded nipples welded to the supply pipe at intervals.
  • the direction of flow 26 Nozzles made in accordance with the present invention do not employ the vanes, side fittings, or complex internal passages which are characteristic of the spin' chamber nozzles now commonly used.
  • the fluid moves directly from the so supply chamber into the spin chamber through tangential openings in the body of the nozzle, and the spin of he fluid is imparted by the combined efiects of e motion or energy of the fluid and the location of the openings with respect to 35 the spin chamber.
  • Figure 1 represents a side view of one form of the complete nozzle, in operating position
  • Figure 2 represents an end view of the cap portion of the nozzle of Figure 1;
  • Figure 3 represents a sectional view of the cap portion of the nozzle of Figure 1 in the plane of the axis of the nozzle;
  • Figure 4 represents a sectional view of the tip portion of the nozzle of Figure 1, in the plane of the axis of the nozzle;
  • Figure 5 represents an end view of the tip portion of the nozzle of Figure 1;
  • Figure 6 represents a sectional view of a modifled form of the nozzle, in the plane of the axis of the nozzle.
  • I represents the cap portion of the nozzle and II the tip portion.
  • the cap I0 is threaded over a portion of its outer surface, as shown at H, and this thread- L ed portion of cap l0 screws into the tip II which is correspondingly threaded on its interior sur-
  • the threaded portion ll of cap I0 is preferably of lesser diameter than the rest of the cap, thus providing a shoulder l adapted to abut firmly against the end surface 2
  • cap 10 is provided in the unthreaded portion of cap 10; these ports extend from the exterior of cap' III to the interior surface l3, and their axes are substantially tangential to the interior surface ll which surface is of cylindrical shape, and defines the upper portion of the spin chamber. Both the interior surface If and the exterior surface ll of tip I I are threaded. The threadings of the interior surface It are adapted to receive the threaded portion of the cap III; while the outer surface I! is threaded in order that the assembled nozzle may be screwed into and through the walls of the supply chamber. As shown in Figure 1, one wall of the supply chamber is indicated by the numeral 23, and the fluid in the supply chamber is represented by the numeral 24.
  • the tip H is provided at its bottom end with a restricted circular orifice l8, which is coaxial with the spin chamber.
  • the approaches to the orifice may be tapered as indicated at I! and 22.
  • the angle of taper is conveniently about 120, although this is not critical.
  • the edges of the bottom are conveniently hexagonal or square, to facilitate screwing the nozzle into its position in the wall of the supply chamber.
  • the nozzle is first assembled by screwing the cap l0 tightly into the tip I l. The nozzle is then screwed firmly into an opening through a wall 23 of the supply chamber, which opening is of course threaded to fit the threads on surface H. The nozzle should be screwed in far enough so that the port or ports It will be entirely within .the inner surface 28 of the wall of the supply chamber. How much further the nozzleis screwed in (up to the point where the base contacts the outer surface 21 of the wall 23) is not important, so long as there is no leakage of 1 fluid past the threads, except that the nozzle should not be screwed in so far as to impede fiow or circulation of fluid 24. For example, when the fluid 24 is fiowing through a pipe of relatively small diameter, the presence of a number of nozzles projecting their maximum distance into the pipe would tend to impede the flow of the fluid.
  • the nozzle may be readily removed for clean- .ing, replacement, or .repair by merely unscrewing it, preferably after first removing the fiuid, or at least the pressure, from the supply chamber.
  • the fluid 24 After the nozzle is placed in position as above described, the fluid 24, under sufficient pressure to cause it tofiow outwardly from the supply chamber through any orifice therein, passes into the tangential port or ports i2, thereby establishing a whirling motion within the spin chamber, which chamber is defined essentially by the interior walls It and IS.
  • the fluid moves outwardly toward and through orifice l8, and emerges therefrom as a hollow conical sheet which quickly breaks up into droplets of spray.
  • the number of nozzles used forany installation depends of course upon such matters as vol- 'ume of spray desired, size of nozzle, capacity of the equipment, etc. If it is desired to provide a means for spraying a considerable quantity of fiuid over a given surface or object, for example, it may be convenient to arrange pipes running from a suitable supply and pressure source containing the fiuid, and providing each pipe with a sufiicient number of nozzles for the purposes and conditions involved.
  • the nozzles may be posi-,
  • the nozzle of this invention has been shown and described as being made in two parts,--the cap [0 and the tip II, as that appears to be the most convenient configuration in which to make it. It would of course be possible to make the nozzle in more parts, or in only one piece, to give functionally the same final form. However, there appears to be no particular advantage, and considerabledifilculty or at least extra effort, in such other ways; and inasmuch as the nozzle of this invention is designed for simplicity, one of the simplest forms of it has been described herein.
  • the tip H may be made with enlarged internal diameter for the threaded portion, whereby the bottom of cap in abuts the shoulder of the unthreaded interior portion of tip H. In this way, a spin chamber of the same diameter throughout its length can be provided.
  • cap portion H0 may be made to include the entire nozzle except for a tip III which includes merely the orifice Ill and the bottom end of the spin chamber; which tip would be screwed or otherwise placed into position in the bottom of the cap.
  • the outer portion I20 of the base should preferably also be part of the cap, so that the two would cooperate when the nozzle is inserted into or removed from the wall of the supply chamber.
  • the unthreaded part of the capportion being of greater diameter than the threadedpart thereof but of lesser diameter than the extericrly threaded part of the tip portion
  • said nozzle being adapted to screw into a threaded opening in the wall of said supply chamber by means of the exterior threads on the tip portion, the positioned nozzle extending into the supply chamber a distance less than the diameter of the cap portion, the joined cap and tip portions defining a spin chamber, said chamber having inlet ports in the unthreacled part of the cap portion, said ports being tangentially disposed to the axis of said spin chamber and positioned to provide straight-line communication from the supply chamber to the spin chamher and to impart spin to the fluid being sprayed, and an outlet spray-orifice positioned coaxialiy with said spin chamber and in the tip portion at the end opposite the cap portion, said inlet ports having an aggregate cross-sectional area not appreciably in excess of that of the outlet orific
  • -said nozzle being capable of forming a spray by

Description

H. W. HOSMER ET AL SPRAYING NOZZLE Filed March 15, 1938 Patented-Oct. 15,1940
spasms NOZZLE Harrison W. Bosmer, Stoncham, and Earl Staiford, North Arthur D. Little, Inc
Mass, assignors to orporated, Cambridge,
Mass a corporation of Massachusetts Application March 15, 1938, sci-n1 No. 196,01ii 1 Claim. (01. 299-114) This invention relates to an improved nozzle foruse in the spraying and dispersing of liquids. The nozzle of this invention is of the spin or whirl chamber type wherein the spin or rotative 5 motion of the fluid in the chamber before entering the discharge orifice is eflected by tangential entry of the fluid into the spin chamber.
Objects and advantages of this invention include a more effective utilization of the energy of the fluid due to the pressure at which it is supplied to the nozzle, and the simplification of design, installation, maintenance and use, in comparison with nozzles now available. In conventional nozzles of the spin chamberclass, the spin is ordinarily imparted in one or the other of two ways. One way is by the use of spiral vanes within the nozzle in the path of the fluid; these vanes are essentially coaxial (with the spin 7 chamber and the discharge'port, and serve .to impart spin to the fluid. The'other way is by the conduction of the fluid through a side entry port in a tangential direction with respect to the axis of the spin chamber of the nozzle, thereby imparting spin or rotative motion to the fluid in the spinzchambe'r. The present invention constitutes an improvement upon nozzles of the latter, or tangential-entry, class.
Nozzles of this latter class are further subdivided into two types, as to their general design with respect tothe fluid passages leading to the spin chamber from the supply chamber,- which may be a reservoir, supply pipe, or other means for conducting fluid to the nozzle as- I sembly.
Inone of these two types, which is illustrated in United States Patent No. 1,361,238 01. R. S.
Fleming, the direction of flow of the fluid entering the nozzle assembly is substantially parallel to and usually coincident with the axis .of the w spin chamber and the body of the spray; In
order to secure a tangential entry into the spin chamber portion of the nozzle, therefore, the direction of fluid must be changed by passages :within the nozzle, through at least 90 or thereabouts. This results in passages which are par- J ticularly susceptible to clogging, and also generally requires complete disassembly of the nozzle for cleaning. For practical purposes, nozzles of this type must be made in at least two pieces, and usually require complete machining of all portions coming in-contact with the fluid.
. This type of nozzle is more commonly used where only a single nozzle is mounted on the supply pipe and where the coaxial position of so the supply pipe, nozzle body, and spray oiler structural and design advantages, as for instance in oil burners and spray dryers in which it is desirable to supply an air stream annularly and symmetrically to the mass of spray.
In the othertype, sometimes referred to as 5 the side entrance type, the initial flow in the connection to the supply pipe is in the same general direction as in the tangential entry port itself. This type is frequently'called non-clogging on account of the more direct and larger 10 passages leading to the tangential ports of the spin chamber.v As a rule, this passage is of much greater length and cross sectional area than that of the entry port to the spin chamber,
to provide physical strength and a suflicient 15 thread length for the usual pipe thread method -of attachment. Nozzles of this type are frequently used in multiple in spray chamber or "spray pond installations in which-a number of of the fluid must be changed substantially.
nozzles are mounted on a single supply pipe, or go manifold,'the direct connection being either to the side outlet of-Ts or to threaded nipples welded to the supply pipe at intervals. In either case it will be noted that the direction of flow 26 Nozzles made in accordance with the present invention do not employ the vanes, side fittings, or complex internal passages which are characteristic of the spin' chamber nozzles now commonly used. The fluid moves directly from the so supply chamber into the spin chamber through tangential openings in the body of the nozzle, and the spin of he fluid is imparted by the combined efiects of e motion or energy of the fluid and the location of the openings with respect to 35 the spin chamber. These improved nozzles. arev therefore simple in design and easily constructed, as will be further pointed out hereinafter. They. also result in a saving of space, and may be readily installed and removed. They arealso particularly advantageous in that they reduce toa minimum the friction losses in spraying. In conventional spin-chamber nozzles wherein spin is imparted by tangential entry of the fluid into .the spin chamber, the fluid has its direction changed in passing from the supply chamber into the spin chamber, since it must, in so passing, move through side fittings or through internal passages within the nozzle body. The
present invention, by elimination of side fittings drawing,
Figure 1 represents a side view of one form of the complete nozzle, in operating position;
Figure 2 represents an end view of the cap portion of the nozzle of Figure 1;
Figure 3 represents a sectional view of the cap portion of the nozzle of Figure 1 in the plane of the axis of the nozzle;
Figure 4 represents a sectional view of the tip portion of the nozzle of Figure 1, in the plane of the axis of the nozzle;
Figure 5 represents an end view of the tip portion of the nozzle of Figure 1; and
Figure 6 represents a sectional view of a modifled form of the nozzle, in the plane of the axis of the nozzle.
Like figures refer to like parts throughout the drawing.
Referring now to the drawing, and more particularly to Figures 1 to 5 inclusive, I represents the cap portion of the nozzle and II the tip portion. The cap I0 is threaded over a portion of its outer surface, as shown at H, and this thread- L ed portion of cap l0 screws into the tip II which is correspondingly threaded on its interior sur- The threaded portion ll of cap I0 is preferably of lesser diameter than the rest of the cap, thus providing a shoulder l adapted to abut firmly against the end surface 2| of tip II when the cap and the tip are tightly screwed together. One or more tangential holes or entrance ports I! are provided in the unthreaded portion of cap 10; these ports extend from the exterior of cap' III to the interior surface l3, and their axes are substantially tangential to the interior surface ll which surface is of cylindrical shape, and defines the upper portion of the spin chamber. Both the interior surface If and the exterior surface ll of tip I I are threaded. The threadings of the interior surface It are adapted to receive the threaded portion of the cap III; while the outer surface I! is threaded in order that the assembled nozzle may be screwed into and through the walls of the supply chamber. As shown in Figure 1, one wall of the supply chamber is indicated by the numeral 23, and the fluid in the supply chamber is represented by the numeral 24. The tip H is provided at its bottom end with a restricted circular orifice l8, which is coaxial with the spin chamber. The approaches to the orifice may be tapered as indicated at I! and 22. The angle of taper is conveniently about 120, although this is not critical. The edges of the bottom are conveniently hexagonal or square, to facilitate screwing the nozzle into its position in the wall of the supply chamber. I
. For installation, the nozzle is first assembled by screwing the cap l0 tightly into the tip I l. The nozzle is then screwed firmly into an opening through a wall 23 of the supply chamber, which opening is of course threaded to fit the threads on surface H. The nozzle should be screwed in far enough so that the port or ports It will be entirely within .the inner surface 28 of the wall of the supply chamber. How much further the nozzleis screwed in (up to the point where the base contacts the outer surface 21 of the wall 23) is not important, so long as there is no leakage of 1 fluid past the threads, except that the nozzle should not be screwed in so far as to impede fiow or circulation of fluid 24. For example, when the fluid 24 is fiowing through a pipe of relatively small diameter, the presence of a number of nozzles projecting their maximum distance into the pipe would tend to impede the flow of the fluid.
The nozzle may be readily removed for clean- .ing, replacement, or .repair by merely unscrewing it, preferably after first removing the fiuid, or at least the pressure, from the supply chamber.
After the nozzle is placed in position as above described, the fluid 24, under sufficient pressure to cause it tofiow outwardly from the supply chamber through any orifice therein, passes into the tangential port or ports i2, thereby establishing a whirling motion within the spin chamber, which chamber is defined essentially by the interior walls It and IS. The fluid moves outwardly toward and through orifice l8, and emerges therefrom as a hollow conical sheet which quickly breaks up into droplets of spray.
The number of nozzles used forany installation depends of course upon such matters as vol- 'ume of spray desired, size of nozzle, capacity of the equipment, etc. If it is desired to provide a means for spraying a considerable quantity of fiuid over a given surface or object, for example, it may be convenient to arrange pipes running from a suitable supply and pressure source containing the fiuid, and providing each pipe with a sufiicient number of nozzles for the purposes and conditions involved. The nozzles may be posi-,
tioned to spray downwardly, upwardly, or at any suitable angle between.
The nozzle of this invention has been shown and described as being made in two parts,--the cap [0 and the tip II, as that appears to be the most convenient configuration in which to make it. It would of course be possible to make the nozzle in more parts, or in only one piece, to give functionally the same final form. However, there appears to be no particular advantage, and considerabledifilculty or at least extra effort, in such other ways; and inasmuch as the nozzle of this invention is designed for simplicity, one of the simplest forms of it has been described herein. Minor modifications may readily be made,--for example, instead of forming cap ill with a top portion of enlarged diameter, whereby shoulder l5 abuts edge 2| of tip II when the parts-are screwed together, the tip H may be made with enlarged internal diameter for the threaded portion, whereby the bottom of cap in abuts the shoulder of the unthreaded interior portion of tip H. In this way, a spin chamber of the same diameter throughout its length can be provided.
Another alternative form is shown in Figure 6, wherein the numbering is essentially the same as in Figures 1 to 5 except that each number is preceded by the numeral 1. In this form, the, cap portion H0 may be made to include the entire nozzle except for a tip III which includes merely the orifice Ill and the bottom end of the spin chamber; which tip would be screwed or otherwise placed into position in the bottom of the cap. Inasmuch as the threaded portion of surface Ill would then be part of the cap, the outer portion I20 of the base should preferably also be part of the cap, so that the two would cooperate when the nozzle is inserted into or removed from the wall of the supply chamber.
While the foregoing disclosure sets forth in de- 7:
threaded exteriorly throughout a part of its length and screwing into the tip portion, the unthreaded part of the capportion being of greater diameter than the threadedpart thereof but of lesser diameter than the extericrly threaded part of the tip portion, said nozzle being adapted to screw into a threaded opening in the wall of said supply chamber by means of the exterior threads on the tip portion, the positioned nozzle extending into the supply chamber a distance less than the diameter of the cap portion, the joined cap and tip portions defining a spin chamber, said chamber having inlet ports in the unthreacled part of the cap portion, said ports being tangentially disposed to the axis of said spin chamber and positioned to provide straight-line communication from the supply chamber to the spin chamher and to impart spin to the fluid being sprayed, and an outlet spray-orifice positioned coaxialiy with said spin chamber and in the tip portion at the end opposite the cap portion, said inlet ports having an aggregate cross-sectional area not appreciably in excess of that of the outlet orifice.
-said nozzle being capable of forming a spray by,
virtue of the fluid pressure in .the supply chamber; said wall of the supply chamber extending outwardly for a considerable distance away from the line of contact with the nozzle and thus per- 1 mitting unimpeded flow of'the fluid in substantially a straight line, from points relatively remote'in the body of said fluid in'said supply chamber, through each inlet port into said spin chamber.
HARRISON W. HOSMER. EARL STAFFORD.
US196010A 1938-03-15 1938-03-15 Spraying nozzle Expired - Lifetime US2218110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US196010A US2218110A (en) 1938-03-15 1938-03-15 Spraying nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US196010A US2218110A (en) 1938-03-15 1938-03-15 Spraying nozzle

Publications (1)

Publication Number Publication Date
US2218110A true US2218110A (en) 1940-10-15

Family

ID=22723757

Family Applications (1)

Application Number Title Priority Date Filing Date
US196010A Expired - Lifetime US2218110A (en) 1938-03-15 1938-03-15 Spraying nozzle

Country Status (1)

Country Link
US (1) US2218110A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2644720A (en) * 1949-12-16 1953-07-07 Clifford H Carr Insert nozzle
US2752201A (en) * 1949-09-21 1956-06-26 Blass Ludwig Method of and means for the irrigation of land
US2999648A (en) * 1959-08-10 1961-09-12 Spraying Systems Co Side inlet conical spray nozzle
US3013728A (en) * 1959-01-19 1961-12-19 Charles B Banovac Agricultural spraying apparatus
US3304013A (en) * 1963-05-01 1967-02-14 Spraying Systems Co Spray nozzles
US3532271A (en) * 1967-02-23 1970-10-06 Frederick F Polnauer Spray nozzles with spiral flow fluid
US3887137A (en) * 1973-04-13 1975-06-03 Lion Fat Oil Co Ltd Centrifugal pressure nozzle
US4173308A (en) * 1978-04-24 1979-11-06 Loucas Savvides Sprinklers
US4248296A (en) * 1979-08-07 1981-02-03 Resources Conservation Company Fluid distributor for condenser tubes
US4625780A (en) * 1983-03-22 1986-12-02 Burnham Craig C Vortex connector
US5881494A (en) * 1997-06-05 1999-03-16 Jenkins; Donnell Theron Integrated pest control system
US20110248095A1 (en) * 2006-06-21 2011-10-13 Clyde Bergemann, Inc. Variable orifice black liquor nozzle method and apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2752201A (en) * 1949-09-21 1956-06-26 Blass Ludwig Method of and means for the irrigation of land
US2644720A (en) * 1949-12-16 1953-07-07 Clifford H Carr Insert nozzle
US3013728A (en) * 1959-01-19 1961-12-19 Charles B Banovac Agricultural spraying apparatus
US2999648A (en) * 1959-08-10 1961-09-12 Spraying Systems Co Side inlet conical spray nozzle
US3304013A (en) * 1963-05-01 1967-02-14 Spraying Systems Co Spray nozzles
US3532271A (en) * 1967-02-23 1970-10-06 Frederick F Polnauer Spray nozzles with spiral flow fluid
US3887137A (en) * 1973-04-13 1975-06-03 Lion Fat Oil Co Ltd Centrifugal pressure nozzle
US4173308A (en) * 1978-04-24 1979-11-06 Loucas Savvides Sprinklers
US4248296A (en) * 1979-08-07 1981-02-03 Resources Conservation Company Fluid distributor for condenser tubes
US4625780A (en) * 1983-03-22 1986-12-02 Burnham Craig C Vortex connector
US5881494A (en) * 1997-06-05 1999-03-16 Jenkins; Donnell Theron Integrated pest control system
US20110248095A1 (en) * 2006-06-21 2011-10-13 Clyde Bergemann, Inc. Variable orifice black liquor nozzle method and apparatus

Similar Documents

Publication Publication Date Title
US2218110A (en) Spraying nozzle
US2701164A (en) Duplex fuel nozzle
US2321428A (en) Nozzle
KR101581391B1 (en) Venturi structure shower nozzle
US2373707A (en) Atomizer
US2396449A (en) Spray nozzle
US2242680A (en) Nozzle
US2569081A (en) Spray nozzle
US1439320A (en) Nebulizer of liquids
CN213435112U (en) Fine atomizing nozzle
US2315172A (en) Means of atomizing liquids
US1904509A (en) Nebulizer of liquids
US2868587A (en) Comminuting nozzle
US2358177A (en) Spray nozzle
US1390047A (en) Spraying-nozzle
US2335935A (en) Humidifier head
US1842043A (en) Siphon pump
CN110369169B (en) Atomizing nozzle and atomizing device
US3259322A (en) Aspirating swirl type nozzle
CN107214003A (en) Energy-saving water tap nozzle
CN207308136U (en) Save-water faucet nozzle
US2499084A (en) Spray nozzle
US2271722A (en) Fertilizer distributor
US2566532A (en) Combustion spray nozzle
US1901415A (en) Atomizer