US2218058A - Electrically insulating coating - Google Patents

Electrically insulating coating Download PDF

Info

Publication number
US2218058A
US2218058A US167863A US16786337A US2218058A US 2218058 A US2218058 A US 2218058A US 167863 A US167863 A US 167863A US 16786337 A US16786337 A US 16786337A US 2218058 A US2218058 A US 2218058A
Authority
US
United States
Prior art keywords
parts
weight
electrically insulating
phosphoric acid
aluminum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US167863A
Inventor
Stalhane Bertil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US2218058A publication Critical patent/US2218058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials

Definitions

  • Insulating media hitherto used such as mica in combination with organic binders (shellac, compound, etc.) asbestos or doughy masses prepared with, e. g., water-glass as a binding medium, lose to a large extent their insulating power on heating, and do not therefore offer a suflicient guarantee against electric conduction. This is especially true, if the overheating is local, e. g., when the melt breaks through the furnace wall or the like.
  • Enamels are not suitable, because they must be heated to 300 or 400 C. before application, in which case, however, the copper or the like is damaged. Further, they are not fire-proof, but
  • the present invention has been based on extensive reseaches and has for its object to eliminate the above-mentioned drawbacks, and con-- sists substantially in that the metallic surface is coated with a mass in the form of a paste or dough which, besides fillers, such as quartz or porcelain, contains, on the one hand, components rich in hydrates of aluminum oxide such as- J tradistinction to other methods a ceramic coating is thus produced on the metal in a simple manner by burning at a low temperature; the method'may therefore be used advantageously for coating, e. g., copper.
  • Aluminum phosphate being in itself fire-proof and electrically insulating, it is possible by a suitable choice of the other components of the mass to produce a coating which will keep its insulating properties also on heating to a high temperature.
  • the mass in adhering to the basic principle of the invention a great number of tests have been made for the purpose ofobtaining the most favorable results in the application of the method. It is desired, inter alia, that the mass (paste or dough) should have such a consistency that it 5 may be applied without difficulty on the metallic surface, that the massshould dry without the active constituents difiusing to the surface (effiorescing), that the mass should be set or fixed at the lowest possible temperature, and that the mass, after fixing, should be free from cracks and display great compactness and good adhesion to to the metal.
  • the phosphoric acid is preferably added in the form of a solution prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) diluted with 2 to 5 parts by volume of water.
  • the hydrate of aluminum oxide reacts on heating with the phosphoric acid with the formation of aluminum phosphate.
  • the kaolin is used according to the invention for making the mass plastic and for counteracting the diffusion of the phosphoric acid to the surface during drying.
  • the filler which consists of quartz, for, example, counteracts the formation of cracks and contributes to the compactness of the mass.
  • Example 1 A dough consisting of 20 parts by weight of bauxite with about 30 per cent. of bound water, 10 parts of kaolin and '70 parts of pure quartz crushed to a grain size less than 0.15 millimeter and, to each 100 grams of powdered mixture, about 30 cubic centimeters of phosphoric acid solution prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) and 5 parts of water.
  • Example 2 A paste consisting of 20 parts byweight of bauxite with 30 per cent. of bound water, 5 parts of kaolin, 35 parts of quartz of a grain size less than 0.15 millimeter and 40 parts of quartz of a grain size of from 0.2 to 0.5 millimeter and, to each 100 grams of powdered mixturaabout 15 cubic centimeters of phosphoric acid solu--,
  • tion prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) and 4 parts of water.
  • the process which comprises coating a metal surface with a plastic composition containing a hydrate of aluminum oxide in amount ranging from about 15 to 30 per cent by weight, a refractory clay which is electrically insulating when in the dry state in amount ranging from about 5 to 15 per cent by weight, and a phosphoric acid-containing material capable of reacting with said aluminum oxide during the subsequent heating step with the formation of aluminum phosphate; the balance of said composition consisting sub-- stantially of an inert, refractory, granular filler; then drying and heating the coating at temperatures not substantially exceeding 300 C.
  • the process which comprises coating the surface of such a coil with a composition com prising from about 15 to 30 partsby weight of a hydrate of aluminum oxide, about 5 to 15 parts by weight of a refractory clay which is electrical- 1y insulating in the dry state, about to 55 parts by weight of an inert, refractory, granular filler and phosphoric acid in a quantity sufiicient, upon drying and heating, to form aluminum phosphate from said hydrate of aluminum oxide, then drying and heating the coating at temperatures not substantially exceeding 300 C.
  • a plastic composition capable of setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about to 300 C. comprising a mixture of a hydrate of aluminum oxide in amount ranging from about 15 to 30 per cent by weight, a refractory clay which is electrically insulating when in the dry state in amount ranging from about 5 to 15 per cent, an inert, refractory, granular filler forming substantially the balance of the composition, and phosphoric acid, said phosphoric acid being present in amount sufiicient to form aluminum phosphate from said hydrate of aluminum oxide when dried and heated.
  • composition of claim 4 wherein said hydrate of aluminum oxide is bauxite.
  • composition of claim 4 wherein said hydrate of aluminum oxide is laterite.
  • composition of claim 4 wherein the grain size of said inert filler ranges up to 0.15 mm.
  • composition of claim 4 wherein said filler is composed of two fractions having a different grain size, one fraction having a grain size ranging up to 0.15 mm. and the other fraction, constituting from about 40 to 50 per cent by weight of the filler, having a grain size of about 0.2 to 0.5 mm.
  • a plastic composition capable of setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about 100 to 300 C. comprising about 20 parts by weight of bauxite, 5 parts by weight of kaolin, about 35 parts by weight of an inert, refractory, granular material having a grain size up to 0.15 mm. and a phosphoric acid solution, containing'about 1 part of concentrated acid to 4 parts of water, in amount substantially sufiicient to react with the bauxite to form aluminum phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

Patented a. 15, 1940 UNITED STATES PATENT OFFICE No Drawing. Application October 7, 1937, Serial No. 167,863. In Sweden October 28, 1936 Claims.
In electrical engineering it is often desirable to produce an electically insulating coating on metallic surfaces which will stand heating without undergoing any changes. This applies for instance to induction furnaces of different types, especially high-frequency furnaces, in which the primary coil, made, e. g., of copper tubes, is in the immediate vicinity of the melt in the furnace chamber.
Insulating media hitherto used, such as mica in combination with organic binders (shellac, compound, etc.) asbestos or doughy masses prepared with, e. g., water-glass as a binding medium, lose to a large extent their insulating power on heating, and do not therefore offer a suflicient guarantee against electric conduction. This is especially true, if the overheating is local, e. g., when the melt breaks through the furnace wall or the like.
Enamels are not suitable, because they must be heated to 300 or 400 C. before application, in which case, however, the copper or the like is damaged. Further, they are not fire-proof, but
begin to sinter, when the temperature stated is exceeded.
The present invention has been based on extensive reseaches and has for its object to eliminate the above-mentioned drawbacks, and con-- sists substantially in that the metallic surface is coated with a mass in the form of a paste or dough which, besides fillers, such as quartz or porcelain, contains, on the one hand, components rich in hydrates of aluminum oxide such as- J tradistinction to other methods a ceramic coating is thus produced on the metal in a simple manner by burning at a low temperature; the method'may therefore be used advantageously for coating, e. g., copper. Aluminum phosphate being in itself fire-proof and electrically insulating, it is possible by a suitable choice of the other components of the mass to produce a coating which will keep its insulating properties also on heating to a high temperature.
In adhering to the basic principle of the invention a great number of tests have been made for the purpose ofobtaining the most favorable results in the application of the method. It is desired, inter alia, that the mass (paste or dough) should have such a consistency that it 5 may be applied without difficulty on the metallic surface, that the massshould dry without the active constituents difiusing to the surface (effiorescing), that the mass should be set or fixed at the lowest possible temperature, and that the mass, after fixing, should be free from cracks and display great compactness and good adhesion to to the metal.
.The best results have been obtained with a combination of hydrates of aluminum oxide, such as bauxite or laterite, free kaolin and free phosphoric acid with, for instance, quartz as a filler. In this case the phosphoric acid, in a suitable dilution, is not added to the otherwise ready, dry, powdered mixture until immediately before use. The hydrate of aluminum oxide and the kaolin should be finely ground and enter the powdered mixture-in amounts of. to or 5 to 15 per cent. by weight, respectively. The grain size of the filler should be suited to the purpose in view. For a paste having a consistencypermitting application with a brush, quartz with a maximum grain size of 0.l5\ millimeter has proved suitable. For more viscous pastes, intended specially for use as adhesives between the turns of a coil, an additionof somewhat coarser grain sizes, e. g., to per cent by weight of a" grain size of 0.2 to 0.5 millimeter has given good results. The phosphoric acid is preferably added in the form of a solution prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) diluted with 2 to 5 parts by volume of water.
The hydrate of aluminum oxide reacts on heating with the phosphoric acid with the formation of aluminum phosphate. The kaolin is used according to the invention for making the mass plastic and for counteracting the diffusion of the phosphoric acid to the surface during drying. The filler which consists of quartz, for, example, counteracts the formation of cracks and contributes to the compactness of the mass.
The tests have shown that when using'laterite, i. e., bauxite with a high content of boundwater (25 to 35 per cent), the fixation of the mass can be eifected at a temperature as low as 100 degrees centigrade, which has, among others, the advantage that it is possible in certain cases to use steam or water for the heating or the control of the temperature. The coating of a tube spiral may thus be fixed by steam led through the tube.
Excellent results have been obtained in insulating copper tubes with the following masses which set at about 100:
Example 1 A dough consisting of 20 parts by weight of bauxite with about 30 per cent. of bound water, 10 parts of kaolin and '70 parts of pure quartz crushed to a grain size less than 0.15 millimeter and, to each 100 grams of powdered mixture, about 30 cubic centimeters of phosphoric acid solution prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) and 5 parts of water.
Example 2 A paste consisting of 20 parts byweight of bauxite with 30 per cent. of bound water, 5 parts of kaolin, 35 parts of quartz of a grain size less than 0.15 millimeter and 40 parts of quartz of a grain size of from 0.2 to 0.5 millimeter and, to each 100 grams of powdered mixturaabout 15 cubic centimeters of phosphoric acid solu--,
tion prepared from or corresponding to 1 part by volume of concentrated phosphoric acid (specific gravity 1.70) and 4 parts of water.
Crack-free coatings fixed at 100 degrees centigrade have been produced with these masses on copper tube coils, and have retained their electrio insulating power also on intense heating and at high electrical tensions between the coil turns. When the copper tube was cooled by circulating water, the surface of the coating could be heated up to melting-point (about 1600 degrees centigrade) without any electric leakage current occurring between the turns.
The above-mentioned applications of .the method must evidently be regarded as examples only. Good results may be obtained also with materials of other qualities and proportions.
What is claimed is:
1. In the production of electrically insulating coatings on metal surfac'es at low temperatures, the process which comprises coating a metal surface with a plastic composition containing a hydrate of aluminum oxide in amount ranging from about 15 to 30 per cent by weight, a refractory clay which is electrically insulating when in the dry state in amount ranging from about 5 to 15 per cent by weight, and a phosphoric acid-containing material capable of reacting with said aluminum oxide during the subsequent heating step with the formation of aluminum phosphate; the balance of said composition consisting sub-- stantially of an inert, refractory, granular filler; then drying and heating the coating at temperatures not substantially exceeding 300 C.
2. In the production of electrically insulating coatings on the copper coils of induction furnaces, the process which comprises coating the surface of such a coil with a composition com prising from about 15 to 30 partsby weight of a hydrate of aluminum oxide, about 5 to 15 parts by weight of a refractory clay which is electrical- 1y insulating in the dry state, about to 55 parts by weight of an inert, refractory, granular filler and phosphoric acid in a quantity sufiicient, upon drying and heating, to form aluminum phosphate from said hydrate of aluminum oxide, then drying and heating the coating at temperatures not substantially exceeding 300 C.
3. A plastic composition capable of setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about to 300 C., comprising a mixture of a hydrate of aluminum oxide in amount ranging from about 15 to 30 per cent by weight, a refractory clay which is electrically insulating when in the dry state in amount ranging from about 5 to 15 per cent, an inert, refractory, granular filler forming substantially the balance of the composition, and phosphoric acid, said phosphoric acid being present in amount sufiicient to form aluminum phosphate from said hydrate of aluminum oxide when dried and heated.
4. A plastic composition capable of setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about 100 to 300 C., comprising a mixture containing about 15 to 30 parts by weight of a hydrate of aluminum oxide, about 5 to 15 parts by weight of a refractory clay which is electrically insulating when in the dry state, about 80 to 55 parts by weight of an inert refractory, granular filler and phosphoric acid in a quantity sufficient, upon drying and heating,
to formaluminum phosphate from said hydrate of aluminum oxide.
5. The composition of claim 4 wherein said hydrate of aluminum oxide is bauxite.
6. The composition of claim 4 wherein said hydrate of aluminum oxide is laterite.
7. The composition of claim 4 wherein the grain size of said inert filler ranges up to 0.15 mm.
8. The composition of claim 4 wherein said filler is composed of two fractions having a different grain size, one fraction having a grain size ranging up to 0.15 mm. and the other fraction, constituting from about 40 to 50 per cent by weight of the filler, having a grain size of about 0.2 to 0.5 mm.
9. A plastic composition capableof setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about 100 to 300 C., comprising about 20 parts by weight of bauxite, about 10 parts by weight of kaolin, about 70 parts by Weight of an inert, refractory, granular material having a grain size up to 0.15 mm. and a phosphoric acid solution containin about 1 part by volume of concentrated acid to 5 parts of water, in amount substantially sufficient to react with the bauxite to form aluminum phosphate.
10, A plastic composition capable of setting to form a refractory and electrically insulating coating on metallic surfaces when heated to temperatures ranging from about 100 to 300 C., comprising about 20 parts by weight of bauxite, 5 parts by weight of kaolin, about 35 parts by weight of an inert, refractory, granular material having a grain size up to 0.15 mm. and a phosphoric acid solution, containing'about 1 part of concentrated acid to 4 parts of water, in amount substantially sufiicient to react with the bauxite to form aluminum phosphate.
BERTIL STALHAN'E.
US167863A 1936-10-28 1937-10-07 Electrically insulating coating Expired - Lifetime US2218058A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE2218058X 1936-10-28

Publications (1)

Publication Number Publication Date
US2218058A true US2218058A (en) 1940-10-15

Family

ID=20424996

Family Applications (1)

Application Number Title Priority Date Filing Date
US167863A Expired - Lifetime US2218058A (en) 1936-10-28 1937-10-07 Electrically insulating coating

Country Status (1)

Country Link
US (1) US2218058A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2420475A (en) * 1942-01-10 1947-05-13 Herbert H Greger Friction composition and method of preparing the same
US2425151A (en) * 1943-12-02 1947-08-05 Herbert H Greger Method of preparing air-setting refractory mortars
US2444347A (en) * 1944-06-02 1948-06-29 Briggs Filtration Company Method of treating glass wool and product resulting therefrom
US2486811A (en) * 1941-01-27 1949-11-01 Monsanto Chemicals Ceramic bodies
US2490049A (en) * 1946-07-08 1949-12-06 Herbert H Greger Process of manufacturing chinaware
US2866714A (en) * 1956-04-16 1958-12-30 Voldemars D Svikis Method of treating kyanite concentrates
US2868294A (en) * 1955-05-23 1959-01-13 Dow Chemical Co Well cementing
US2888406A (en) * 1955-10-06 1959-05-26 Gen Electric Conductive cements
US3214302A (en) * 1961-02-22 1965-10-26 Hooker Chemical Corp Method for forming insulating coatings on metal surfaces
US4056654A (en) * 1975-07-24 1977-11-01 Kkf Corporation Coating compositions, processes for depositing the same, and articles resulting therefrom

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2486811A (en) * 1941-01-27 1949-11-01 Monsanto Chemicals Ceramic bodies
US2420475A (en) * 1942-01-10 1947-05-13 Herbert H Greger Friction composition and method of preparing the same
US2425151A (en) * 1943-12-02 1947-08-05 Herbert H Greger Method of preparing air-setting refractory mortars
US2444347A (en) * 1944-06-02 1948-06-29 Briggs Filtration Company Method of treating glass wool and product resulting therefrom
US2490049A (en) * 1946-07-08 1949-12-06 Herbert H Greger Process of manufacturing chinaware
US2868294A (en) * 1955-05-23 1959-01-13 Dow Chemical Co Well cementing
US2888406A (en) * 1955-10-06 1959-05-26 Gen Electric Conductive cements
US2866714A (en) * 1956-04-16 1958-12-30 Voldemars D Svikis Method of treating kyanite concentrates
US3214302A (en) * 1961-02-22 1965-10-26 Hooker Chemical Corp Method for forming insulating coatings on metal surfaces
US4056654A (en) * 1975-07-24 1977-11-01 Kkf Corporation Coating compositions, processes for depositing the same, and articles resulting therefrom

Similar Documents

Publication Publication Date Title
US2218058A (en) Electrically insulating coating
US4711666A (en) Oxidation prevention coating for graphite
AU619485B2 (en) Aluminium phosphate cement compositions and lamp assemblies containing same
US3380838A (en) Substances for producing crystalline heat-resistant coatings and fused layers
US2425032A (en) Enamel for resistors
US1924311A (en) Insulating material
US4410598A (en) Process for preparation of insulating coatings upon steel
JPH0726166A (en) Aqueous heat-resistant paint and heat-resistant coating layer
US2695275A (en) Silver paint
US2933458A (en) Electrically conductive glass composition containing suboxides of titanium and method of making the same
US2298968A (en) Fluorescent coating and method of manufacture
KR910006945B1 (en) Coating composition for preventing high temperature oxidation for electrodes
US2551712A (en) Process of metallizing surfaces
JPS6349897B2 (en)
US3621204A (en) Electrical heating element with fused magnesia insulation
US4044173A (en) Electrical resistance compositions
US2109984A (en) Electric discharge device
US2457678A (en) Resistor and method of making
US2137135A (en) Improved dielectric material and method for making the same
US4129774A (en) Filling materials for heating elements
US2683667A (en) Heat insulating coating
US3396118A (en) Strontium magnesium orthophosphate phosphors
US2052400A (en) Welding flux
US1896043A (en) Insulated wire and process therefor
US2203898A (en) Luminescent material