US2216265A - Image dissector - Google Patents

Image dissector Download PDF

Info

Publication number
US2216265A
US2216265A US96616A US9661636A US2216265A US 2216265 A US2216265 A US 2216265A US 96616 A US96616 A US 96616A US 9661636 A US9661636 A US 9661636A US 2216265 A US2216265 A US 2216265A
Authority
US
United States
Prior art keywords
image
anode
cathode
dissector
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US96616A
Inventor
Philo T Farnsworth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Farnsworth Television and Radio Corp
Original Assignee
Farnsworth Television and Radio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Farnsworth Television and Radio Corp filed Critical Farnsworth Television and Radio Corp
Priority to US96616A priority Critical patent/US2216265A/en
Priority to GB21697/37A priority patent/GB493007A/en
Priority to DEF83521D priority patent/DE731120C/en
Application granted granted Critical
Publication of US2216265A publication Critical patent/US2216265A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/26Image pick-up tubes having an input of visible light and electric output
    • H01J31/42Image pick-up tubes having an input of visible light and electric output with image screen generating a composite electron beam which is deflected as a whole past a stationary probe to simulate a scanning effect, e.g. Farnsworth pick-up tube

Definitions

  • My invention relates to image dissectors, and particularly to an image dissector designed to televise moving picture film and operable by infra-red radiation.
  • my invention comprises utilizing a thermionically active coating as the electron generating surface in a television dissector tube.
  • the figure shows a sectional schematic diagram of my invention used in conjunction with a moving picture film to be televised.
  • I utilize as a cathode thermionically responsive material instead of photoelectric material, and have been able to produce within my dissector tube picture area currents of the order of milliamperes, with similar quality of reproduction, and a consequent decreased necessity for amplification of the signal current produced by the tube, because of the greater emission per elementary area.
  • the dissector tube I comprises an evacuated envelope 4 of Pyrex glass :or similar insulating and heat resisting material, cylindrical in form, with planar ends '5 and 6.
  • a cup-shaped cathode l is formed within envelope t, covering the planar end wall 6 and extending a short distance along the cylindrical surface of the envelope 4.
  • Cathode l is formed of material which is an active emitter of electrons under the influence of infra-red radiations,
  • anode stem 10 such as caesium on silver or caesium-silver oxide an aperture l2 disposed therethrough in alignment with the axis of tube 1 and facing cathode 1.
  • Lead I4 sealed throughstem ll provides elec- .trical connection to anode stem 10.
  • anode stem Ill and supported centrally thereof by glass stem II, is disposed collecting anode 15, comprising a straight wire of secondarily emissive conducting material such as coated nickel, and extending through the glass supporting stem to form its own connecting lead.
  • An electromagnetic focusing coil I6 is disposed about envelope 4 between the cathode and anode members.
  • a current source such as a battery 18 provides the magnetic field necessary to obtain the proper degree of focusing of the electron stream emitted from cathode 'l' as later described,
  • Scanning coils l1 and I9 shown schematically, are provided, fed by saw-tooth oscillators 20 and 2
  • a source of infra-red radiation such as an are 22, or other suitable means of providing intense radiant energy is disposed behind a condensing lens system 24, shown schematically, in alignment with an apertured guide 25 over which film 2 is traversed by suitable driving means, not shown in the drawing.
  • an objective lens system 26 arranged to focus the infra-red image of film 2 upon the exterior of cathode E. Additional infra-red lamps 2i and 29 may be focused on cathode l to provide a polarizing heat, so that all the energy of the varying infra-red image projected on cathode K may be used in the region of maximum sensitivity and emissivity.
  • Cathode l is grounded and the negative lead of a battery 36 is connected thereto.
  • the positiVe side of battery 30 is connected to anode stem l0, and connection is made through tap 3
  • the infra-red source 22 projects an image, focused'by lens system 26, of the film 2 upon the back of cathode 'l, which thereupon creates an electron image of film 2 by emitting electrons from its entire surface, corresponding in number at each element of area to the strength of the radiation falling thereon. These electrons are attracted toward the anode elements l0 and 15 by the high positive potential thereon.
  • the negative charges on all the elements of the moving stream tend to spread it out, but the magnetic field created by solenoid l6 counteracts the tendency and causes the intensity of each elementary area of the electron image to remain unchanged as the stream passes along the tube toward the anode.
  • each element of the electrical image may in turn pass aperture l2, and the electrons constituting such elements of the image may enter the aperture and strike anode 15.
  • a larger number of electrons will be emitted from the anode, due to its secondarily emissive qualities, than strike it, and
  • An electron image dissector comprising an evacuated envelope containing an opaque thermionically emissive cathode, means for differentially heating one side of said cathode, an apertured shielding anode having a collecting anode therein, focusing means adapted to restrain the electronic elements of an image thermionically produced on the opposite side of said cathode in accordance with the heating of the other side to mean rectilinear paths, scanning means adapted to pass successive elements of said image past said anode aperture, means to attract said successive image elements to said collecting anode, and means for utilizing said attracted elements to produce television signals.
  • An image dissector comprising an evacuated cylindrical envelope, an apertured anode therein, an anode within said apertured anode, an opaque thermionically emissive cathode upon one end of said cylinder, means external of said envelope for directing a polarizing radiation upon the envelope side of said cathode, means for focusing an electron image produced on the opposite side of said cathode in accordance with an optical image focused thereon together with said polarizing radiation, means for attracting said image toward said anodes, means for deflecting successive elements of said image past said apertured anode, means for collecting said successive image elements upon said anode, and means for utilizing said collected image elements to initiate a television signal.
  • an image dissector for producing an electron image comprising an opaque cathode film capable of emitting electrons at a relatively low temperature, means for directing an optical image high in infra-red against one side of said film, and means for withdrawing an electron image from the other side of said film.
  • an image dissector for producing -'an electron imagecomprising an envelope having deposited on a wall thereof an opaque thin film of a material capable of emitting electrons at a relatively low temperature, means for directing an optical image high in infra-red against the film through said envelope wall, and means for withdrawing an electron image thermionical- .ly produced by said optical image from the opposite side of said film facing the envelope interior.

Landscapes

  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

P. T. FARNSWORTH Y IMAGE DISSECTOR Filed Aug 18, 1936 INVENTOR PH/LO Z FhQn/swokr/i ATTORNEYS.
ME??? in um r UM! w W V w Patented Oct. 1, 1940 IMAGE DISSECTOR poration of Delaware Application August 18, 1936, Serial No. 96,616
4 Claims.
My invention relates to image dissectors, and particularly to an image dissector designed to televise moving picture film and operable by infra-red radiation.
Among the objects of my invention are: To provide a simple and efiicient image dissector for television use; to provide a more powerful dissector tube for televising motion picture film; to provide means for utilizing infra-red radiations in television transmission from moving picture film; to provide means for increasing the power output of dissector tubes; to provide means for utilizing thermionically active material in television dissector tubes; to provide means for adapting dissector tubes to televising scenes which may be intensely illuminated by infrared radiation; to provide means for analyzing a variable density electron discharge; to provide means for collecting portions of a thermionic discharge having an intensity proportional to the intensity of the infra-red radiations incident upon the area emitting those portions of the discharge.
Briefiy my invention comprises utilizing a thermionically active coating as the electron generating surface in a television dissector tube.
Other objects of my invention will be apparent or will be specifically pointed out in the description forming a part of this specification, but I do not limit myself to the embodiment of the invention herein described, as various forms may be adopted within the scope of the claims.
In the drawing, the figure shows a sectional schematic diagram of my invention used in conjunction with a moving picture film to be televised.
The general construction of dissector tubes has been fully explained in my patent application Serial No. 30,119, and in my United States Patents Nos. 2,087,683, 2,100,841, 2,135,149 and 53,918, and referred to in various other of my issued and pending cases.
These previous developments in electron image dissectors have been in many cases directed toward the use of photoelectric surfaces to produce photo-electrons. Total picture area currents which may be produced by this method are necessarily small, on the order of a few microamperes, and the production of useful television signals therefore involves considerable amplification.
In the present invention, I utilize as a cathode thermionically responsive material instead of photoelectric material, and have been able to produce within my dissector tube picture area currents of the order of milliamperes, with similar quality of reproduction, and a consequent decreased necessity for amplification of the signal current produced by the tube, because of the greater emission per elementary area.
-5 Due to the nature of infra-red radiations, it is intended that the invention herein described be applied only to those uses wherein the scene to be televised may be subjected to intense heat. The low intensity of infra-red radiation at ordinary temperatures is not sufficient to produce television signals unless special means of high amplification are used, such as those described in my patent application entitled Radiation frequency converter, Serial No. 65,464, filed February 24, 1936, now United States Patent No.
2,107,732, issued Feb. 8, 1938.
The detailed operation of my invention may be better understood by reference to the drawins.
In the figure is shown a dissector tube I schematically arranged to televise pictures from a motion picture film '2. The dissector tube I comprises an evacuated envelope 4 of Pyrex glass :or similar insulating and heat resisting material, cylindrical in form, with planar ends '5 and 6. A cup-shaped cathode l is formed within envelope t, covering the planar end wall 6 and extending a short distance along the cylindrical surface of the envelope 4. Cathode l is formed of material which is an active emitter of electrons under the influence of infra-red radiations,
:such as caesium on silver or caesium-silver oxide an aperture l2 disposed therethrough in alignment with the axis of tube 1 and facing cathode 1. Lead I4 sealed throughstem ll provides elec- .trical connection to anode stem 10. Within anode stem Ill, and supported centrally thereof by glass stem II, is disposed collecting anode 15, comprising a straight wire of secondarily emissive conducting material such as coated nickel, and extending through the glass supporting stem to form its own connecting lead.
An electromagnetic focusing coil I6 is disposed about envelope 4 between the cathode and anode members. A current source such as a battery 18 provides the magnetic field necessary to obtain the proper degree of focusing of the electron stream emitted from cathode 'l' as later described,
Scanning coils l1 and I9, shown schematically, are provided, fed by saw- tooth oscillators 20 and 2| respectively, to properly traverse the electron image past aperture l2, in order to successively I scan each elementary area thereof.
A source of infra-red radiation, such as an are 22, or other suitable means of providing intense radiant energy is disposed behind a condensing lens system 24, shown schematically, in alignment with an apertured guide 25 over which film 2 is traversed by suitable driving means, not shown in the drawing.
Before the irradiated portion of film 2, aligned with arc 22 and the longitudinal axis of the dissector tube, is an objective lens system 26, arranged to focus the infra-red image of film 2 upon the exterior of cathode E. Additional infra-red lamps 2i and 29 may be focused on cathode l to provide a polarizing heat, so that all the energy of the varying infra-red image projected on cathode K may be used in the region of maximum sensitivity and emissivity.
Cathode l is grounded and the negative lead of a battery 36 is connected thereto. The positiVe side of battery 30 is connected to anode stem l0, and connection is made through tap 3| on battery 30 and a resistor 32 to the anode I5, so that a difference of potential exists between the anode l5 and anode stem it], although both are positive relatively to the cathode 7.
In operation, the infra-red source 22 projects an image, focused'by lens system 26, of the film 2 upon the back of cathode 'l, which thereupon creates an electron image of film 2 by emitting electrons from its entire surface, corresponding in number at each element of area to the strength of the radiation falling thereon. These electrons are attracted toward the anode elements l0 and 15 by the high positive potential thereon. The negative charges on all the elements of the moving stream tend to spread it out, but the magnetic field created by solenoid l6 counteracts the tendency and causes the intensity of each elementary area of the electron image to remain unchanged as the stream passes along the tube toward the anode.
The entire electron stream is deflected by the currents set up in scanning coils l1 and ill by the saw- tooth oscillators 20 and 2! so that each element of the electrical image may in turn pass aperture l2, and the electrons constituting such elements of the image may enter the aperture and strike anode 15. A larger number of electrons will be emitted from the anode, due to its secondarily emissive qualities, than strike it, and
'since the anode stem ill is positive relatively to the anode I5, these secondaries will be attracted to it, and a circulating current flow set up through part of battery 39, through resistor 32, and through anode l5, in addition to the return to cathode I. The varying charges thus set up on condenser 34 are communicated by lead 35 to suitable transmission circuits, and provide the television signal which may be used to reproduce the image of film 2 in accord with practice known to those skilled in the art.
My dissector tube will also operate with an anode embodiment which acts as a collector only, and .does .not emit secondaries; in such case, anode l5 may be either negative or positive relatively to the anode stem [0.
Various modifications and different proportions will suggest themselves to those skilled in the art, all within the scope of the appended claims, and it is obvious that my cathode may be used in other types of dissector tubes.
I claim:
1. An electron image dissector comprising an evacuated envelope containing an opaque thermionically emissive cathode, means for differentially heating one side of said cathode, an apertured shielding anode having a collecting anode therein, focusing means adapted to restrain the electronic elements of an image thermionically produced on the opposite side of said cathode in accordance with the heating of the other side to mean rectilinear paths, scanning means adapted to pass successive elements of said image past said anode aperture, means to attract said successive image elements to said collecting anode, and means for utilizing said attracted elements to produce television signals.
2. An image dissector comprising an evacuated cylindrical envelope, an apertured anode therein, an anode within said apertured anode, an opaque thermionically emissive cathode upon one end of said cylinder, means external of said envelope for directing a polarizing radiation upon the envelope side of said cathode, means for focusing an electron image produced on the opposite side of said cathode in accordance with an optical image focused thereon together with said polarizing radiation, means for attracting said image toward said anodes, means for deflecting successive elements of said image past said apertured anode, means for collecting said successive image elements upon said anode, and means for utilizing said collected image elements to initiate a television signal.
3. In an image dissector means for producing an electron image comprising an opaque cathode film capable of emitting electrons at a relatively low temperature, means for directing an optical image high in infra-red against one side of said film, and means for withdrawing an electron image from the other side of said film.
4. In an image dissector means for producing -'an electron imagecomprising an envelope having deposited on a wall thereof an opaque thin film of a material capable of emitting electrons at a relatively low temperature, means for directing an optical image high in infra-red against the film through said envelope wall, and means for withdrawing an electron image thermionical- .ly produced by said optical image from the opposite side of said film facing the envelope interior.
PHILO T. FARNSWORTH.
US96616A 1936-08-18 1936-08-18 Image dissector Expired - Lifetime US2216265A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US96616A US2216265A (en) 1936-08-18 1936-08-18 Image dissector
GB21697/37A GB493007A (en) 1936-08-18 1937-08-06 Improvements in image dissector
DEF83521D DE731120C (en) 1936-08-18 1937-08-19 Method for the transmission of overhead or transparent images by means of image catcher tubes with scanning diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US96616A US2216265A (en) 1936-08-18 1936-08-18 Image dissector

Publications (1)

Publication Number Publication Date
US2216265A true US2216265A (en) 1940-10-01

Family

ID=22258231

Family Applications (1)

Application Number Title Priority Date Filing Date
US96616A Expired - Lifetime US2216265A (en) 1936-08-18 1936-08-18 Image dissector

Country Status (3)

Country Link
US (1) US2216265A (en)
DE (1) DE731120C (en)
GB (1) GB493007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788452A (en) * 1952-07-29 1957-04-09 Ernest J Sternglass Thermal image detecting tube
US2935624A (en) * 1955-08-26 1960-05-03 Forman Ralph Electrostatically-controlled resistance tube
US3064210A (en) * 1957-10-25 1962-11-13 Rca Corp Harmonic generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2788452A (en) * 1952-07-29 1957-04-09 Ernest J Sternglass Thermal image detecting tube
US2935624A (en) * 1955-08-26 1960-05-03 Forman Ralph Electrostatically-controlled resistance tube
US3064210A (en) * 1957-10-25 1962-11-13 Rca Corp Harmonic generator

Also Published As

Publication number Publication date
GB493007A (en) 1938-09-30
DE731120C (en) 1943-02-02

Similar Documents

Publication Publication Date Title
US2541374A (en) Velocity-selection-type pickup tube
US2747131A (en) Electronic system sensitive to invisible images
US2540621A (en) Electron gun structure
US2929866A (en) Television pickup tube
US2462569A (en) Television receiving tube with storage properties
US2579351A (en) Isocon pickup tube
US2928969A (en) Image device
US2292437A (en) Electron image amplifier
US2213547A (en) Electron discharge apparatus
US2618761A (en) Negative stored charge pickup tube
US2216265A (en) Image dissector
US3295010A (en) Image dissector with field mesh near photocathode
US2760096A (en) Television pickup tube
US2213173A (en) Television transmitting tube
US3370172A (en) Arrangement for producing two-dimensional images of an infra-red radiator
US2558647A (en) Storage electrode type cathode-ray tube
US3001098A (en) X-ray image intensifying device
US2213177A (en) Television transmitting tube
US2617954A (en) Pickup tube
US2213176A (en) Television transmitting tube
US2840755A (en) Large storage low noise image tube
US2292111A (en) Image dissector
US2875371A (en) Arrangements embodying pick-up tubes
US3341734A (en) Television camera devices and related systems
US2237896A (en) Electronic device