US2214433A - Aluminum alloy containing copper, silicon, iron, and columbium - Google Patents

Aluminum alloy containing copper, silicon, iron, and columbium Download PDF

Info

Publication number
US2214433A
US2214433A US290075A US29007539A US2214433A US 2214433 A US2214433 A US 2214433A US 290075 A US290075 A US 290075A US 29007539 A US29007539 A US 29007539A US 2214433 A US2214433 A US 2214433A
Authority
US
United States
Prior art keywords
columbium
aluminum
alloy
iron
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US290075A
Inventor
Murphy Alfred John
Wells Stanley Alfred Edward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ELECTRO METALLURG CO
ELECTRO METALLURGICAL Co
Original Assignee
ELECTRO METALLURG CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US137280A external-priority patent/US2273061A/en
Application filed by ELECTRO METALLURG CO filed Critical ELECTRO METALLURG CO
Priority to US290075A priority Critical patent/US2214433A/en
Application granted granted Critical
Publication of US2214433A publication Critical patent/US2214433A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent

Definitions

  • Patented Sept. 10, 1940 UNITED STATES PATENT OFFICE.
  • the object of the invention is to produce aluminum alloys having a fine grain, and possessing in consequence of this fine grain superior mechanical properties in the cast condition and also when forged and also after heat-treatment of the castings and forgings according to known processes.
  • a relatively small 40 proportion of columbium also known sometimes as niobium
  • an aluminum alloy particularly an alloy of one of the classes referred to, the alloy thereby acquiring a fine grain, which is maintained over a wide range of .conditions of melting, casting and working.
  • the beneficial effect of the columbium is not dependent upon the manner in which it is incorporated in the alloy, but a convenient procedure is to add it in the form of a hardener or mother alloy or prealloy relatively rich in columbium.
  • the first stage in the incorporation of the columbium in the aluminum alloy is the preparation of an aluminum alloy relatively rich in columbium from ferro-columbium and aluminum.
  • the f-erro-columbium may be in the form of an alloy containing approximately equal parts of iron and .columbium with impurities such as tantalum, silicon and carbon in small proportions.
  • Aluminum Remainder I The hardener alloys employed 'are: aluminumnickel with 20% nickel, aluminum-iron-columbium with 5% iron and 5% columbium; aluminum-iron with 10% iron, aluminum-copper with copper, aluminum-silicon with 20% silicon. Aluminum is melted in a crucible and the calculated quantities of hardeners are stirred in successively in the order in which they are menfacture of castings and forgings, and responds effectively to the known processes of heat-treat ment applicable to aluminum alloys containing copper, nickel, magnesium, silicon and iron.
  • a large improvement in mechanical properties of forgings of the alloy is obtained by a two-stage heat-treatment in which the parts are first heated for 4 hours at 530 C., then quenched in water, reheated for 16 hours at C. and finally quenched in water again.
  • a valuable feature of the grain refining action of columbium is that it is effective even when the aluminum alloy is raised to a high temperature before casting.
  • the eflicacy of the'grain refining action of columbium it may be mentioned that, when an alloy of the composition stated above is cast at 800 C. into a dried sand mold to form a cylindrical block 3" high and 3" diameter, the grains visible in the macrostructure after etching have diameters of 0.2 to 1 mm., whereas the same alloy not containing columbium, cast under the same conditions, shows a grain diameter of 2.5 to 5 mm.
  • the alloy described above has the advantage, due to the fine grain structure which columbium confers, that the ductility associated with a certain tensile strength is greater.
  • the simple alloys of aluminum with copper In the simple alloys of aluminum with copper,
  • the incorporation of columbium in the form of an aluminum-columbium alloy refines the grain and improves the strength and ductility of castings.
  • Aluminum base alloy containing 0.5% to 12% copper, 0.2% to 2.5% silicon, iron in a proportion not over 2%, 0.1% to 0.5% columbium, remainder aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Description

Patented Sept. 10, 1940 UNITED STATES PATENT OFFICE.
ALUMINUM ALLOY CONTAINING COPPER, SILICON, IRON, AND COLUMBIUM Alfred John Murphy, Petts Wood, and Stanley Alfred Edward Wells, Te'ddington, England, assignors, by'mesne assignments, to Electro Metallurgical Company, New York,-N. Y., a corporation of West Virginia No Drawing. Original application April 16, 1937, Serial No. 137,280. Divided and this application August 14, 1939, Serial No. 290,075; In Great Britain May 5, 1936 2 Claims.
division of our application Serial No. 137,280,-
filed April 16, 1937.
10 In the production of cast pieces of aluminum base alloys, by which may be'understood alloys containing more than 70% of aluminum, it is desirable to secure the finest possible size of grain. The grain referred to is the macrostrucr ture, which is recognizable by the naked eye on smooth surfaces or sections of the cast pieces after they have been etched in suitable reagents, such asan aqueous solution of caustic soda, or hydrofluoric acid.
In castings a diminution in grain size improves the mechanical properties. The finer the grain size characteristic of an aluminum alloy, other things being equal, the better its founding properties in that the tendency 'to cracking in the mold is reduced and the production of sound -oastings is facilitated. In cast pieces intended to be forged, pressed, extruded or otherwise worked mechanically, a fine grain size is desirable because it assists the attainment of good mechanical properties in the subsequent Workmg.
The object of the invention is to produce aluminum alloys having a fine grain, and possessing in consequence of this fine grain superior mechanical properties in the cast condition and also when forged and also after heat-treatment of the castings and forgings according to known processes.
According to this invention, a relatively small 40 proportion of columbium, also known sometimes as niobium, is added to an aluminum alloy, particularly an alloy of one of the classes referred to, the alloy thereby acquiring a fine grain, which is maintained over a wide range of .conditions of melting, casting and working. We have found it convenient to make the proportion of columbium 0.1% to 0.2% of the total weight of the alloy. We haveobserved appreciable grain 50 refinement with as little as 0.05% of columbium, and on the other hand we have not found it generally necessary or desirable to exceed 0.5%
of columbium.
We have discovered that these beneficial ef- 55 fects are exhibited in the classes of alloy mentioned above containing the'elements set out below in the proportions stated by way of example:
Per cent Copper 0.5 to 12 Nickel 0.5 to Magnesium 0.1 to 3 Silicon 0.2 to 2.5 Iron 0.2 to 2 Columbium 0.05 to 1 The beneficial effect of the columbium is not dependent upon the manner in which it is incorporated in the alloy, but a convenient procedure is to add it in the form of a hardener or mother alloy or prealloy relatively rich in columbium. According to one practical process, the first stage in the incorporation of the columbium in the aluminum alloy is the preparation of an aluminum alloy relatively rich in columbium from ferro-columbium and aluminum. The f-erro-columbium may be in the form of an alloy containing approximately equal parts of iron and .columbium with impurities such as tantalum, silicon and carbon in small proportions. In preparing the columbium hardener alloy, aluminum is melted in a crucible and its temperature raised to 1100 to 1200 C. A weight of ferro-columbium equal to approximately onetenth of the weight of aluminum is stirred into the molten aluminum, or is carried in a perforated container which is moved up and down in the aluminum, until the addition is entirely dissolved. In this way an alloy containing ap-' proximately 5% columbium, 5% iron, with the balance substantially aluminum, is obtained. This is cast into molds, remelted in a crucible, allowed to-solidify and remelted without unnecessary superheating, in order to eliminate gases which may have become absorbed through the heating to high temperatures in the initial operation. After this presolidification treatment, the alloy is cast into suitable ingot molds.
One practical process for making up an alloy using the aluminum hardener" alloy relatively rich in columbium may be described. The final alloy to be made according to this example has the following nominal composition;
Per cent Copper 2.5 Nickel 1.5 Magnesium 0.8
Silicon 1 .2 Iron 1.2 Columbium 0.1
Aluminum Remainder I .The hardener alloys employed 'are: aluminumnickel with 20% nickel, aluminum-iron-columbium with 5% iron and 5% columbium; aluminum-iron with 10% iron, aluminum-copper with copper, aluminum-silicon with 20% silicon. Aluminum is melted in a crucible and the calculated quantities of hardeners are stirred in successively in the order in which they are menfacture of castings and forgings, and responds effectively to the known processes of heat-treat ment applicable to aluminum alloys containing copper, nickel, magnesium, silicon and iron. For example, a large improvement in mechanical properties of forgings of the alloy is obtained by a two-stage heat-treatment in which the parts are first heated for 4 hours at 530 C., then quenched in water, reheated for 16 hours at C. and finally quenched in water again.
A valuable feature of the grain refining action of columbium is that it is effective even when the aluminum alloy is raised to a high temperature before casting. As an illustration of the eflicacy of the'grain refining action of columbium, it may be mentioned that, when an alloy of the composition stated above is cast at 800 C. into a dried sand mold to form a cylindrical block 3" high and 3" diameter, the grains visible in the macrostructure after etching have diameters of 0.2 to 1 mm., whereas the same alloy not containing columbium, cast under the same conditions, shows a grain diameter of 2.5 to 5 mm.
As compared with a similar alloy not containing columbium, the alloy described above has the advantage, due to the fine grain structure which columbium confers, that the ductility associated with a certain tensile strength is greater. In the simple alloys of aluminum with copper,
. such as that containing 7% copper, the incorporation of columbium in the form of an aluminum-columbium alloy refines the grain and improves the strength and ductility of castings.
We claim:
1. Aluminum base alloy containing 0.5% to 12% copper, 0.2% to 2.5% silicon, iron in a proportion not over 2%, 0.05% to 1% columbium, remainder aluminum. I
2. Aluminum base alloy containing 0.5% to 12% copper, 0.2% to 2.5% silicon, iron in a proportion not over 2%, 0.1% to 0.5% columbium, remainder aluminum.
ALFRED JOHN MURPHY.
STANLEY ALFRED EDWARD 30
US290075A 1937-04-16 1939-08-14 Aluminum alloy containing copper, silicon, iron, and columbium Expired - Lifetime US2214433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US290075A US2214433A (en) 1937-04-16 1939-08-14 Aluminum alloy containing copper, silicon, iron, and columbium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US137280A US2273061A (en) 1936-05-05 1937-04-16 Aluminum base alloys
US290075A US2214433A (en) 1937-04-16 1939-08-14 Aluminum alloy containing copper, silicon, iron, and columbium

Publications (1)

Publication Number Publication Date
US2214433A true US2214433A (en) 1940-09-10

Family

ID=26835095

Family Applications (1)

Application Number Title Priority Date Filing Date
US290075A Expired - Lifetime US2214433A (en) 1937-04-16 1939-08-14 Aluminum alloy containing copper, silicon, iron, and columbium

Country Status (1)

Country Link
US (1) US2214433A (en)

Similar Documents

Publication Publication Date Title
CN113373352B (en) High-pressure cast aluminum alloy and preparation method thereof
US4140555A (en) Nickel-base casting superalloys
WO2017133415A1 (en) Aluminum alloy die casting with high thermal conductivity and preparation method thereof
CN113684408B (en) High-strength and high-toughness cast magnesium alloy and preparation method thereof
CN113293328B (en) Al-Mg high-strength and toughness die-casting aluminum alloy and preparation method thereof
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
CN110885941B (en) High toughness aluminum alloy material and preparation method thereof
US3759758A (en) High strength aluminum casting alloy
US2214432A (en) Aluminum alloy containing copper, iron, and columbium
US2185348A (en) Aluminum base alloy
JP2008025003A (en) Aluminum alloy for casting and cast aluminum alloy
US2214433A (en) Aluminum alloy containing copper, silicon, iron, and columbium
US1508556A (en) Making castings of aluminum alloys
US2214431A (en) Aluminum-copper-nickel-magnesium alloy containing iron and columbium
US2273061A (en) Aluminum base alloys
US2185452A (en) Method of heat treating magnesium base alloys
WO2000043560A1 (en) Aluminum-magnesium-silicon alloy
US1387900A (en) Alloy
US1960916A (en) Aluminium alloy
US1685570A (en) Process of improving the qualities of nickel-beryllium alloy
US1490696A (en) Zinc alloy
US2185453A (en) Method of heat treating magnesium base alloys
CN118541498A (en) Addition of calcium and vanadium to AlMg alloys
CN110709526A (en) Aluminum alloy and aluminum alloy cast product
US2022686A (en) Aluminum alloy casting and method of making the same