US2207708A - Hard metal alloy process - Google Patents

Hard metal alloy process Download PDF

Info

Publication number
US2207708A
US2207708A US295755A US29575539A US2207708A US 2207708 A US2207708 A US 2207708A US 295755 A US295755 A US 295755A US 29575539 A US29575539 A US 29575539A US 2207708 A US2207708 A US 2207708A
Authority
US
United States
Prior art keywords
bodies
carbide
hard metal
metal alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US295755A
Inventor
Clarence W Balke
Claire C Balke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAMET Corp
Original Assignee
RAMET CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAMET CORP filed Critical RAMET CORP
Priority to US295755A priority Critical patent/US2207708A/en
Application granted granted Critical
Publication of US2207708A publication Critical patent/US2207708A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only

Definitions

  • This invention relates to a method of manufacturing hard metal alloys consisting of one or more carbides which form the major portion of the alloy, and are cemented by auxiliary metal 5 taken substantially from the iron group and forming the balance of the alloy.
  • Such alloys are generally used for tools or tool elements in other working appliances which are subjected in operation to mechanical wear.
  • the carbides employed are generally those of tungsten, tantalum, columbium, zirconium, boron, silicon, molybdenum, vanadium and chromium, which are known as hard and wear-resistant, while the auxiliary metal is generally taken from the iron group and may be supplemented by manganese and sometimes metals of the sixth group. It should also be pointed out that in addition to the carbides of the above enumerated elements, borides, nitrides and silicides may in some cases be substituted. The exact composition of the material treated is not the most significant part of our invention, and it is, therefore, to be understood that the foregoing is by way of example only, and not by way of limitation.
  • the metal carbide or carbides used in hard metal bodies are obtained from any suitable source, and the so-called hinder or auxiliary metal is similarly obtained from any suitable source. These are reduced to an intimate mixture of fine powders in which the particle size is considerably finer than 200 mesh.
  • the carbide and binder may be reduced to powder form either jointly or separately. However obtained, the powder is pressed either with or without a small amount of an organic binder and pressed under exceedingly great pressure. Because of the high pressure required, it is commonly obtained by hydraulic means. The resultant pressed body is heated to a relatively low temperature of the order of 700 or 800 deg. C.
  • This carbide is not easily wet by the binder metal of the bodies, and therefore serves to separate the bodies without thermally insulating them. Compared with the graphitepowder or alumina, it has a relatively much greater thermal conductivity and, therefore, quickly aids the bodies in reaching an equilibrium temperature during the variation of temperature during the sintering' process. We have found that compared to the prior hard materials employed that surprisingly uniform results are obtained. An extremely fine carbide powder is not wholly satisfactory. We prefer to employ coarse material since it allows the gaseous atmosphere, whether it be a gas or a vacuum, to circulate freely around the bodies without any difficulty.
  • carbides of the nonradio-active refractory metals of the fourth and fifth groups of the periodic charttitanium, zirconium, hafnium, vanadium, columbium and tantalum are suitable for this purpose.
  • the employment of pure carbides is not at all essential.
  • Mixed carbides made up of any two or more of the foregoing elements are also suitable.
  • Tungsten carbide and other carbides of the sixth group have been tried, but we find them to be unsatisfactory because of the ease with which they are wetted by the binder metal. This causes the carbide grains to adhere to the shaped body, and in some cases to draw part of it out of the body by capillarity. That is, of course, unsatisfactory.
  • particles being of sufllcientsize as to permit free flow of gas through the interstices thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Patented July 16, 1940 UNITED STATES HARD METAL ALLOY PROCESS Clarence W. Balke and Claire C. Balke, Highland Park, Ill., assignors to Ram'et Corporation of America, North Chicago, 111., a corporation of Illinois No Drawing.
4 Claims.
This invention relates to a method of manufacturing hard metal alloys consisting of one or more carbides which form the major portion of the alloy, and are cemented by auxiliary metal 5 taken substantially from the iron group and forming the balance of the alloy.
Such alloys are generally used for tools or tool elements in other working appliances which are subjected in operation to mechanical wear. The carbides employed are generally those of tungsten, tantalum, columbium, zirconium, boron, silicon, molybdenum, vanadium and chromium, which are known as hard and wear-resistant, while the auxiliary metal is generally taken from the iron group and may be supplemented by manganese and sometimes metals of the sixth group. It should also be pointed out that in addition to the carbides of the above enumerated elements, borides, nitrides and silicides may in some cases be substituted. The exact composition of the material treated is not the most significant part of our invention, and it is, therefore, to be understood that the foregoing is by way of example only, and not by way of limitation.
It is an object of our invention to reduce the cost of manufacture of hard metal bodies by improvement of the method of manufacture.
It is a further object of our invention to improve the uniformity of hard metal bodies whereby to reduce waste and make more definite and certain the results which can be obtained.
According to common practice, the metal carbide or carbides used in hard metal bodies are obtained from any suitable source, and the so-called hinder or auxiliary metal is similarly obtained from any suitable source. These are reduced to an intimate mixture of fine powders in which the particle size is considerably finer than 200 mesh. The carbide and binder may be reduced to powder form either jointly or separately. However obtained, the powder is pressed either with or without a small amount of an organic binder and pressed under exceedingly great pressure. Because of the high pressure required, it is commonly obtained by hydraulic means. The resultant pressed body is heated to a relatively low temperature of the order of 700 or 800 deg. C.
This operation effects the preliminary bindingwithout at the same time making the body so hard that it cannot be shaped with ordinary available tools. Then after the partially bound body is brought to the final shape required, due regard, however, being had for the fact that the body will utimately shrink to a considerable degree, and therefore must be made a g r than the Application September 20, 1939, Serial No. 295,755
final desired shape; then after a final sintering operation is carried on, either in vacuum or some indifferent gas such as hydrogen at a high temperature of the order of 1400 to 1500 degrees, the common trade practice has heretofore been to place the shaped bodies in carbon boxes and in order to prevent contact between the bodies when a number of relatively small ones are placed in a single box, they are usually packed in loose graphite powder or coarsely granular alumina. The selection of the packing material depends largely upon the character of treatment it is desired to give the. bodies. If graphite powder is used, the tendency is for the bodies to absorb additional amounts of carbon, and if equilibrium is not had in the body, there is a tendency for a case of a more highly carburized material to grow on the body. On the other hand, if alumina is employed, there is a slight tendency to decarburize the pressed body. In an effort to maintain some form of equilibrium, it has been suggested that slightly additional amounts of carbon may be added to parts of the pressed bodies, or in some cases, slight deficiencies of carbon are deliberately employed in the body in order that the final product will reach the desired state of equilibrium.
We have found that all of the difiiculties can be easily and simply overcome and a sintered product obtained which is constant in quality, by the employment of a different character of packing material. In place of the graphite or alumina which has heretofore been used, we em ploy a coarsely granular carbide of a refractory 'metal of the fourth or fifth group, particularly tantalum carbide. This material is highly inert under the conditions, and because it is closely chemically allied to the materials employed in producing the hard carbide, there is not the slightest tendency on its part to react with the hard bodies being sintered.
This carbide is not easily wet by the binder metal of the bodies, and therefore serves to separate the bodies without thermally insulating them. Compared with the graphitepowder or alumina, it has a relatively much greater thermal conductivity and, therefore, quickly aids the bodies in reaching an equilibrium temperature during the variation of temperature during the sintering' process. We have found that compared to the prior hard materials employed that surprisingly uniform results are obtained. An extremely fine carbide powder is not wholly satisfactory. We prefer to employ coarse material since it allows the gaseous atmosphere, whether it be a gas or a vacuum, to circulate freely around the bodies without any difficulty.
We have found that the carbides of the nonradio-active refractory metals of the fourth and fifth groups of the periodic charttitanium, zirconium, hafnium, vanadium, columbium and tantalum, are suitable for this purpose. The employment of pure carbides is not at all essential. Mixed carbides made up of any two or more of the foregoing elements are also suitable.
Tungsten carbide and other carbides of the sixth group have been tried, but we find them to be unsatisfactory because of the ease with which they are wetted by the binder metal. This causes the carbide grains to adhere to the shaped body, and in some cases to draw part of it out of the body by capillarity. That is, of course, unsatisfactory.
The exact method of practicing our invention 7 of at least one nonradioactive refractory metal of the fourth or fifth group, the particles being of sumcient size to permit free flow of gas through the interstices thereof.
.2. In the process of making hard metal bodies, that improvement in the sintering process which includes surrounding the bodies during the sintering operation with loose particles of a carbide selected from the group consisting of tantalum carbide, columbium carbide, and tantalum-columbium carbide, the particles being of sumcient size as to permit free flow of gas through the interstices thereof. v
3. In the process of making hard metal bodies, that improvement in the sintering operation which includes separating the bodies from any adjacent body during the sintering operation by means of loose particles of a carbide of at least 7 one nonradioactive refractory metal of the fourth.
or fifth group, particles being of sufllcientsize as to permit free flow of gas through the interstices thereof.
4. In the process of making hard metal bodies, that improvement in the sintering operation :which includesseparating the hard metal bodies from adjacent bodies during the sintering operation with'loose particles of tantalum carbide, the particles being of sufficient size as to permit free flow of gas through the interstices thereof.
CLARENCE W. BALKE.
CLAIRE C. BALKE.
US295755A 1939-09-20 1939-09-20 Hard metal alloy process Expired - Lifetime US2207708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US295755A US2207708A (en) 1939-09-20 1939-09-20 Hard metal alloy process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US295755A US2207708A (en) 1939-09-20 1939-09-20 Hard metal alloy process

Publications (1)

Publication Number Publication Date
US2207708A true US2207708A (en) 1940-07-16

Family

ID=23139111

Family Applications (1)

Application Number Title Priority Date Filing Date
US295755A Expired - Lifetime US2207708A (en) 1939-09-20 1939-09-20 Hard metal alloy process

Country Status (1)

Country Link
US (1) US2207708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697043A (en) * 1950-10-24 1954-12-14 Fmc Corp Wear resisting material
US2837428A (en) * 1954-04-28 1958-06-03 Union Carbide Corp Method of sintering chromium-alumina metal ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2697043A (en) * 1950-10-24 1954-12-14 Fmc Corp Wear resisting material
US2837428A (en) * 1954-04-28 1958-06-03 Union Carbide Corp Method of sintering chromium-alumina metal ceramics

Similar Documents

Publication Publication Date Title
US2929126A (en) Process of making molded aluminum nitride articles
US3165822A (en) Tungsten carbide tool manufacture
KR950703668A (en) HIGH MELTING POINT METALLIC SILICIDE TARGET AND METHOD FOR PRODUCING THE SAME, HIGH MELTING POINT METALLIC SILICIDE FILM AND SEMICOMDUCTOR DEVICE
US2175899A (en) Process for making metal articles
US2267372A (en) Powdered metal product
US2207708A (en) Hard metal alloy process
US3743499A (en) Method of enlarging the particle size of transition metal powder and carbides thereof
ES391619A1 (en) Ferrous alloys
US1833099A (en) Method of making a composition of matter
US2137144A (en) Process for the production of metal carbides
US4312894A (en) Hard facing of metal substrates
Samsonov et al. Hot pressing of the transition metals and their carbides in their homogeneity regions
US2463404A (en) Process for the production of boron articles
US1968067A (en) Alloy and method of making same
US1812811A (en) Sintered hard metal alloy and articles made thereof
US2998641A (en) Titanium carbide-silver compositions
US979363A (en) Chemical process.
US2124020A (en) Metal alloy
US3859085A (en) Method for producing iron-base sintered alloys with high density
US1895354A (en) Resintered hard metal composition
US2490570A (en) Pyrophoric alloys of lead and zirconium and sparking devices containing the same
US2021576A (en) Composition of matter for steel cutting tools, drawing dies, and the like
US2246166A (en) Sintered hard-metal alloy for implements and tools
US2265010A (en) Hard metal tool alloy and method of producing the same
US2106162A (en) Hard alloys