US2206734A - Continuous heat treating furnace of the vertical type - Google Patents

Continuous heat treating furnace of the vertical type Download PDF

Info

Publication number
US2206734A
US2206734A US161254A US16125437A US2206734A US 2206734 A US2206734 A US 2206734A US 161254 A US161254 A US 161254A US 16125437 A US16125437 A US 16125437A US 2206734 A US2206734 A US 2206734A
Authority
US
United States
Prior art keywords
gas
ducts
transverse
longitudinal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US161254A
Inventor
Stassinet Theodor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schuckertwerke AG
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Application granted granted Critical
Publication of US2206734A publication Critical patent/US2206734A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Definitions

  • My invention relates to continuous heat treating furnaces of the vertical type, and more particularly to electric annealing furnaces.
  • An object of my invention consists in produc- 3 ing a vigorous gas circulation so as to attain an effective heat exchange between the upward moving cold material to be treated and the downward moving heated material.
  • Another object of my invention consists in reducing the ingress of air and the egress of gas at the lower end of the furnace by means of a novel and advantageous arrangement of a gas circulation device.
  • Another object of my invention is to lessen to u a further extent the disadvantages incident to the egress of gas and to the ingress of air by gas sealing devices at points where the material enters and leaves the furnace.
  • Fig. 1 is a sectional elevation in smaller scale than in Fig. 2 of the annealing chamber of an electric furnace of the vertical type for anneal- .5 ing metal strips and which is combined with a heat exchange chamber shown in Fig. 2 arranged below the annealing chamber.
  • Fig 2 is a vertical sectional view of the heat exchange member arranged below the annealing a chamber shown in Fig. 1 and which contains the gas circulation device and the devicesfor preventing the egress of gas and the ingress of air, which form the subject matter of the present invention.
  • FIG. 3 is an enlarged sectional view of a detail shown in Fig. 2 on line 3-3 in that figure.
  • Fig. 4 is a sectional view of a modification of the tubes 26a and 21a in Fig. 2.
  • Figs. 5 to 8 show four other modifications of m the tubes 26a and 21a.
  • the continuous heat treating furnace of the vertical type consists of an annealing chamber l6 surrounded by a metallic outer jacket 2, of a heat insulating brickwork 3 and of an 45 inner jacket 1 made of refractory material and closed at its upper end by a cover 4 whose flange 5 engages in the sealing cup 6.
  • a pulley 8 At the upper end of the annealing chamber is arranged a pulley 8 over which passes the metal strip to be 50 annealed andwhose upward and downward moving portions are denoted by the numeral 2B.
  • the electric heating elements ll, l2 and It independent of each other as to the current supply and the temperature control are assumed to be 1 arranged between.
  • Fig 2 shows the lower portion of the annealing chamber l6 of the furnace with the electric heatersv II and I2, and also the heat exchange 0 chamber l1 arranged below the annealing chamber 16, which latter has a larger diameter than the heat exchange chamber 11'.
  • the upper part of the heat exchange chamber I1 consists of a brickwork l9 surrounded by a gas-tight metal jacket l8 and thelower part thereof is closed by a cover 20.
  • the upward moving portion of the metal strip enters the furnace over a pulley 22 through a narrow tube 23.
  • the downward moving portion of the strip 24 after passing through the heat exchange chamber [1 and the heating zone 16 leaves the furnace through a second narrow tube 25 and. passes over a second pulley 26'.
  • Both the upward moving portion and the 25 downward moving portion of the strip pass within the heat exchange zone l1 through the tubes 26, 21, 26a and 21a respectively which form a continuation of the tubes 23 and 25.
  • the upper ends of the tubes 26 and 21 communicate with 30 the heating zone 16 of the furnace.
  • the tubes 26 and 21, of oval cross-section as shown in Fig. 3, which protects themagainst the deformation of the wall under the action of the heat, are connected in the neighborhood of the furnace end by two transverse ducts 28 and 29 located at different distances from the heatingzone Hi.
  • a blower 28' In the upper transverse duct 28 is arranged a blower 28', whose prime mover is notshown.
  • the furnace atmosphere in the longitudinal tubes 26 and 21 as well as in the transverse ducts 28 and .29 circulates in the direction indicated by the arrows. Consequently, the gases in the furnace tubes 26 and 21 circulate above the transverse duct 29 in a direction opposite to the motion of the strip with the result that an effective heat exchange occurs.
  • the tubes 26 and21 possess several nozzle- I shaped enlargements 30 pointing in the direction in which the gas circulates; one end of the enlargement being provided with a circular flange 3!. The distance between two such nozzleiii) shaped enlargements 30 decreases from the top to the bottom of the furnace.
  • the tubes 26a and 21a arranged between the transverse ducts are so designed that they present an increased resistance.
  • nozzle-shaped enlargements 32 flaring towards the heating zone.
  • the above-described arrangement has the effect that the egress of gas and the ingress of air at the lower end of the furnace is limited to a great extent-in spite of the vigorous gas circulation brought about by the blower 28' and which supports the heat exchange between both portions of the material to be treated.
  • Fig. 4 is a detail sectional view of the tubes 26a or 21a of Fig. 2, whose inner walls are provided with projections or ribs 5
  • walls 52 extending in longitudinal direction of the path 49 and substantially at right angles to and beyond the ribs 5
  • a still better action of the gas sealing device may be obtained, if the ribs 5
  • are bent in a direction opposite to the direction of the flow of gas to be prevented.
  • Fig. 6 shows a somewhat modified form of the ribs 5
  • the ribs are arranged substantially transversely to the direction of motion of the strip and are bent at their ends as indicated at 54.
  • Fig. 7 shows an arrangement which may be employed to advantage if the flow of gas to be prevented can take place in both directions.
  • the longitudinally directed portion 55 which extends from the ribs 5
  • the distance between the transverse walls is preferably chosen of the order of 15-311, where a is the smallest dimension of the opening between the inner edges of opposite transverse walls or the smallest dimension of the opening between the inner edge of a transverse wall and the opposite wall of the opening space if the latter has no transverse wall.
  • the width of the bent edge of the transverse wall or the width of The clear path itaaoavae the flange in front of the transverse wall is taken preferably at 0.5-0.7512.
  • transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in .the transverse duct nearer the heating chamber, for producing a flow of gas through said transverse duct whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas in the firstnamed circuit flows respectively through said longitudinal ducts.
  • an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one
  • the longitudinal duct portions located between said transverse ducts having a plurality of transverse inner ridges spaced apart longitudinally of the duct, and extending inwardly from the duct walls on at least -a portion of the duct lengths and a plurality of longitudinal guide walls circumferentiaily spaced on the inner duct wall and extending substantially at right angles to said ridges and toward the center of the duct, the inner edges of said ridges being bent over against the direction of the gas flow for producing a greater resistance to the gas flow than prevails in the longitudinal gas duct portions included in the first-named gas circuit, whereby the escape of gas from the interior of .the furnace is substantially blocked.
  • an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and a blower in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas I in the first-named circuit flows respectively through said ducts, said longitudinal ducts having a plurality of flared wall portions spaced apart atsuitable distances, each of said portions THEODOR STASSINET.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Furnace Details (AREA)

Description

July :2, 1940.
T. STASSIN E T CONTINUOUS HEAT TREATING FURNACE OF THE VERTICAL TYPE I Filed Aug. 27, 1937 2 Sheets-Sheet l July 2, 1940. T. sTAssmET 2,206,734 CCNTINUCUs HEAT TREATING FURNACE OF THE VERTICAL TYPE Filed Aug. 2'7, 1937 2 Sheets-Sheet 2 IIII' II! ff lillll ll IIII IIIIII IIIIIIII'II Ililll'llhill llflflllllll itlllliillllllliillilIll!!! x I. I.
Patented July 2, 1940 UNITED STATES PATENT OFFICE CONTINUOUS HEAT TREATING FURNACE OF THE VERTICAL TYPE Application August 27, 1937; Serial No. 161,254 In Germany January 4, 1936 6 Claims.
My invention relates to continuous heat treating furnaces of the vertical type, and more particularly to electric annealing furnaces.
An object of my invention consists in produc- 3 ing a vigorous gas circulation so as to attain an effective heat exchange between the upward moving cold material to be treated and the downward moving heated material.
Another object of my invention consists in reducing the ingress of air and the egress of gas at the lower end of the furnace by means of a novel and advantageous arrangement of a gas circulation device.
Another object of my invention is to lessen to u a further extent the disadvantages incident to the egress of gas and to the ingress of air by gas sealing devices at points where the material enters and leaves the furnace.
Further objects will become apparent fromthe following specification'set forth in reference to the accompanying drawings in which:
Fig. 1 is a sectional elevation in smaller scale than in Fig. 2 of the annealing chamber of an electric furnace of the vertical type for anneal- .5 ing metal strips and which is combined with a heat exchange chamber shown in Fig. 2 arranged below the annealing chamber.
Fig 2 is a vertical sectional view of the heat exchange member arranged below the annealing a chamber shown in Fig. 1 and which contains the gas circulation device and the devicesfor preventing the egress of gas and the ingress of air, which form the subject matter of the present invention.
l a Fig. 3 is an enlarged sectional view of a detail shown in Fig. 2 on line 3-3 in that figure.
Fig. 4 is a sectional view of a modification of the tubes 26a and 21a in Fig. 2.
Figs. 5 to 8 show four other modifications of m the tubes 26a and 21a. In Fig. 1, the continuous heat treating furnace of the vertical type consists of an annealing chamber l6 surrounded by a metallic outer jacket 2, of a heat insulating brickwork 3 and of an 45 inner jacket 1 made of refractory material and closed at its upper end by a cover 4 whose flange 5 engages in the sealing cup 6. At the upper end of the annealing chamber is arranged a pulley 8 over which passes the metal strip to be 50 annealed andwhose upward and downward moving portions are denoted by the numeral 2B. The electric heating elements ll, l2 and It independent of each other as to the current supply and the temperature control are assumed to be 1 arranged between. the two portions of the materials to be annealed and partly above the upper pulley} and laterally of the strip material 26 between the latter and the furnace wall. At the lower end of the annealing chamber and where the strip enters and leaves the furnace are arranged gas sealing devices to be hereinafter de-- scribed.
Fig 2 shows the lower portion of the annealing chamber l6 of the furnace with the electric heatersv II and I2, and also the heat exchange 0 chamber l1 arranged below the annealing chamber 16, which latter has a larger diameter than the heat exchange chamber 11'. The upper part of the heat exchange chamber I1 consists of a brickwork l9 surrounded by a gas-tight metal jacket l8 and thelower part thereof is closed by a cover 20. The upward moving portion of the metal strip enters the furnace over a pulley 22 through a narrow tube 23. The downward moving portion of the strip 24 after passing through the heat exchange chamber [1 and the heating zone 16 leaves the furnace through a second narrow tube 25 and. passes over a second pulley 26'.
Both the upward moving portion and the 25 downward moving portion of the strip pass within the heat exchange zone l1 through the tubes 26, 21, 26a and 21a respectively which form a continuation of the tubes 23 and 25. The upper ends of the tubes 26 and 21 communicate with 30 the heating zone 16 of the furnace. The tubes 26 and 21, of oval cross-section as shown in Fig. 3, which protects themagainst the deformation of the wall under the action of the heat, are connected in the neighborhood of the furnace end by two transverse ducts 28 and 29 located at different distances from the heatingzone Hi. In the upper transverse duct 28 is arranged a blower 28', whose prime mover is notshown. When this blower is in operation, the furnace atmosphere in the longitudinal tubes 26 and 21 as well as in the transverse ducts 28 and .29 circulates in the direction indicated by the arrows. Consequently, the gases in the furnace tubes 26 and 21 circulate above the transverse duct 29 in a direction opposite to the motion of the strip with the result that an effective heat exchange occurs. since the hotter gases come into contact with the entering strip and the already more cooled down gases with the strip leaving the furnace. The tubes 26 and21 possess several nozzle- I shaped enlargements 30 pointing in the direction in which the gas circulates; one end of the enlargement being provided with a circular flange 3!. The distance between two such nozzleiii) shaped enlargements 30 decreases from the top to the bottom of the furnace. These enlargements cause a considerable whirling of the gases,
whereby the intensity of the heat exchange is materially increased. The tubes 26a and 21a arranged between the transverse ducts are so designed that they present an increased resistance.
as is hereinafter described, for instance, in connection with Fig. 4 or with modifications shown in Figs, 5 to 8. At the upper end of the furnace tubes 26 and 21 are arranged nozzle-shaped enlargements 32 flaring towards the heating zone.
The above-described arrangement has the effect that the egress of gas and the ingress of air at the lower end of the furnace is limited to a great extent-in spite of the vigorous gas circulation brought about by the blower 28' and which supports the heat exchange between both portions of the material to be treated.
Fig. 4 is a detail sectional view of the tubes 26a or 21a of Fig. 2, whose inner walls are provided with projections or ribs 5|. self for the strip 2| is denoted by the numeral 49. To prevent roughrunning which might be caused by the welded joints of the strip 2| and which might give rise to jamming of the strip 2 I, walls 52 extending in longitudinal direction of the path 49 and substantially at right angles to and beyond the ribs 5| are provided at both sides of the strip 2|. In this case also a plurality of such walls may be arranged in the longitudinal direction.
A still better action of the gas sealing device may be obtained, if the ribs 5| are not straight as shown in Fig. 4 but bent as shown in Fig. 5. The ends 53 of the ribs 5| are bent in a direction opposite to the direction of the flow of gas to be prevented.
Fig. 6 shows a somewhat modified form of the ribs 5|. Here the ribs are arranged substantially transversely to the direction of motion of the strip and are bent at their ends as indicated at 54.
The arrangement shown in Fig. 7 diflers from that according to Fig. 6 in that parts of the ribs While the arrangement shown in Figs. 5 to '7 are preferably employed in cases where a motion of gas is to be expected substantially in the direction as indicated by the arrows, Fig. 8 shows an arrangement which may be employed to advantage if the flow of gas to be prevented can take place in both directions. Here, the longitudinally directed portion 55 which extends from the ribs 5| arranged transversely to the direction of motion of the strip is so shaped that it extends both in the direction of the flow of air entering the furnace and in the-direction of the flow of gas leaving the same.-
The distance between the transverse walls is preferably chosen of the order of 15-311, where a is the smallest dimension of the opening between the inner edges of opposite transverse walls or the smallest dimension of the opening between the inner edge of a transverse wall and the opposite wall of the opening space if the latter has no transverse wall. The width of the bent edge of the transverse wall or the width of The clear path itaaoavae the flange in front of the transverse wall is taken preferably at 0.5-0.7512.
I I claim as my invention:
1. In an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace 'end to and away v from said heating chamber andfreely opening into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in .the transverse duct nearer the heating chamber, for producing a flow of gas through said transverse duct whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas in the firstnamed circuit flows respectively through said longitudinal ducts.
2. In an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one
including the heating chamber and the. adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas in the first-named circuit flows respectively through said longitudinal ducts, and means for producing in the portions of the longitudinal ducts located between said transverse ducts a greater resistance to the gas flow than prevails in the longitudinal duct portions included in the first-named gas circuit, whereby the escape of gas from the interior of the furnace is substantially blocked.
3. In an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening into the latter and serving for supplying and discharging the mate r-ial under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located'be-- which the gas in the first-named circuit flows respectively through said ducts, the longitudinal duct portions located 'between said longitudinal transverse ducts having a plurality of transverse inner ridges spaced apart longitudinally of the duct, and extending inwardly from the duct walls on at least a portion of the duct lengths and a plurality of longitudinal guide walls circumferentially spaced on the inner duct wall and extending substantially at right angles to said ridges and toward the center of the duct, for producing a greater resistance to the gas flow than prevails in the longitudinal gas duct portions included in the first-named gas circuit,
ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and means in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one
including the heating chamber and the adjacent portions of said longitudinalducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas in the first-named circuit flows respectively through said longitudinal ducts, the longitudinal duct portions located between said transverse ducts having a plurality of transverse inner ridges spaced apart longitudinally of the duct, and extending inwardly from the duct walls on at least -a portion of the duct lengths and a plurality of longitudinal guide walls circumferentiaily spaced on the inner duct wall and extending substantially at right angles to said ridges and toward the center of the duct, the inner edges of said ridges being bent over against the direction of the gas flow for producing a greater resistance to the gas flow than prevails in the longitudinal gas duct portions included in the first-named gas circuit, whereby the escape of gas from the interior of .the furnace is substantially blocked.
5. In an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening, into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and a blower in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the g-asin the first-named circuit flows respectively through said ducts, said longitudinal ducts having a plurality of flared wall portions spaced apart at suitable distances, each of said portions being flared in the direction, of the gas flow and a the extreme end of the flared portion being suddenly reduced to the normal cross section of the duct, whereby the escape of gas from the interior of the furnace is substantially blocked.
6. In an elongated continuous heat-treating furnace having a heating chamber at one end and two longitudinal ducts leading from the other furnace end to and away from said heating chamber and freely opening into the latter and serving for supplying and discharging the material under treatment, at least two transverse ducts located at different distances from the heating chamber and connecting said longitudinal ducts, and a blower in the transverse duct nearer the heating chamber, for producing a flow of gas whereby two gas circuits are formed, one including the heating chamber and the adjacent portions of said longitudinal ducts, and the other including the second transverse duct and the longitudinal duct portions located between said transverse ducts and traversing said longitudinal ducts opposite to the directions in which the gas I in the first-named circuit flows respectively through said ducts, said longitudinal ducts having a plurality of flared wall portions spaced apart atsuitable distances, each of said portions THEODOR STASSINET.
US161254A 1936-01-04 1937-08-27 Continuous heat treating furnace of the vertical type Expired - Lifetime US2206734A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2206734X 1936-01-04

Publications (1)

Publication Number Publication Date
US2206734A true US2206734A (en) 1940-07-02

Family

ID=7990067

Family Applications (1)

Application Number Title Priority Date Filing Date
US161254A Expired - Lifetime US2206734A (en) 1936-01-04 1937-08-27 Continuous heat treating furnace of the vertical type

Country Status (1)

Country Link
US (1) US2206734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779584A (en) * 1950-09-28 1957-01-29 Selas Corp Of America Strip cooling tower
US2926902A (en) * 1956-01-27 1960-03-01 Sunbeam Equip Heat-treating furnace
US3074041A (en) * 1950-01-31 1963-01-15 Fischer
FR2549084A1 (en) * 1983-06-21 1985-01-18 Chugai Ro Kogyo Kaisha Ltd Heat treatment furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3074041A (en) * 1950-01-31 1963-01-15 Fischer
US2779584A (en) * 1950-09-28 1957-01-29 Selas Corp Of America Strip cooling tower
US2926902A (en) * 1956-01-27 1960-03-01 Sunbeam Equip Heat-treating furnace
FR2549084A1 (en) * 1983-06-21 1985-01-18 Chugai Ro Kogyo Kaisha Ltd Heat treatment furnace

Similar Documents

Publication Publication Date Title
US2115769A (en) Radiant heating tube
US2441500A (en) Electrically heating continuously traveling metal strip
US1890065A (en) Method and apparatus for heat treating sheet metal
US2206734A (en) Continuous heat treating furnace of the vertical type
US1500456A (en) Liquid heater
US3404874A (en) Vacuum furnace
US2507274A (en) Furnace
US2504440A (en) Heating continuously traveling metal strip
US1991449A (en) Furnace
US2023285A (en) Heat treating
US2638889A (en) Heat-treating element for heattreating furnaces
US3279774A (en) Annealing furnace
KR910003537B1 (en) Slow cooling zone provided in a continous steel strip annealing furnace
US3807943A (en) Muffle furnace for treatment of articles on conveyor
US1830412A (en) Air heater
US1433883A (en) Electric furnace
US3021236A (en) Convective heat transfer furnace and method
US1802001A (en) Furnace
KR101903179B1 (en) Continuous annealing furnace
SU218935A1 (en) INSTALLATION FOR HEAT TREATMENT WIRES
US1893731A (en) Oil heating furnace
US1477675A (en) A corpora
US3038711A (en) Continuous kilns
US2135547A (en) Combined combustion chamber and heat exchanger
US2279917A (en) Continuous furnace