US2206002A - Manufacture of polyvalent metal soaps - Google Patents

Manufacture of polyvalent metal soaps Download PDF

Info

Publication number
US2206002A
US2206002A US180532A US18053237A US2206002A US 2206002 A US2206002 A US 2206002A US 180532 A US180532 A US 180532A US 18053237 A US18053237 A US 18053237A US 2206002 A US2206002 A US 2206002A
Authority
US
United States
Prior art keywords
water
naphthenate
solution
solvent
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US180532A
Inventor
Alton J Deutser
Roy F Nelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Inc
Original Assignee
Texaco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Inc filed Critical Texaco Inc
Priority to US180532A priority Critical patent/US2206002A/en
Application granted granted Critical
Publication of US2206002A publication Critical patent/US2206002A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; DRIERS (SICCATIVES); TURPENTINE
    • C09F9/00Compounds to be used as driers (siccatives)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part

Definitions

  • This invention relates to the manufacture of polyvalent metal soaps, and more particularly polyvalent metal naphthenates from naphthenic acids such as are obtained from petroleum.
  • One of the principal objects of this invention is to provide a method of manufacturing metallic soaps of this character which is effective to secure a substantially increased yield of improved prodnot in a simple and economical manner.
  • a water-immiscible solvent in which the polyvalent or heavy metal naphthenate is soluble such as benzol or naphtha, is added to dissolve the precipitated naphthenate; and the mix is allowed to stratify into a water layer and a solvent layer which are then separated.
  • further improvement in the manufacture of metallic soaps such as naphthenates-of this character is effected by adding the water-immiscible organic solvent to the water solution of the alkali metal naphthenate, and then emulsifying this mix, prior to the addition of the polyvalent or heavy metal salt in solid form.
  • the pH value of the emulsion is adjusted slightly on the alkaline side by the addition of a small excess of NaOH or other base, prior to the addition of the solid salt.
  • the broken emulsion is then allowed to stratify into a water layer and a solvent layer containing the dissolved polyvalent metal naphthenate, and these layers are separated. Thereafter, the separated solvent layer is preferably washed with water one or more times to remove water soluble salts, and the washed solvent layer may then be mixed with a quantity of a heavy mineral oil fraction boiling above the boiling range of the solvent, such as a mineral lubricating oil, and this product is then'flltered through an inactive clay to clarify the same. Following this filtration, the solvent is stripped ofi leaving a concentrate of the polyvalent metal naphthenate in the lubricating oil as a final product. This is particularly desirable where the product is to be used as an additive to a mineral lubricating oil.
  • the addition of the heavy petroleum fraction is omitted, and the solvent layer after washing and filtration is stripped directly.
  • the present invention is applicable to the manufacture of soaps of such metals as tin, iron, zinc, nickel, chromium, manganese, aluminum, copper, lead, and the like.
  • metals such metals as tin, iron, zinc, nickel, chromium, manganese, aluminum, copper, lead, and the like.
  • polyvalent metal is hereinafter used throughout the description and claims to designate metals of this character.
  • stannous naphthenate which is hereinafter described as a preferred embodiment of the invention.
  • 1000# of purified naphthenic acids having a saponification value of 129 and a neutralization number of 125 were mixed with approximately 244 0# of water in a steam heated agitator. The mix was heated to about 150-180 F., and then approximately 190# of a 49% NaOH solution was added with continued stirring. The quantity of caustic soda was calculated to neuadded together with an additional 42 gallons of' water (approximately 3361*), and the agitation continued at a temperature of 125-150 F. until a homogeneous oil-in-water emulsion was produced, the sodium naphthenate serving as an emulsifying agent. To this emulsion with continued agitation at a temperature oi around.
  • a polyvalent metal soap from a water solution of an alkali metal soap
  • the steps which comprise emulsifying the water solution of alkali metal soap with a low boiling water-immiscible organic solvent, and adding a polyvalent metal salt, which tends to decompose in water, in solid form, unmixed with water, to the emulsion to cause a precipitation of polyvalent metal soap which passes into solution-in the solvent and breaks the emulsion.
  • DOly-' valent metal naphthenate which. comprises neutralizing naphthenic acids with a water solution of an alkali metal base to form a water solution of alkali metal naphthenate, then adding to the solution alow boiling water-immiscible organic solvent in which the polyvalent metal .naphthenate" is soluble and emulsifying the same, thereafter adding a polyvalent metal salt, which exists in the ous form and tends to decompose in water, in solid form unmixed with water to- 'ing the separated solvent layer to remove remaining water soluble salts, adding a heavy pe troleum oil to the washed solvent layer, filtering the resulting solution to clarify the same, and then removing the solvent by stripping to obtain a concentrate of the polyvalent metal napththenate in the heavy petroleum oil.
  • stannous naphthenate which comprises neutralizing naphthenic acids with a water solution of an alkali metal base to form a water .solution of alkali metal naphthenate, adding to the solution a low boiling water-immiscible organic solvent in which stannous naphthenate is soluble and forming a,
  • stannous naphthanate from a water solution of an alkali metal naphthenate
  • steps which comprise emulsifying the water solution with a low boiling waterimmlsclble solvent to form a solvent-ln-water emulsion, and then adding a stannous salt in solid form unmixed with water to the emulsion to cause a precipitation of stannous naphthenate which passes into solution in the solvent and breaks the emulsion.
  • stannous naphthenate which comprises mixing 2-3 parts of water with one part of naphthenic acids, neutrallzing with a water solution of an alkali metal base to form a water solution of alkali metal naphthenate using a slight excess of the base to adjust the pH value of the'resultlng water solution of alkali metal naphthenate to a slight alkalinity, adding to the solution a low boillngjwaterimmiscible organic solvent selected from the group consisting of naphtha and benzol and agitating to form a solvent-ln-water emulsion, then adding slowly to the emulsion with continued agitation crystals of a stannous salt unmixed with water to cause precipitation of stannous na'phthenate which passes into solution in e solvent and breaks the emulsion, and separating the resultant solvent solution .of the stannous naphthenate from the remaining water solution.

Description

MANUFAGTURE F 'POLYVALENT METAL SOAPS Alton .l. Deutser and Roy F. Nelson, Port Arthur, Tex, assignors to The Texas Company, News York, N. Y., a corporation of Delaware No Drawing.
9 Claims.
This invention relates to the manufacture of polyvalent metal soaps, and more particularly polyvalent metal naphthenates from naphthenic acids such as are obtained from petroleum.
One of the principal objects of this invention is to provide a method of manufacturing metallic soaps of this character which is effective to secure a substantially increased yield of improved prodnot in a simple and economical manner.
Other objects and advantages of the invention will be apparent from the following description and the accompanying claims.
In the manufacture of soaps, such as metallic naphthenates of this character, it has heretofore been the practice to effect double decomposition by the addition to a water solution of an alkali metal naphthenate of a water solution of a polyvalent or heavy metal salt to secure a precipitation of the polyvalent or heavy metal naphthenate with concomitant production of a salt of the alkali metal which remains in solution. In the copending application of Charles C. Towne, Serial No. 180,557, there is disclosed that greatly increased yields may be obtained by adding the polyvalent or heavy metal salt in solid form to the water solution of alkali metal naphthenate, thereby preventing secondary or side reactions which are found to occur when the polyvalent or heavy metal salt is added in solution form. Thereafter, a water-immiscible solvent in which the polyvalent or heavy metal naphthenate is soluble, such as benzol or naphtha, is added to dissolve the precipitated naphthenate; and the mix is allowed to stratify into a water layer and a solvent layer which are then separated.
In accordance with the present invention, further improvement in the manufacture of metallic soaps such as naphthenates-of this character is effected by adding the water-immiscible organic solvent to the water solution of the alkali metal naphthenate, and then emulsifying this mix, prior to the addition of the polyvalent or heavy metal salt in solid form. Preferably the pH value of the emulsion is adjusted slightly on the alkaline side by the addition of a small excess of NaOH or other base, prior to the addition of the solid salt. By reason of the emulsification of the alkali metal naphthenate solution by the waterimrniscible solvent, forming anoil in water emulsion, a better reaction of the added solid salt is obtained. Moreover, the proportion of water to naphthenic acids may be reduced, very satisfactory results being obtained by the-use'of from 2-3 parts of water to one part of naphthenic acids. Theaddition of the solid salt with precipi- Application December 18, 1937, Serial No. 180,532
tation of the polyvalent or heavy metal naphthenate in the immediate presence of the droplets of water-immiscible solvent causes the precipitated naphthenate to be taken up rapidly in solution in this solvent, thereby removing it from the zone of reaction and at the same time breaking the emulsion. In this manner, side reactions are avoided and an increased yield of desired product obtained.
The broken emulsion is then allowed to stratify into a water layer and a solvent layer containing the dissolved polyvalent metal naphthenate, and these layers are separated. Thereafter, the separated solvent layer is preferably washed with water one or more times to remove water soluble salts, and the washed solvent layer may then be mixed with a quantity of a heavy mineral oil fraction boiling above the boiling range of the solvent, such as a mineral lubricating oil, and this product is then'flltered through an inactive clay to clarify the same. Following this filtration, the solvent is stripped ofi leaving a concentrate of the polyvalent metal naphthenate in the lubricating oil as a final product. This is particularly desirable where the product is to be used as an additive to a mineral lubricating oil.
Where the polyvalent metal naphthenate is desired to be obtained in solid-form, the addition of the heavy petroleum fraction is omitted, and the solvent layer after washing and filtration is stripped directly.
The present invention is applicable to the manufacture of soaps of such metals as tin, iron, zinc, nickel, chromium, manganese, aluminum, copper, lead, and the like. For purposes of easy description, the expression polyvalent metal is hereinafter used throughout the description and claims to designate metals of this character. The
. present invention appears particularly applicable to the .manufacture of such polyvalent metal soaps in which the metal exists in the ous" form, such for example as stannous, ferrous,
cuprous and the like.
'Unusually good results have been secured by this method in the manufacture of stannous naphthenate, which is hereinafter described as a preferred embodiment of the invention. As an example, 1000# of purified naphthenic acids having a saponification value of 129 and a neutralization number of 125 were mixed with approximately 244 0# of water in a steam heated agitator. The mix was heated to about 150-180 F., and then approximately 190# of a 49% NaOH solution was added with continued stirring. The quantity of caustic soda was calculated to neuadded together with an additional 42 gallons of' water (approximately 3361*), and the agitation continued at a temperature of 125-150 F. until a homogeneous oil-in-water emulsion was produced, the sodium naphthenate serving as an emulsifying agent. To this emulsion with continued agitation at a temperature oi around.
175 F. were added crystals of stannous chloride over a period of approximately hour until 280# of crystals had been introduced. After soap at temperatures varying from normal at-- agitation for a further period of approximately an hour, stirring was then stopped and the mix allowed to stratify into a lower water layer containing dissolved water soluble salts, and an upper naphtha layer containing dissolved stannous naphthenate. The water layer wasthen withdrawn, and the solvent layer washed twice by the addition of five barrels (42 gallons each) of water with stratification and separation of the water layer after each washing step, to thereby remove any water soluble salts remaining in the solvent layer.
To the washed solvent layer was then added "175s of a distillate lubricating oil having a Saybolt viscosity of about 300 at F., and the mix stirred at approximately F. until a uniform solution' was obtained. This mix was then filtered through an inert clay -such as Dlcalite or filter ccl on a Kelly Press, using approximately 100#' of the clay to coat the leaves of the press, in order to clarify the solution of any suspended impurities. The solution was then stripped in a still with steam at 400 F. to remove the naphtha solvent, thereby obtaining 103148 of a concentrated lubricating oil solution of stannous naphthenate of'a dark red color having a green cast and a neutralization number of 13.7. This concentrate contained approximately 888# of stannous naphthenate, representing a conversion of 96%. In other runs in accordance ,with this invention. conversions of as high as 98.5% have been obtained.
While an elevated temperature of the order of about F. was employed in the above example during the precipitation of stannous soap, good results can be obtained by precipitation of the mbspheric temperatures up to said elevated temperature or higher. -It is desirable to maintain temperatures, particularly the temperatures ofstripping'to remove the naphtha, as low as possible in order to preserve the desirable properties and color of the product. For this purpose, a low boiling cutter is employed so that it can be stripped at 'a comparatively, low temperature, particularly with the aid of steam or vacuum or both.
While the invention has been particularly described above in connection with the manufacture of polyvalent metal naphthenates, it is to be understood that this invention is also applicable to the manufacture of polyvalent metal soaps of other acids, such as the higher fatty acids, includ ing stearic, 'oleic, palmitic, etc., and mixtures thereof, and also the substituted fatty acids such as the halogenated fatty acids and the like.
' Obviously many modifications and variations of the inventionjas hereinbefore set forth may be aeoaoca made without departing from the spirit and scope thereof, and therefore only such limitations should be imposed as are indicated in the appended claims.
We claim:
1. In the manufacture of a polyvalent metal soap from a water solution of an alkali metal soap, the steps which comprise emulsifying the water solution of alkali metal soap with a low boiling water-immiscible organic solvent, and adding a polyvalent metal salt, which tends to decompose in water, in solid form, unmixed with water, to the emulsion to cause a precipitation of polyvalent metal soap which passes into solution-in the solvent and breaks the emulsion.
2. The method in the manufacture of a. DOly-' valent metal naphthenate which. comprises neutralizing naphthenic acids with a water solution of an alkali metal base to form a water solution of alkali metal naphthenate, then adding to the solution alow boiling water-immiscible organic solvent in which the polyvalent metal .naphthenate" is soluble and emulsifying the same, thereafter adding a polyvalent metal salt, which exists in the ous form and tends to decompose in water, in solid form unmixed with water to- 'ing the separated solvent layer to remove remaining water soluble salts, adding a heavy pe troleum oil to the washed solvent layer, filtering the resulting solution to clarify the same, and then removing the solvent by stripping to obtain a concentrate of the polyvalent metal napththenate in the heavy petroleum oil.
4. The method in the manufacture of stannous naphthenate which comprises neutralizing naphthenic acids with a water solution of an alkali metal base to form a water .solution of alkali metal naphthenate, adding to the solution a low boiling water-immiscible organic solvent in which stannous naphthenate is soluble and forming a,
solv nt-in-water emulsion thereof, then adding a stannous salt in solid form unmixed with water to the emulsion to cause precipitation of stannous naphthenate which passes into solution in the solvent, and separating the stannous naphthenate from the resulting mix.
5. The method of claim 4, in which the waterimmiscible organic solvent is a naphtha fraction, and in'which the stannous naphthenate is separated by allowing the broken emulsion to stratify and separate into awater layer containing dis- --solved water soluble salts and a naphtha layer containing dissolved stannous naphthenate, separating the layers, washing the separated naphtha layer to remove remaining water soluble salts, adding a mineral lubricating oil to the washed naphtha layenflltering the resulting solution' to remove suspended impurities, and re- .moving the naphtha by stripping to obtain a lubricating oil concentrate of stannous naphthenate.
6. In the manufacture of a polyvalent metal naphthenate from a water solution of an alkali 'metal naphthenate, the steps which comprise aaoaooa emulsifying the water solution with a low bolling water-immiscible organic solvent, and adding a polyvalent metal salt, which tends to decompose in water, in solid form. unmixed with water, to the emulsion to cause a precipitation of polyvalent metal naphthenate which passes into solution in the solvent and breaks the emulsion.
7. In the manufacture of stannous naphthanate from a water solution of an alkali metal naphthenate, the steps which comprise emulsifying the water solution with a low boiling waterimmlsclble solvent to form a solvent-ln-water emulsion, and then adding a stannous salt in solid form unmixed with water to the emulsion to cause a precipitation of stannous naphthenate which passes into solution in the solvent and breaks the emulsion.
v 8. The method of claim '7 in which the pH value oi! the emulsion is adjusted to a slight e kalinlty prior to the addition of the stannous salt.
8. The method in the manufacture of stannous naphthenate which comprises mixing 2-3 parts of water with one part of naphthenic acids, neutrallzing with a water solution of an alkali metal base to form a water solution of alkali metal naphthenate using a slight excess of the base to adjust the pH value of the'resultlng water solution of alkali metal naphthenate to a slight alkalinity, adding to the solution a low boillngjwaterimmiscible organic solvent selected from the group consisting of naphtha and benzol and agitating to form a solvent-ln-water emulsion, then adding slowly to the emulsion with continued agitation crystals of a stannous salt unmixed with water to cause precipitation of stannous na'phthenate which passes into solution in e solvent and breaks the emulsion, and separating the resultant solvent solution .of the stannous naphthenate from the remaining water solution.
ALTON J. nno'rssa. N no: F. NELSON.
US180532A 1937-12-18 1937-12-18 Manufacture of polyvalent metal soaps Expired - Lifetime US2206002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US180532A US2206002A (en) 1937-12-18 1937-12-18 Manufacture of polyvalent metal soaps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US180532A US2206002A (en) 1937-12-18 1937-12-18 Manufacture of polyvalent metal soaps

Publications (1)

Publication Number Publication Date
US2206002A true US2206002A (en) 1940-06-25

Family

ID=22660790

Family Applications (1)

Application Number Title Priority Date Filing Date
US180532A Expired - Lifetime US2206002A (en) 1937-12-18 1937-12-18 Manufacture of polyvalent metal soaps

Country Status (1)

Country Link
US (1) US2206002A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2472424A (en) * 1946-10-02 1949-06-07 Air Reduction Production of cuprous naphthenate
US2510466A (en) * 1946-09-17 1950-06-06 Allied Chem & Dye Corp Process for the preparation of surface-active organic nitrosationsulfitation productsin the polyvalent metal salt form
DE945758C (en) * 1944-08-09 1956-07-19 Karl Heinz Imhausen Dr Process for working up very dilute, aqueous solutions of copper, nickel, cobalt, manganese and the like. Like. By falling as insoluble salts
US20090319992A1 (en) * 2008-06-04 2009-12-24 Microsoft Corporation Configurable partitioning for parallel data

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE945758C (en) * 1944-08-09 1956-07-19 Karl Heinz Imhausen Dr Process for working up very dilute, aqueous solutions of copper, nickel, cobalt, manganese and the like. Like. By falling as insoluble salts
US2510466A (en) * 1946-09-17 1950-06-06 Allied Chem & Dye Corp Process for the preparation of surface-active organic nitrosationsulfitation productsin the polyvalent metal salt form
US2472424A (en) * 1946-10-02 1949-06-07 Air Reduction Production of cuprous naphthenate
US20090319992A1 (en) * 2008-06-04 2009-12-24 Microsoft Corporation Configurable partitioning for parallel data

Similar Documents

Publication Publication Date Title
US2206002A (en) Manufacture of polyvalent metal soaps
DE696109C (en) Process for the preparation of reaction products of divinylbenzene
US2058131A (en) Process of refining hydrocarbon oil
DE842198C (en) Process for the production of vinyl sulfones
US2530757A (en) Extraction of sulfuric acid sludge
US2361547A (en) Soap manufacture
DE3640383A1 (en) HYDROCARBON-SOLUBLE METAL-ORGANIC COMPLEXES OF MAGNESIUM AND ALKALI-METALS AND A METHOD FOR THE PRODUCTION THEREOF
US2411832A (en) Water-insoluble soaps
US2205994A (en) Manufacture of polyvalent metal soaps
US2136608A (en) Process for the recovery of naphthenic acids
US1387835A (en) Process of purifying hydrocarbon oils
US2145784A (en) Refining wax
US1823558A (en) Purification of tar acid-bearing oils
US1425882A (en) Process of treating hydrocarbon oils
US1673045A (en) Process for producing demulsifying agents for refining petroleum oil
US1441417A (en) Purification of hydrocarbons
EP0017771B1 (en) Process for the recovery of 2-hydroxynaphthaline-3-carboxylic acid from the reaction products of the alkali metal salts obtained from 2-hydroxynaphthaline with carbon dioxide
US1938513A (en) Process for working up naphthenic acid soap-containing oily residues
DE738446C (en) Process for the production of decacycles
US1396399A (en) Purification of hydrocarbons
US2674608A (en) Treatment of ricinoleic acid and the derivatives thereof by caustic alkalies
US1716632A (en) Process of refining mineral lubricating oils
DE360274C (en) Process for refining mineral oils
US2286343A (en) Treatment of hydrocarbon oils
US1728059A (en) Method of refining oil