US2198637A - Apparatus for treating metals - Google Patents

Apparatus for treating metals Download PDF

Info

Publication number
US2198637A
US2198637A US247610A US24761038A US2198637A US 2198637 A US2198637 A US 2198637A US 247610 A US247610 A US 247610A US 24761038 A US24761038 A US 24761038A US 2198637 A US2198637 A US 2198637A
Authority
US
United States
Prior art keywords
mass
elements
container
resonant
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US247610A
Inventor
Edward W Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Submarine Signal Co
Original Assignee
Submarine Signal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Submarine Signal Co filed Critical Submarine Signal Co
Priority to US247610A priority Critical patent/US2198637A/en
Application granted granted Critical
Publication of US2198637A publication Critical patent/US2198637A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53796Puller or pusher means, contained force multiplying operator
    • Y10T29/5383Puller or pusher means, contained force multiplying operator having fluid operator

Definitions

  • the present invention relates to apparatus for the treatment of metals, particularly molten metals during solidification, in order to obtain a fine-grainedlstructure in the solidified metal. More particularly the-present invention relates to an apparatus for' vibrating metal-containing molds or crucibles.
  • the present'invention also relates to vibrating apparatus of the type in which a two-mass resonant vibratory system is employed and particularly to such a system in which the mold is to be vibrated along a vertical axis.
  • the present invention provides an improved arrangement for supporting, the mass elements system.
  • the mold is supported and rigidly fixed in any suitable manner to a table 2.
  • the table 2 is arranged so that it can executes'ubstantially free vertical vibrations by being mounted on leaf springs 3 of which there may be any suitable number
  • the leaf springs have their outer ends fixed, as by the bolts i, to steel members 5 which are firmly fixed to the floor or other portion of the foundry. They may, for example, as shown in the drawing, be embedded in the concrete walls 6 of a well formed in the foundry floor.
  • a compensating mass 1 is similarly supported on leaf springs 8.
  • the compensating mass preferably has a mass substantially equal to the mass of the mold plus ancillary elements which'move therewith.
  • the two masses are coupled together by a coil spring 9 which has a suflicient stiffness to make the system resonant at the desired fre- 'particularly to avoid the cut in a helix to fit inside one quency of vibration.
  • the mass ma comprises the mass of the compensating element plus the mass, of all the ancillary elements which are connected to it and move in phase with it.
  • the vibratory system just described may be set into vibration by any suitable means.
  • a guide rod it! is fixed to the table 2 and projects into an aperture I l in the compensating mass i.
  • Fixed to the rod It is the-armature i2 of the electromagnetic system.
  • Below the armature is a plug it also fixed to the rod it.
  • This plug has its external surface the spring 9.
  • one end of the spring 9 is firmly fixed both to the armature and the table 2.
  • the other end of the spring ii is fastened to a similar plug I 4 which is fixed to the compensating mass l.
  • the mass 7 also carries the field magnet 55 having one or more windings I6.
  • the magnet l5 may be fixed to the mass i by means of the bolts ll.
  • the field magnet i5 and the armature I? When the coil i6 is energized by alternating current, the field magnet i5 and the armature I? will move relative to each other along the vertical axis. The masses m1 and me will, therefore, move toward and away from each other at twice the frequency of the alternating current supplied to the coil l6. This frequency is preferably chosen to drive the vibratory system at substantially the resonant frequency of the vibratory system.
  • a mechanical drive is used to impart vibrational energy to the system, as by means of a motor driven eccentric shaft connected to the mold, a change in the mass of the contents of the mold will not change the amplitude of the mold since this is fixed by the mechanical drive, but will change the resonant frequency. If this change is not too great, no change in the driving motor speed is required, although the load on the driving motor will be increased as the difference between the resonant frequency and the driving frequency increases.
  • Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufficient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, the total stiffness of the said resilient means being small compared to the stiffness of the said elastic element.
  • Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufficient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, the total stiffness of the said resilient means being substantially one-fifth of the stiffness of said elastic means.
  • Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said. mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having suflicient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, said resilient means comprising a plurality of leaf springs, each fixed by one end to a support and by the other end to one of said mass elements.
  • Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, theeffective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufiicient elasticity tomake the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, said resilient means comprising a plurality of leaf springs, each fixed by one end to a support and by the other end to one of said mass elements and having a total stiffness not substantially greater than one-fifth of the stiffness of said elestic element.
  • Apparatus for treating metal comprising a rigid support, a plurality of leaf springs, means mounting each of said springs by one end to said support, a container for molten metal, means mounting said container upon the free ends of a group of said springs, a mass element having a mass approximately equal to the mass of said container when filled, means mounting said elementon the free ends of the remaining leaf springs, a helical spring, means connecting one end of said helical spring to said container and the other end to said mass element, electromagnetic means for vibrating said container and said mass-element, said helical spring having a stiffness equal to or times the product of the mass of the filled container plus elements which move therewith and the mass of said mass element plus elements adapted to move therewith divided by'the product of the said masses where w is equal to 21 times the frequency of vibration and said leaf springs having a total stiffness not substantially greater than one-fifth of the stiffness -of said helical spring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

April 30, 1940. E. w. SMITH APPARATUS FOR TREATING METALS Filed Dec. 24, 1938 v 0/ D a 0 I N VENT OR. Edward 14 \5/77 7% BY TTO - Patented Apr. 30, 1940 APPARATUS FOR TREATING METALS 7 Edward .W. Smith, Melrose, Mass, assignor to Submarine'Signal Company, Boston, Mass, a corporation of Maine Application December 24, 1938, Serial No. 247,610 Claims. (Cl. 259-72) The present invention relates to apparatus for the treatment of metals, particularly molten metals during solidification, in order to obtain a fine-grainedlstructure in the solidified metal. More particularly the-present invention relates to an apparatus for' vibrating metal-containing molds or crucibles.
Various forms of apparatus for this purpose were shown in my United States Patent No. 2,116,367, granted May 3, 1938. In that patent I pointed out the desirability of constructing a mold-vibratingapparatus as a two-mass resonant vibratory system composed of two freely vibratable independent mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, one of the mass elements including the container for the molten metal and the other mass element being a compensating mass. In this system the elastic element is given a sufficient elasticity to make the vibratory system resonant at the desired frequency of vibration.
The present'invention also relates to vibrating apparatus of the type in which a two-mass resonant vibratory system is employed and particularly to such a system in which the mold is to be vibrated along a vertical axis. The present invention provides an improved arrangement for supporting, the mass elements system.
The invention will bestbe understood from the following description taken in connection with the accompanying drawing which shows schematically the arrangement in accordance with the invention.
lin the drawing the container for the molten of the vibratory metal such as a mold or crucible is shown at l.-
The mold is supported and rigidly fixed in any suitable manner to a table 2. The table 2 is arranged so that it can executes'ubstantially free vertical vibrations by being mounted on leaf springs 3 of which there may be any suitable number The leaf springs have their outer ends fixed, as by the bolts i, to steel members 5 which are firmly fixed to the floor or other portion of the foundry. They may, for example, as shown in the drawing, be embedded in the concrete walls 6 of a well formed in the foundry floor. A compensating mass 1 is similarly supported on leaf springs 8. The compensating mass preferably has a mass substantially equal to the mass of the mold plus ancillary elements which'move therewith. The two masses are coupled together by a coil spring 9 which has a suflicient stiffness to make the system resonant at the desired fre- 'particularly to avoid the cut in a helix to fit inside one quency of vibration. This frequency can be determlned mathematically from the formula where w=21r times the frequency, u is the stifiness of the spring and m1 and m: are the two mass elements; m1 may, for instance, comprise the mass of mold I and its contents plus the mass of the table 2 plus the mass of all the ancillary elements directly connected thereto and which vibrate together in phase. Similarly the mass ma comprises the mass of the compensating element plus the mass, of all the ancillary elements which are connected to it and move in phase with it.
Now, in order to preserve as nearly aspossible the theoretically perfect requirement that both masses be free to vibrate, it is necessary that the leaf springs 3, 8 which support the masses have as small a stiffness as possible. This is necessary transmission of vibratory energy to the building or foundations. I have found that the leaf springs form a satisfactorysuspension for the vibratory system if they have a total stiffness not substantially greater than one-fifth of that of the coupling spring 9. f v
It will be understood that the vibratory system just described may be set into vibration by any suitable means. I prefer, however, to use an electromagnetic driving arrangement as shown in the drawing. To this end, a guide rod it! is fixed to the table 2 and projects into an aperture I l in the compensating mass i. Fixed to the rod It is the-armature i2 of the electromagnetic system. Below the armature is a plug it also fixed to the rod it. This plug has its external surface the spring 9. By this means one end of the spring 9 is firmly fixed both to the armature and the table 2. The other end of the spring ii is fastened to a similar plug I 4 which is fixed to the compensating mass l. The mass 7 also carries the field magnet 55 having one or more windings I6. The magnet l5 may be fixed to the mass i by means of the bolts ll.
When the coil i6 is energized by alternating current, the field magnet i5 and the armature I? will move relative to each other along the vertical axis. The masses m1 and me will, therefore, move toward and away from each other at twice the frequency of the alternating current supplied to the coil l6. This frequency is preferably chosen to drive the vibratory system at substantially the resonant frequency of the vibratory system. The
or more turns of resonant frequency will, of course, vary somewhat with variations of the amount and kind of metal in the mold I. If the frequency variation so caused is small, the vibrational amplitude may not be seriously diminished. However, if a serious frequency change occurs, it is merely necessary to vary the frequency of the alternating current supplied to the coil l6 until the new resonant frequency is reached.
If a mechanical drive is used to impart vibrational energy to the system, as by means of a motor driven eccentric shaft connected to the mold, a change in the mass of the contents of the mold will not change the amplitude of the mold since this is fixed by the mechanical drive, but will change the resonant frequency. If this change is not too great, no change in the driving motor speed is required, although the load on the driving motor will be increased as the difference between the resonant frequency and the driving frequency increases.
,. Having now described my invention, I claim:
1. Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufficient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, the total stiffness of the said resilient means being small compared to the stiffness of the said elastic element.
2. Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufficient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, the total stiffness of the said resilient means being substantially one-fifth of the stiffness of said elastic means.
3. Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, the effective mass of one of said. mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having suflicient elasticity to make the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, said resilient means comprising a plurality of leaf springs, each fixed by one end to a support and by the other end to one of said mass elements.
4. Apparatus for vibrating a container for molten metal comprising a two-mass resonant vibratory system composed of two substantially freely vibratable mass elements and an elastic element fixed at one end to one of said mass elements and at the other end to the other of said mass elements, theeffective mass of one of said mass elements including the mass of the metal, the mass of its container and the mass of ancillary elements adapted to move therewith, said elastic element having sufiicient elasticity tomake the vibratory system resonant at the desired frequency of vibration and resilient means for separately supporting each of the two mass elements of the said vibratory system, said resilient means comprising a plurality of leaf springs, each fixed by one end to a support and by the other end to one of said mass elements and having a total stiffness not substantially greater than one-fifth of the stiffness of said elestic element.
5. Apparatus for treating metal comprising a rigid support, a plurality of leaf springs, means mounting each of said springs by one end to said support, a container for molten metal, means mounting said container upon the free ends of a group of said springs, a mass element having a mass approximately equal to the mass of said container when filled, means mounting said elementon the free ends of the remaining leaf springs, a helical spring, means connecting one end of said helical spring to said container and the other end to said mass element, electromagnetic means for vibrating said container and said mass-element, said helical spring having a stiffness equal to or times the product of the mass of the filled container plus elements which move therewith and the mass of said mass element plus elements adapted to move therewith divided by'the product of the said masses where w is equal to 21 times the frequency of vibration and said leaf springs having a total stiffness not substantially greater than one-fifth of the stiffness -of said helical spring.
EDWARD W. SMITH.
US247610A 1938-12-24 1938-12-24 Apparatus for treating metals Expired - Lifetime US2198637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US247610A US2198637A (en) 1938-12-24 1938-12-24 Apparatus for treating metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US247610A US2198637A (en) 1938-12-24 1938-12-24 Apparatus for treating metals

Publications (1)

Publication Number Publication Date
US2198637A true US2198637A (en) 1940-04-30

Family

ID=22935576

Family Applications (1)

Application Number Title Priority Date Filing Date
US247610A Expired - Lifetime US2198637A (en) 1938-12-24 1938-12-24 Apparatus for treating metals

Country Status (1)

Country Link
US (1) US2198637A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444134A (en) * 1946-05-27 1948-06-29 Jeffrey Mfg Co Vibratory conveyer
US2656689A (en) * 1948-06-15 1953-10-27 Muffly Glenn Method of and apparatus for automatic ice-making
US2795343A (en) * 1954-01-07 1957-06-11 Link Belt Co Car shaker
US2875989A (en) * 1956-04-26 1959-03-03 Ohio Commw Eng Co Vibrator mixer
US3215354A (en) * 1961-11-07 1965-11-02 Edward W Smith Vibrating ball mill method and apparatus
US3448747A (en) * 1968-02-15 1969-06-10 Max Isaacson Dual container work processing device
US20010030906A1 (en) * 1999-12-23 2001-10-18 Friedman Mitchell A. Electromagnetic vibratory microplate shaker
US6390660B1 (en) * 1997-03-27 2002-05-21 Bio Merieux Method and device for suspending solid particles in a liquid
US6659637B2 (en) 2000-10-03 2003-12-09 Union Scientific Corporation Vertical electromagnetic shaker for biological and chemical specimens
US8016218B1 (en) 2011-03-16 2011-09-13 Mitchell Friedman Linear specimen shaker
CN101668582B (en) * 2007-02-07 2013-08-07 旋转转矩应用研究中心 Electromagnetic axial agitator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444134A (en) * 1946-05-27 1948-06-29 Jeffrey Mfg Co Vibratory conveyer
US2656689A (en) * 1948-06-15 1953-10-27 Muffly Glenn Method of and apparatus for automatic ice-making
US2795343A (en) * 1954-01-07 1957-06-11 Link Belt Co Car shaker
US2875989A (en) * 1956-04-26 1959-03-03 Ohio Commw Eng Co Vibrator mixer
US3215354A (en) * 1961-11-07 1965-11-02 Edward W Smith Vibrating ball mill method and apparatus
US3448747A (en) * 1968-02-15 1969-06-10 Max Isaacson Dual container work processing device
US6390660B1 (en) * 1997-03-27 2002-05-21 Bio Merieux Method and device for suspending solid particles in a liquid
US20010030906A1 (en) * 1999-12-23 2001-10-18 Friedman Mitchell A. Electromagnetic vibratory microplate shaker
US6508582B2 (en) * 1999-12-23 2003-01-21 Union Scientific Corporation Electromagnetic vibratory microplate shaker
US6659637B2 (en) 2000-10-03 2003-12-09 Union Scientific Corporation Vertical electromagnetic shaker for biological and chemical specimens
CN101668582B (en) * 2007-02-07 2013-08-07 旋转转矩应用研究中心 Electromagnetic axial agitator
US8016218B1 (en) 2011-03-16 2011-09-13 Mitchell Friedman Linear specimen shaker

Similar Documents

Publication Publication Date Title
US2198637A (en) Apparatus for treating metals
GB1570518A (en) Vibrating linear motor for electromagnetic feeders and similar machines
US4017060A (en) Tuned vibratory feeders
US3395296A (en) Dynamoelectric machine mounting with reduced stator vibration
US2481131A (en) Vibrating apparatus
US2217788A (en) Dynamoelectric machine
US2574082A (en) Roto-vibrator
GB1426217A (en) Transformer
US2953697A (en) Magnetic core for dynamoelectric machines
US2237916A (en) Electric motor mounting
US2413340A (en) Torsional vibratory electric motor
JPS60209421A (en) Electromagnetic type vibrator
US2803762A (en) Electromagnetic vibrators
US2712115A (en) Regulators
US2050165A (en) Electromechanical frequency selector
US2289961A (en) Vibration generator
US1293662A (en) Apparatus for casting cementitious material.
US3080538A (en) Center clamped torsional resonator having bearing supported ends
US2140172A (en) Vibrating screen
GB1192614A (en) Improvements relating to Electromagnetic Oscillators
US2130903A (en) Apparatus for preventing resonance
JPH0129617B2 (en)
SU982070A1 (en) Device for demonstrating oscillations
SU656843A1 (en) Vibrated platform
GB2238841A (en) Linear vibratory conveyor