US2182274A - Preparation of cellulose pellets - Google Patents

Preparation of cellulose pellets Download PDF

Info

Publication number
US2182274A
US2182274A US160929A US16092937A US2182274A US 2182274 A US2182274 A US 2182274A US 160929 A US160929 A US 160929A US 16092937 A US16092937 A US 16092937A US 2182274 A US2182274 A US 2182274A
Authority
US
United States
Prior art keywords
pellets
cellulose
pulp
fibers
patches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US160929A
Inventor
Louis S Baker
Schwartz George Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US160929A priority Critical patent/US2182274A/en
Application granted granted Critical
Publication of US2182274A publication Critical patent/US2182274A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/02Rendering cellulose suitable for esterification

Definitions

  • This invention relates to the preparation of cellulose fibers in suitable aggregates for conversion into cellulose derivatives, and more particularly to the preparation of cellulose pellets directly from cellulose pulp.
  • the present sources of cellulose for the preparation of cellulose derivatives are largely from cotton lint, wood fibers, and regenerated cellulose.
  • the cotton lint or wood fibers are used in the form of a loose mass, in thick absorbent sheets, thin tissue, non-uniform aggregates of fibers mixed with free fibers or narrow strips cut into various lengths from dense or loosely compacted sheets.
  • the particles of regenerated cellulose most effective for chemical treatment are small crumbled pieces made by cutting regenerated sheets and screening to uniform size. In all cases a great deal of manipulation is required to eflect the aggregation into the final uniform particle size required. For example, lint or fibers from wood pulp must be beaten and then made into tissue paper which must then be shredded into small flakes.
  • these fibers after sufficient beating are made into loose or dense thick sheets and then cut in two directions to make rectangular pieces.
  • the moist fibers are passed between rotating discs which bruise some of them sufficiently to cause most of them to gather into lumps and short strings of various sizes.
  • the fibers require a great deal of mechanical treatment which cuts part of them into such short lengths that they are I wasted in the subsequent processes.
  • An object of this invention is to prepare short cellulose fibers of a purity suitable for conversion into cellulose derivatives, into small aggregates of uniform sizes, degrees of density and tenacity within the requirement of the cellulose art in which they are to be used. Another object is to prepare these aggregates (pellets) without cutting, crushing or abrading individual fibers more than the requirement for the specific use. A further object is to effect this pellet formation directly from the slush pulp stage without going through the costly steps of sheet formation, drying and cutting.
  • cellulose fibers in the form of a slurry ordinarily obtained in a pulp mill such as a slurry of 5-10% consistency
  • the purified lint or wood pulp fibers as they come from the pulp millafter their last washing step, at which stage they are usually at a consistency of about 5-l0%. At these consistencies they may be readily pumped from one process to another.
  • the fibers may be obtained from wet lap or dry pulp. These pulps are converted to a slurry by heaters.
  • I I Fig. 1 is a side elevation showing the wet end of a Fourdrinier machine with special attachments and dryer system;
  • Fig. 21 s a detail of a portion of the belt showing one pattern of perforations therein.
  • a preferred procedure is as follows: the pulp slurry from a beater or other source, as described in the examples below, at a consistency of about 5% is diluted by the recirculation of water from the Fourdrinier system to a consistency of about 0.5%. From the flow box I it passes through troughs or other suitable conduits around the end of the roll 2 where it is distributed by the apron 3 into the perforations of belt 5 and on the face of the wire forming screen 4.
  • Belt 5 is made of flexible-material such as rubber, it is from to 2; inch thick and is perforated with holes of any size and shape.
  • a suitable pattern of-perforations is illus 55 trated in Fig. 2.
  • the slurry fills these perfora tions and passes beneath the slices or doctors 6 and overthe suction boxes I which serve to remove the free water.
  • the belt 5 rises from the wire forming screen 8 leaving on the screen platelets or patches of fibers, indicated at 8, as little discs of fiber felted into sheet form and separated from each other so that subsequent pressure does not cause their edges to coalesce.
  • These pass under a couch roll 9 which should be padded with material such as felt or porous rubber, to remove excess water.
  • pellets should be made of canvas or wire screenin order to facilitate passage of heated air upward through the belt.
  • the pellets may be dried to any degree required up to dry fiber weight by simple passage through the heated chamber l3. However, if dried to only 50% dry fiber weight, they are strong enough for handling without undue coalescence. These pellets when dried to 95% dry fiber weight may be packed in containers by simple vibration settling to give compact masses.
  • Example II to inch long. These pellets, packed in a container by vibration, weighed 11.0 pounds per cubic foot.
  • Example III A high alpha-cellulose mercerized sulfite pulp was treated in the beater as in Example I in order to obtain the same weight per pellet and the same moisture content in the dried product, but the beater treatment was stopped when the pulp had a freeness of 46 seconds.
  • the pellets were from inch to inch in diameter and from 35 to 5 9 inch long.
  • Cellulose fiber pellets prepared according to our process may be used for the manufacture of cellulose nitrate, cellulose acetate and propionate, cellulose ethers, viscose, etc. Nitration, acetylation and etheriflcation of cellulose, for instance,
  • Example IV nitrating acid mixture containing a low nitric acid content, e. g. 30%, pellets of low bulk density should be used, while with denser pellets it may benecessary to use a nitrating acid containing 40% or more nitric acid content, the requirement being that the nitric concentration be high enough to avoid excessive gelatinization of the fiber of the pellet used.
  • the nitrogen content of the resulting nitrated pellets can be controlled, as is well known in the art, by controlling the sulfuric to water ratio in the nitrating acid mixture. It is desirable to agitate the pel lets in the nitrating acid mixture throughout the nitration period.
  • the nitration ratio that is, the ratio of nitrating mixture to pellets, may be approximately 40 to 1; but if the density of the pellets is comparatively high it may be possible to obtain satisfactory'nitration at a lower ratio, while if the density is low it may be desirable to resort to higher ratios in order to obtain satisfactory nitration.
  • Example V One hundred parts of air-dry cellulose pellets or agglomerates as prepared by the process of Example II, are treated with 500 parts of glacial acetic acid at a temperature of 20 C. for a period of two hours with constant shaking.
  • cellulose in the form of the above-described agglomerates is also particularly suited for acetylation by the heterogeneous process in which the reaction is carried out in a non-solvent type diluent such as benzene. It is also to be understood that cellulose in the above physical form can be employed in the preparation of other cellulose esters.
  • Example VI One hundred (100) parts of cellulose pulp pellets or agglomerates, as by Example 11 above, 240 parts of sodium hydroxide, 120 parts of water, 300 parts of ethyl chloride, and 500 parts of benzene are charged into an autoclave, agitated and heated gradually to 150 C. over a period of two to three hours, and maintained at this temperature while continuing mixing for seven to eight hours.
  • the reaction mixture consists of a solution of ethyl cellulose in benzene, ethyl alcohol and diethyl ether (the last two components are lay-products), in which are suspended crystals of sodium chloride and excess caustic solution.
  • the mixture is treated with water to dissolve the salt and then steam-distilled during agitation to remove the volatile solvents.
  • the ethyl cellulose remains as an amorphous, granular mass suspended in the alkaline salt solution. It is purified by washing with water steeping in dilute acid to neutralize any trace of alkali and then washed to remove all traces of acid. The product after drying dissolves in benzene, toluene-alcohol, ethyl acetate and a number of other solvents. Films produced from the material show a high degree of clarity and toughness. l'he product is especially suited for the manufacture of molded plastics, film, transparent foils, lacquers, artificial leather, etc.
  • cellulose ethers may be produced using the cellulose pulp agglomerates.
  • cellulose ethers may be produced by other modifications of the general etherification process.
  • alkali cellulose suitable for etherification or for xanthation may be produced by steeping the agglomerates in caustic solution and pressing to remove the excess liquor, and then etherified by treatment with etherifying agent.
  • alkali cellulose produced as described may be treated first with solid alkali and then, after mixing, with the etherifying agent.
  • This invention is applicable to the pelleting of any kind of fibrous cellulosic material that can be made into a slurry which will operate on'a paper machine.
  • the perforations in the pattern felt must be'of suitable dimension and, in general, should be larger than inch in diameter.
  • the density of the pellet can be controlled by the choice of fibers, degree of heating, temperature of the water in the forming stage, pressure of the top couch roll, and pressure of the roll which forms the patches into pellets.
  • the end point of the beating operation may be controlled by the freeness test and examples have been given wherein the beating was stopped at a freeness as low as 46 seconds and as high as 260 seconds.
  • pulp outside this range may be used satisfactorily where exceptionally low or high bulk density of product is desired.
  • the pulp has a freeness ranging from about to about 300 seconds measured on the freeness tester described in U. S. Patent 1,857,100.
  • the mean weight of the individual pellets (best stated as number per gram) may be calculated from the consistency of the pulp and the volume of belt perforation, and conversely the required magnitude of any one of these three factors may be calculated if the other two are known.
  • the kind of forming surface may be that of a Fourdrinier or cylinder machine.
  • the pattern belt may be of any flexible, material such as a wire screen having a pattern made by filling in the meshes with water-insoluble material to form the patches on the screen, such pattern belt may in this case be the forming screen- It may be made from sheet metal with suitable perforations. It may be of various thicknesses depending on the amount of fibers to be deposited on a given area. A rubber composition belt of inch thickness is suitable for most purposes.
  • the rolling of patches into the individual rolls or pellets may be done by any rubbing-rolling device that does not injure the screen.
  • a soft rubher-covered roll is satisfactory for most purposes.
  • the shape of the pellets may be varied by varying the shape of the perforations in the flexible belt, by the position in respect to the direction of the pelleting roll, and by the thickness of the original patches of fibers deposited on the forming wire.
  • spherical pellets may be made by rubbing an elliptical patch of! the wire lengthwise provided the thickness of the patch is correct.
  • the drying process may be accomplished in any known manner for drying discrete bundles of cellulose fibers. Force drying by passage through a heated chamber on a porous endless belt is satisfactory for most purposes.
  • the pellets may be used at about 60% dry fiber weight.
  • a process of preparing directly from. a cellulose-containing fibrous pulp slurry, small pellets of cellulose of uniform size and density which comprises feeding a pulp slurry of paper making consistency onto a forming screen in the form of uniformly sized platelets or patches, removing free liquid from the pulp slurry by suction through said forming screen, removing the platelets or patches irom the forming screen by a rubbing and rolling action exerted by a surface moving in a direction directly opposed to that of the screen whereby the platelets or patches are rolled into pellets, and drying the pellets.
  • a process of preparing directly from a cellulose-containing fibrous pulp slurry, smallpellets of cellulose of uniform size and density which comprises feeding a pulp slurry having a freeness within the range of about 40 seconds to about 300 seconds onto a forming screen in the form of uniformly sized platelets or patches, removing free liquid from the pulp slurry by suction through said forming screen, removing the platelets or patches from the forming screen by a rubbing and rolling action exerted by a surface moving in a direction directly opposed to that of the screen whereby the platelets or patches are rolled into pellets, and drying the pellets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paper (AREA)

Description

Dec. 5, 1939. s. BAKER ET AL 2,182,274
PREPARATION OF CELLULOSE PELLETS Filed Aug. 25, 1937 INVENTORS ATTO NEY Patented Dec. 5, 1939 PATENT OFFICE PREPARATION OF CELLULOSE PEILETS Louis S. Baker. Parlin, N. 3., and George Lewis Schwartz, Wilmington, Del., assignors to E. I. du Pont de Nemours & Company, Wilmington, Del., a corporation of Delaware Application August 25, 1937, Serial No. 160,929
20laims.
This invention relates to the preparation of cellulose fibers in suitable aggregates for conversion into cellulose derivatives, and more particularly to the preparation of cellulose pellets directly from cellulose pulp.
The present sources of cellulose for the preparation of cellulose derivatives are largely from cotton lint, wood fibers, and regenerated cellulose. The cotton lint or wood fibers are used in the form of a loose mass, in thick absorbent sheets, thin tissue, non-uniform aggregates of fibers mixed with free fibers or narrow strips cut into various lengths from dense or loosely compacted sheets. The particles of regenerated cellulose most effective for chemical treatment are small crumbled pieces made by cutting regenerated sheets and screening to uniform size. In all cases a great deal of manipulation is required to eflect the aggregation into the final uniform particle size required. For example, lint or fibers from wood pulp must be beaten and then made into tissue paper which must then be shredded into small flakes. Or these fibers after suficient beating are made into loose or dense thick sheets and then cut in two directions to make rectangular pieces. In one method, the moist fibers are passed between rotating discs which bruise some of them sufficiently to cause most of them to gather into lumps and short strings of various sizes. In each method the fibers require a great deal of mechanical treatment which cuts part of them into such short lengths that they are I wasted in the subsequent processes.
An object of this invention is to prepare short cellulose fibers of a purity suitable for conversion into cellulose derivatives, into small aggregates of uniform sizes, degrees of density and tenacity within the requirement of the cellulose art in which they are to be used. Another object is to prepare these aggregates (pellets) without cutting, crushing or abrading individual fibers more than the requirement for the specific use. A further object is to effect this pellet formation directly from the slush pulp stage without going through the costly steps of sheet formation, drying and cutting. These and other objects will more clearly appear hereinafter.
We have found that cellulose fibers in the form of a slurry ordinarily obtained in a pulp mill, such as a slurry of 5-10% consistency, may be formed into pellets, after diluting the slurry to paper making consistency 0.5-l.0%), by running this slurry onto a wire forming screen covered by a suitable perforated belt, removing water from the slurry by suction, pressing out excess water with a resilient surface couch roll, rolling the patches of fibers into pellets with a resilentsurfaced roll, dropping the pellets onto a belt conveyor and drying them by passing them through a heated chamber.
As the starting material for'our process we use the purified lint or wood pulp fibers as they come from the pulp millafter their last washing step, at which stage they are usually at a consistency of about 5-l0%. At these consistencies they may be readily pumped from one process to another. We take pulp at this consistency and give it a beater treatment to obtain a smooth dispersion of the degree of hydration to give pellets of the bulk density required. If fairly bulky pellets are required, we merely add water to the dispersed pulp to bring it to the consistency required for good sheet formation, which in general is about 0.5% to about 1.0%. If dense pellets are required, we beat the pulp with the roll set to avoid cutting but to produce a certain degree of fibrillation and then dilute to paper making consistency. The result of this beating treatment is termed hydration" in the paper industry. When it is advantageous to use pulp from some source in which it must be trans ported to the pelleting mechanism, the fibers may be obtained from wet lap or dry pulp. These pulps are converted to a slurry by heaters.
For forming the fibers into little patches on a forming wire, we may use any type of paper machine forming device such as a fourdrin'ier or cylinder. An a paratus suitable for carrying out our process is illustrated in the accompanying drawing wherein: I I Fig. 1 is a side elevation showing the wet end of a Fourdrinier machine with special attachments and dryer system; and
Fig. 21s a detail of a portion of the belt showing one pattern of perforations therein. Referring to the drawing, Fig. 1, a preferred procedure is as follows: the pulp slurry from a beater or other source, as described in the examples below, at a consistency of about 5% is diluted by the recirculation of water from the Fourdrinier system to a consistency of about 0.5%. From the flow box I it passes through troughs or other suitable conduits around the end of the roll 2 where it is distributed by the apron 3 into the perforations of belt 5 and on the face of the wire forming screen 4. Belt 5 is made of flexible-material such as rubber, it is from to 2; inch thick and is perforated with holes of any size and shape. A suitable pattern of-perforations, by way of example, is illus 55 trated in Fig. 2. The slurry fills these perfora tions and passes beneath the slices or doctors 6 and overthe suction boxes I which serve to remove the free water. After passing the last suction box the belt 5 rises from the wire forming screen 8 leaving on the screen platelets or patches of fibers, indicated at 8, as little discs of fiber felted into sheet form and separated from each other so that subsequent pressure does not cause their edges to coalesce. These pass under a couch roll 9 which should be padded with material such as felt or porous rubber, to remove excess water. After pressing they remain upon the wire 5 until it has reversed its direction and the patches are upside down, at which point they are gently pressed by a soft rubber padded roll l0 which is rotating in a direction reverse to the travel of the screen. This rubs the patches oil the wire and at the same time rolls them into little cigar-shaped pellets ll. These pellets fall upon the moving conveyor belt l2 which carries them through the heated drying chamber l3 where they are dried to the required degree of dryness, From the drier the pellets are carried by the conveyor It to the collecting receptacle l4 and any adhering pellets are removed from the screen by air jet 15. The screen 4 is cleaned by means of the usual showers l6 which strike it after it passes the pelleting roll I0. The belt conveyor I! should be made of canvas or wire screenin order to facilitate passage of heated air upward through the belt. The pellets may be dried to any degree required up to dry fiber weight by simple passage through the heated chamber l3. However, if dried to only 50% dry fiber weight, they are strong enough for handling without undue coalescence. These pellets when dried to 95% dry fiber weight may be packed in containers by simple vibration settling to give compact masses.
The following examples further illustrate the invention.
Example! A bleached sulfite pulp containing 95% alphacellulose was dispersed in a Hollander type beater with enough water to form a 5% consistency. The roll was set so there was neither cutting nor fibrillation. When all lumps of fiber had disappeared the freeness was 124 seconds on the freeness tester described in U. S. Patent 1,857,100. The pulp was d luted with water at 25 C. to a 0.5% consistency. It was then poured into a sheet mold equipped with a, rubber belt perforated with M inch circular holes spaced inch center to center. After suction to remove free water the perforated belt was removed and the patches were rolled into pellets with a piece of porous rubber. The pellets were dried in an oven to 95% dry fiber weight. They were from $5 to /528 inch in d ameter and from to inch in length. These pellets were packed in a container by vibration and under these conditions they weighed 6.8 poundsper cubic foot.
Example II to inch long. These pellets, packed in a container by vibration, weighed 11.0 pounds per cubic foot.
Example III A high alpha-cellulose mercerized sulfite pulp was treated in the beater as in Example I in order to obtain the same weight per pellet and the same moisture content in the dried product, but the beater treatment was stopped when the pulp had a freeness of 46 seconds. The pellets were from inch to inch in diameter and from 35 to 5 9 inch long.
Cellulose fiber pellets prepared according to our process may be used for the manufacture of cellulose nitrate, cellulose acetate and propionate, cellulose ethers, viscose, etc. Nitration, acetylation and etheriflcation of cellulose, for instance,
using the pellets of our invention can be effected as follows:
Example IV nitrating acid mixture containing a low nitric acid content, e. g. 30%, pellets of low bulk density should be used, while with denser pellets it may benecessary to use a nitrating acid containing 40% or more nitric acid content, the requirement being that the nitric concentration be high enough to avoid excessive gelatinization of the fiber of the pellet used. The nitrogen content of the resulting nitrated pellets can be controlled, as is well known in the art, by controlling the sulfuric to water ratio in the nitrating acid mixture. It is desirable to agitate the pel lets in the nitrating acid mixture throughout the nitration period. The nitration ratio, that is, the ratio of nitrating mixture to pellets, may be approximately 40 to 1; but if the density of the pellets is comparatively high it may be possible to obtain satisfactory'nitration at a lower ratio, while if the density is low it may be desirable to resort to higher ratios in order to obtain satisfactory nitration.
Example V One hundred parts of air-dry cellulose pellets or agglomerates as prepared by the process of Example II, are treated with 500 parts of glacial acetic acid at a temperature of 20 C. for a period of two hours with constant shaking.
Two (2) to 4 parts of sulfuric acid are added in an additional quantity of 40 parts of acetic acid and the agitation continued at a temperature of 20 C. for an additional period of two hours. A total of 225 parts of acetic anhydride are then added in small quantities over a period of one hour and the resulting mixture tumbled until a clear triacetate solution is obtained. Increasing the temperature to 40-50 C. during the latter stages of acetylation accelerates greatly the rate of esteriflcation. In order to prepare the acetone-soluble type of cellulose acetate, sufficient aqueous acetic acid of approximately 60-70% strength is added to the triacetate gum to destroy the excess anhydride and reduce the acetic acid content of the solution to approximately 95%. The resulting solution is then etc.
In addition to the above homogeneous procedure for preparing cellulose acetate, cellulose in the form of the above-described agglomerates is also particularly suited for acetylation by the heterogeneous process in which the reaction is carried out in a non-solvent type diluent such as benzene. It is also to be understood that cellulose in the above physical form can be employed in the preparation of other cellulose esters.
Example VI One hundred (100) parts of cellulose pulp pellets or agglomerates, as by Example 11 above, 240 parts of sodium hydroxide, 120 parts of water, 300 parts of ethyl chloride, and 500 parts of benzene are charged into an autoclave, agitated and heated gradually to 150 C. over a period of two to three hours, and maintained at this temperature while continuing mixing for seven to eight hours. The reaction mixture consists of a solution of ethyl cellulose in benzene, ethyl alcohol and diethyl ether (the last two components are lay-products), in which are suspended crystals of sodium chloride and excess caustic solution. The mixture is treated with water to dissolve the salt and then steam-distilled during agitation to remove the volatile solvents. The ethyl cellulose remains as an amorphous, granular mass suspended in the alkaline salt solution. It is purified by washing with water steeping in dilute acid to neutralize any trace of alkali and then washed to remove all traces of acid. The product after drying dissolves in benzene, toluene-alcohol, ethyl acetate and a number of other solvents. Films produced from the material show a high degree of clarity and toughness. l'he product is especially suited for the manufacture of molded plastics, film, transparent foils, lacquers, artificial leather, etc.
By varying the etherifying agent and the reaction conditions, other cellulose ethers may be produced. Using the cellulose pulp agglomerates, cellulose ethers may be produced by other modifications of the general etherification process. For example, alkali cellulose suitable for etherification or for xanthation may be produced by steeping the agglomerates in caustic solution and pressing to remove the excess liquor, and then etherified by treatment with etherifying agent. Also, alkali cellulose produced as described may be treated first with solid alkali and then, after mixing, with the etherifying agent.
' This invention is applicable to the pelleting of any kind of fibrous cellulosic material that can be made into a slurry which will operate on'a paper machine. For the longer fibers, such as linters, flax, ramie, rayon waste, etc., the perforations in the pattern felt must be'of suitable dimension and, in general, should be larger than inch in diameter. The density of the pellet can be controlled by the choice of fibers, degree of heating, temperature of the water in the forming stage, pressure of the top couch roll, and pressure of the roll which forms the patches into pellets. By varying these factors and especially by varying the degree and severity of the beating, we may vary within a fairly wide range both the density of the individual pellet and the bulk density as defined by weight per cubic foot, which may vary from about 6 pounds to about 20 pounds or even higher. As is known in the art, the end point of the beating operation may be controlled by the freeness test and examples have been given wherein the beating was stopped at a freeness as low as 46 seconds and as high as 260 seconds. However, pulp outside this range may be used satisfactorily where exceptionally low or high bulk density of product is desired. Preferably the pulp has a freeness ranging from about to about 300 seconds measured on the freeness tester described in U. S. Patent 1,857,100. The mean weight of the individual pellets (best stated as number per gram) may be calculated from the consistency of the pulp and the volume of belt perforation, and conversely the required magnitude of any one of these three factors may be calculated if the other two are known.
v The kind of forming surface may be that of a Fourdrinier or cylinder machine.
The pattern belt may be of any flexible, material such as a wire screen having a pattern made by filling in the meshes with water-insoluble material to form the patches on the screen, such pattern belt may in this case be the forming screen- It may be made from sheet metal with suitable perforations. It may be of various thicknesses depending on the amount of fibers to be deposited on a given area. A rubber composition belt of inch thickness is suitable for most purposes.
The rolling of patches into the individual rolls or pellets may be done by any rubbing-rolling device that does not injure the screen. A soft rubher-covered roll is satisfactory for most purposes.
The shape of the pellets may be varied by varying the shape of the perforations in the flexible belt, by the position in respect to the direction of the pelleting roll, and by the thickness of the original patches of fibers deposited on the forming wire. Thus, spherical pellets may be made by rubbing an elliptical patch of! the wire lengthwise provided the thickness of the patch is correct.
The drying process may be accomplished in any known manner for drying discrete bundles of cellulose fibers. Force drying by passage through a heated chamber on a porous endless belt is satisfactory for most purposes.
-The most suitable degree of drying depends upon the use to which the pellets are to be put. For purposes of nitration, acetylation, etc., dryness of 95% dry fiber weight and above is desirable. For the preparation of low-substituted cellulose ethers such as alkali-soluble methyl cellulose, the pellets may be used at about 60% dry fiber weight.
Y One advantage of this process for preparing pellets from cellulose fibers is to increase the yields of derivatives because the shorter fibers are held intact within the individual pellets during the process step required to make cellulose derivatives. Another advantage is that the size, shape and density of these pellets can be controlled so that wetting by reagent is rapid and uniform. These pellets may be handled more easily than other forms of cellulose fibers with of the process from the pulp purification process to the pellet stage which utilizes pulp in a form of lowest known cost (slush pulp) and avoids the sheeting and cutting steps required by previous processes.
The above description is for purposes of iilustration only, it being understood that obvious variations and modifications falling within the spirit of the invention as defined in the appended claims are to be included within the scope thereof.
We claim: 5
1. A process of preparing directly from. a cellulose-containing fibrous pulp slurry, small pellets of cellulose of uniform size and density, which comprises feeding a pulp slurry of paper making consistency onto a forming screen in the form of uniformly sized platelets or patches, removing free liquid from the pulp slurry by suction through said forming screen, removing the platelets or patches irom the forming screen by a rubbing and rolling action exerted by a surface moving in a direction directly opposed to that of the screen whereby the platelets or patches are rolled into pellets, and drying the pellets.
2. A process of preparing directly from a cellulose-containing fibrous pulp slurry, smallpellets of cellulose of uniform size and density, which comprises feeding a pulp slurry having a freeness within the range of about 40 seconds to about 300 seconds onto a forming screen in the form of uniformly sized platelets or patches, removing free liquid from the pulp slurry by suction through said forming screen, removing the platelets or patches from the forming screen by a rubbing and rolling action exerted by a surface moving in a direction directly opposed to that of the screen whereby the platelets or patches are rolled into pellets, and drying the pellets.
LOUIS S. BAKER. GEORGE LEWIS SCWARTZ.
US160929A 1937-08-25 1937-08-25 Preparation of cellulose pellets Expired - Lifetime US2182274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US160929A US2182274A (en) 1937-08-25 1937-08-25 Preparation of cellulose pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US160929A US2182274A (en) 1937-08-25 1937-08-25 Preparation of cellulose pellets

Publications (1)

Publication Number Publication Date
US2182274A true US2182274A (en) 1939-12-05

Family

ID=22579074

Family Applications (1)

Application Number Title Priority Date Filing Date
US160929A Expired - Lifetime US2182274A (en) 1937-08-25 1937-08-25 Preparation of cellulose pellets

Country Status (1)

Country Link
US (1) US2182274A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2444626A (en) * 1942-05-09 1948-07-06 Goodrich Co B F Method and apparatus for continuously transforming a dispersion of a rubbery material into a sheet
US2593786A (en) * 1947-06-19 1952-04-22 Olin Ind Inc Regenerated cellulose pellets
US2675745A (en) * 1954-04-20 Protection of dispersed asbestos
US3021254A (en) * 1959-09-25 1962-02-13 Crown Zeilerbach Corp Method and apparatus for dewatering pulp and the resulting product
US3047453A (en) * 1959-04-06 1962-07-31 Sprout Waldron & Co Inc Pulp handling system, method and apparatus
US4269859A (en) * 1979-04-19 1981-05-26 Brown Company Cellulose floc granules and process
US5230943A (en) * 1991-11-29 1993-07-27 Pulptech Corporation Free-flowing dunnage of molded pulp
US5622600A (en) * 1993-09-09 1997-04-22 Marcal Paper Mills, Inc. Dyed particulate or granular materials from recycled paper and process for making the materials
US5728270A (en) * 1993-09-09 1998-03-17 Marcal Paper Mills, Inc. Process for making the absorbent granular material
US5807465A (en) * 1993-09-09 1998-09-15 Marcal Paper Mills, Inc. Granular material containing recycled paper components
US5882480A (en) * 1993-09-09 1999-03-16 Marcal Paper Mills, Inc. Process for making granular material
US5888345A (en) * 1993-09-09 1999-03-30 Marcal Paper Mills, Inc. Absorbent granular product
US5900119A (en) * 1996-10-09 1999-05-04 E-Tech Products, Inc. Method of forming improved loose fill packing material from recycled paper
US5951822A (en) * 1993-09-09 1999-09-14 Marcal Paper Mills, Inc. Apparatus for making granular material
US6019873A (en) * 1993-09-09 2000-02-01 Marcal Paper Mills, Inc. Floor absorbent granular product
US20040081828A1 (en) * 2002-10-25 2004-04-29 Dezutter Ramon C. Flowable and meterable densified fiber particle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2675745A (en) * 1954-04-20 Protection of dispersed asbestos
US2444626A (en) * 1942-05-09 1948-07-06 Goodrich Co B F Method and apparatus for continuously transforming a dispersion of a rubbery material into a sheet
US2593786A (en) * 1947-06-19 1952-04-22 Olin Ind Inc Regenerated cellulose pellets
US3047453A (en) * 1959-04-06 1962-07-31 Sprout Waldron & Co Inc Pulp handling system, method and apparatus
US3021254A (en) * 1959-09-25 1962-02-13 Crown Zeilerbach Corp Method and apparatus for dewatering pulp and the resulting product
US4269859A (en) * 1979-04-19 1981-05-26 Brown Company Cellulose floc granules and process
US5230943A (en) * 1991-11-29 1993-07-27 Pulptech Corporation Free-flowing dunnage of molded pulp
US5328568A (en) * 1991-11-29 1994-07-12 Pulptech Corporation Method and apparatus for manufacture of free-flowing dunnage of molded pulp
US5807465A (en) * 1993-09-09 1998-09-15 Marcal Paper Mills, Inc. Granular material containing recycled paper components
US5728270A (en) * 1993-09-09 1998-03-17 Marcal Paper Mills, Inc. Process for making the absorbent granular material
US5622600A (en) * 1993-09-09 1997-04-22 Marcal Paper Mills, Inc. Dyed particulate or granular materials from recycled paper and process for making the materials
US5882480A (en) * 1993-09-09 1999-03-16 Marcal Paper Mills, Inc. Process for making granular material
US5888345A (en) * 1993-09-09 1999-03-30 Marcal Paper Mills, Inc. Absorbent granular product
US5951822A (en) * 1993-09-09 1999-09-14 Marcal Paper Mills, Inc. Apparatus for making granular material
US6019873A (en) * 1993-09-09 2000-02-01 Marcal Paper Mills, Inc. Floor absorbent granular product
US6214465B1 (en) 1993-09-09 2001-04-10 Marcel Paper Mills, Inc. Floor absorbent granular product comprising kaokin clay and cellulose fibers
US5900119A (en) * 1996-10-09 1999-05-04 E-Tech Products, Inc. Method of forming improved loose fill packing material from recycled paper
US20040081828A1 (en) * 2002-10-25 2004-04-29 Dezutter Ramon C. Flowable and meterable densified fiber particle
US20050276968A1 (en) * 2002-10-25 2005-12-15 Weyerhaeuser Company Flowable and meterable densified fiber particle
US7306846B2 (en) * 2002-10-25 2007-12-11 Weyerhaeuser Company Flowable and meterable densified fiber particle

Similar Documents

Publication Publication Date Title
US2182274A (en) Preparation of cellulose pellets
JP5252911B2 (en) Method for producing water-soluble cellulose ether
JP5599147B2 (en) Method for producing water-soluble cellulose ether
US2011914A (en) Fibrous material and process of producing it
US3012914A (en) Reconstituted tobacco products and method of manufacture
CN106661132A (en) Modified fiber, methods, and systems
US3266972A (en) Process for producing an extensible paper
US3826711A (en) Sheeted cellulose derivative fibers
JP5503609B2 (en) Method for producing nonionic water-soluble cellulose ether
EP2721074A1 (en) A method and a system for manufacturing cellulosic material
US2558066A (en) Production of alkali cellulose
BRPI0509877B1 (en) improved raw cotton liner composition, process for preparing said composition and for preparing ether derivative
US2487892A (en) Manufacture of cellulose acetate
US1851008A (en) Preparation of alpha cellulose pulp by attrition
US2875473A (en) Process of forming solid particulate hydroxyethoxycellulose
US1857100A (en) Absorbent paper
US2008021A (en) Drying and converting cellulose into derivatives thereof
US2847411A (en) Process for producing hydroxyethoxycellulose
US1876920A (en) Manufacture of carbohydrate derivatives
US2083744A (en) Manufacture of sheeted cellulose fiber adapted for conversion into cellulose derivatives
US2214018A (en) Paper sizing
US2069763A (en) Manufacture of partially soluble felted fibrous articles
JPH03197501A (en) Disintegration of pulp sheet
US2791584A (en) Method of preparing cellulose ethers quickly soluble in cold water
US1842689A (en) Process of treating cellulose fiber and product of same