US2172388A - Stainless steel - Google Patents
Stainless steel Download PDFInfo
- Publication number
- US2172388A US2172388A US137930A US13793037A US2172388A US 2172388 A US2172388 A US 2172388A US 137930 A US137930 A US 137930A US 13793037 A US13793037 A US 13793037A US 2172388 A US2172388 A US 2172388A
- Authority
- US
- United States
- Prior art keywords
- silver
- steel
- corrosion
- film
- insoluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/58—Treatment of other metallic material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
Definitions
- This invention relates to the production of steels, more particularly to stainless steels of the 18-8 type, which are characterized by a high resistance to certain types of corrosion.
- the invention also relates to the fabrication of improved steel articles having a special surface, by reason of which the resistance of the article to certain corrosive environments is markedly increased.
- This type of corrosion differs from general surface or oxidation corrosion not only in the character of the action but also in the locale of attack.
- the products of pit corrosion do not have a protective function on the subjacent metal but, on the contrary, to no inconsiderable degree, tend to accelerate further corrosion.
- Such pit corrosion in one respect, is similar to intercrystalline corrosion in that the corroded areas are segregated and tend more or less continuously to intrude into the body of the steel; i.e., like intercrystalline corrosion it tends to a progressive subsurface action.
- intercrystalline corrosion the particular portions of the steel which are corroded appear to be established by extraneous factors rather than by the grain structure of the steel itself.
- Molybdenum like silver, forms a solid solution with components of stainless steel and also forms an insoluble chloride.
- the protective film of silver chloride for example, may be formed over the entire exposed area of the steel plate or article, thus insuring the protective effect from the very beginning without resorting to the autogenous development of the film on portions of the metal during use.
- the degree of formation of the chloride, or the depth of the protective case may be governed to conform it to the requirements of any particular use.
- the present improvement of developing the protective surface as a preformed film presents other and marked advantages in respect to the character of the protective surface.
- the essential feature of this novel mode of protection against pit corrosion is the formation of a tightly adherent or bonded film, or case, which is insoluble in the particular environment, i. e., a relatively active electrolyte.
- such film was described as comprising a reaction product of a component of the alloy, such as silver, and a component of the corrosive medium, that is, chlorine. In these circumstances the ultimate case necessarily was silver chloride.
- the steel article may be treated with any reagent which will react with the silver (or molybdenum) component to form compounds therewith which are insoluble in the saline corrosive medium.
- the invention specifically comprehends not'only the production of a steel article with a preformed case of silver chloride or molybdenum chloride, but also includes the fabrication of stainless steel articles provided with a preformed film, or case, of other insoluble silver compounds, such as silver cyanide, silver ferricyanide, silver phosphates, and the like.
- the fabricated steel article may be subjected to treatment with a suitable reagent to preform, on such article, a continuous adherent film of any suitable insoluble molybdenum compound.
- reagents as the exigencies of a particular case require, may be utilized in the liquid or vapor phase and under conditions which tend to accelerate the reaction, such as elevated temperatures, pressures, and the like.
- the particular film which is to be formed may be chosen from the relatively large number available to more particularly adapt the treated article to the special use to which it is to be put.
- the special l88 type stainless steels are preferred.
- the additional of 'silver as there explained, not only functions ultimately to form a protective surface on the steel but also imparts improved physical characteristics to the steel, such as: increased thermal conductivity, diminished work hardening, improved machinability, and the like.
- the present invention is likewise applicable to the nickelchrome alloys generally which are susceptible to pit corrosion, or similar corrosive action, and which are desired to be protected.
- a steel article fabricated from the improved silver-containing stainless steel may be chloridized in any suitable manner to convert the silver in the surface of the alloy to the silver chloride.
- the fabricated article may first be cleaned, if necessary, by a dip in a relatively dilute sulphuric acid solution. After cleaning the article may be rinsed and then subjected to the action of a reagent which is effective to form the silver chloride.
- the article may be immersed in an aqueous solution .of a suitable metal chloride, a hypochlorite, or the like, as a typical example, the article may be immersed for a period of four hours more or less in an aqueous solution of ferric chloride containing approximately 20 cc. of 2.4 N hydrochloric acid per liter.
- the chloridizing reaction may be accelerated by employing elevated temperatures, electrochemical action, and the like.
- the time of treatment may be prolonged to any desired degree to secure a corresponding depth of the protective silver chloride case.
- chloridizing treatment may be carried out in a suitable apparatus in which the articles are contacted with chlorine gas for a period of from one-half to three or more hours.
- the temperature, pressure and moisture condition of the gas, and the time of treatment may be controlled to secure the desired characteristics in the final film.
- the steel articles may be subjected to special solutions to insure the formation of a skin. or film, of insoluble silver phosphates by methods well known to those skilled in the art.
- the articles to be protected may be submitted to any effective cyaniding treatment to form a film of insoluble silver cyanide.
- stainless steel articles of a novel character may be produced, such articles being characterized by an ability to resist the peculiar corrosive effect of saline media from the outset of service.
- novel types of stainless steel articles may be produced.
- Such articles may be of any desired shape and size, since the simple types of treatment impose no substantial limitations upon the class of articles that can be processed under the invention.
- the method of increasing the resistance of stainless steels to pit corrosion which comprises preforming on the surface thereof, prior to service use, a continuous film of an insoluble silver compound .from silver intragranularly incorporated in the steel.
- the method of increasing the resistance of stainless steels to pit corrosion which comprises preforming on the surface thereof, prior to service use, a continuous film of an insoluble silver salt originating from silver contained in the steel.
- the method of increasing the resistance of chrome-nickel and equivalent stainless steels to electrochemical corrosion induced in saline media comprises including in an iron-chromiumnickel melt an alloying metal which is insoluble in chromium and iron but which is soluble in nickel; forming an article from thesteel thus produced; and subjecting the article to a chloridizing action to form on the exposed surface thereof an insoluble salt of the said metal.
- That method of producing stainless steels which are characterized by a high resistance to pit corrosion which comprises incorporating silver in stainless steel in such amounts that the silver is largely contained in the grain of the alloy, and subjecting the exposed surface of the resulting alloy, prior to service use, to a chloridizing environment to positively establish a continuous adherent film of silver chloride thereon.
- That method of producing stainless steels to impart thereto a high resistance to pit corrosion which comprises intragranularly incorporating a. predetermined quantity of silver in an ironnickel-chromium alloy and, prior to service use, subjecting the alloy to the action of a solution containing available chlorine to form a continuous adherent film of silver chloride on the exposed surface.
- That method of increasing the resistance of chrome steels to pit corrosion in saline media which comprises incorporating in the steel an alloying element which forms a solid solution with chromium and iron and in which silver is soluble; incorporatingsilver in the alloy, and then preforming on the surface a continuous, adherent film of silver chloride.
- a stainless steel article for use in saline environment and characterized by a marked resistance to pit corrosion which comprises iron, nickel, chromium and silver, in which the silver is intragranularly incorporated in the alloy, and which article has a preformed continuous, adherent film of silver chloride on the exposed surface.
- That method of increasing the resistance of chrome steel articles to pit corrosion which comprises preiorming on the surface of the article a continuous, adherent film of silver chloride originating from silver which is intra-granularly included in the steel.
- That method of increasing the resistance of chrome steel alloys to pit corrosion which comprises intra-granularly incorporating in the alloy an alloying metal which forms a water insoluble chloride; preforming on the surface of the article a continuous film of a water insoluble salt of such alloy metal.
- That method of increasing the resistance of chrome steel articles to pit corrosion which comprises preforming on the surface of the article a continuous, adherent film of an insoluble molybdenum salt.
- That method of increasing the resistance of chrome steel articles to pit corrosion which comprises preforming on the surface of the article a continuous, adherent film 0f molybdenum chloride.
- That method of increasing the resistance of chrome steel articles to pit corrosion in saline media which comprises preforming on the surface of the article a continuous, adherent film of silver and molybdenum chloride.
- a method of increasing the resistance of chrome-nickel and equivalent stainless steels to electrochemical corrosion in saline media which comprises including in the steel an alloying element insoluble in chromium and iron, but/soluble in another ingredient of the steel, and which element is capable of forming a water insoluble chloride, and subjecting the steel to a chloridizing treatment to form on the exposed surface thereof a continuous, adherent film of an insoluble chloride of said element.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
Patented Sept. 12, 1939 UNITED STATES PATENT OFFICE STAINLESS STEEL poration of Delaware N Drawing. Application April 20, 1937, Serial No. 137,930
14 Claims.
This invention relates to the production of steels, more particularly to stainless steels of the 18-8 type, which are characterized by a high resistance to certain types of corrosion.
The invention also relates to the fabrication of improved steel articles having a special surface, by reason of which the resistance of the article to certain corrosive environments is markedly increased.
The present application is a continuation in part of prior application Serial No. 91,096, filed July 17, 1936.
It is becoming increasingly apparent to those skilled in the art that the protection of ferrous alloys against corrosion is not a generic problem suscepticle to a generic or panacean solution, but is, in fact, a series of specific, more or less differentiated problems, certain of which require an individual solution. Current advances in the art more and more definitely establish this characteristic specificity of corrosion not only with respect to the particular alloy to be protected but also the particular corrosive environment to be guarded against.
For example, in the prior application referred to, it Was pointed out that while chrome-nickel alloys steels, especially stainless steels of the 188 type, are highly resistant to atmospheric corrosion, they are, nevertheless, susceptible to a specific form of corrosion engendered by contact of the steel with saline media. This type of corrosion was, for descriptivity of term, called pit corrosion.
It was observed, as pointed out in the prior application, that when a sample of stainless steel was exposed to sea water, and a localized section of the sample was protected from contact with the water, corrosion took place in a segregated area adjacent the edge of the protected section. In actual use this peculiar corrosion phenomenon is encountered, for example, when a barnacle attaches to a steel surface which is wetted with sea water. In such circumstance a ring of pits, or cavities, may be formed around the edge of the barnacle.
This type of corrosion differs from general surface or oxidation corrosion not only in the character of the action but also in the locale of attack. Unlike surface oxidation of stainless steel, the products of pit corrosion do not have a protective function on the subjacent metal but, on the contrary, to no inconsiderable degree, tend to accelerate further corrosion. Such pit corrosion, in one respect, is similar to intercrystalline corrosion in that the corroded areas are segregated and tend more or less continuously to intrude into the body of the steel; i.e., like intercrystalline corrosion it tends to a progressive subsurface action. Unlike intercrystalline corrosion, however, the particular portions of the steel which are corroded appear to be established by extraneous factors rather than by the grain structure of the steel itself.
In many cases the pits or cavities which form 1 in the early stages of the action are so small that they are not noticeable upon a casuaLvisual inspection, but are clearly apparent only upon a miscroscopic examination. The insidious and hidden character of this type of corrosion, coupled with the fact that it eats into the body of the metal, renders it a particularly destructive form and has imposed marked limitations on the potential field of use of stainless steel.
As pointed out in the prior application, a pos- 20 sible explanation of the mechanism of this type of corrosion can he found in assuming the establishment of an oxygen concentration cell, due to the difference in oxygen concentration of fluids in contact with different parts of the metal. 2 Thus, it can reasonably be assumed that the oxygen of the air or sea water is to some degree excluded from the covered or protected portions, while it has free access to and contacts the exposed or unprotected portions. In these circumstances the difierence in oxygen concentration establishes a potential difference, thus initiating electrochemical action between the relatively anodic and relatively cathodic areas. It would appear that as a result of this action chlorides of the components of the alloy are formed. These chlorides, being soluble in water, pass into solution and are removed, leaving the denuded areas open to further electrolytic attack. As the pit forms and the action progresses the difference in oxygen concentration between the inside of the pit and the main body of the metal may be accentuated, and the electrolytic action is continued and accelerated. Such action, no doubt, may be aggravated by other factors, such as additional local concentration cells set up by reason of differential stresses and the like.
It is to be understood that the foregoing suggestion of the possible mechanism of this type of corrosion is advanced, not necessarily as an accurate and complete theory of the action, but as indicative of the general character of the action that obtains and more particularly as helpful in explaining the form of protection and the role of the protective agents developed according to this invention.
In the earlier application it was clearly pointed out that the ravages of this type of corrosion could be minimized or substantially eliminated by adding to the steel certain metal components which could form insoluble chlorides. It was then explained that if such metals were incorporated in the steel in such a manner that they were homogeneously distributed throughout the mass of the alloy, then upon subsequent electrolytic action of the type defined, an adherent film of insoluble metal chloride would be established in the corrodible areas. This adherent film or case, being insoluble in the corrosive medium, thus would protect the subjacent metal from attack. It was pointed out that to subserve such a protective function the addition metal should be incorporated within the grain structure itself and should not merely be included in the grain boundaries. Inclusion of such a metal only in the grain boundaries would not present the protective function desired, since it would leavethe crystals or grains of the alloy open to attack. Indeed, inclusion of such a metal solely in the intercrystalline boundaries would likely accentuate the attack, since it would tend to establish local galvanic couples between the granular and intragranular areas.
It was therefore explained that the best method of insuring the uniform and intragranular dispersion of the insoluble chloride-forming metal was to utilize a metal which formed a solid solution with one of the components of the alloy. According to the prior disclosure, silver admirably fulfills such requirements. Silver forms a solid solution with nickel, itself a major component of the stainless steel. Similarly silver goes into solid solution with manganese, the latter being a desirable component of certain stainless steels. It was explained that the mere addition of silver, or other insoluble chloride-forming metal, in any steel melt would not satisfy the established requirements. For example, silver is substantially insoluble in iron and chromium. Therefore, if silver were added to an iron chromium melt, upon cooling the silver addition would be substantially completely segregated in the grain boundaries.
It was found also that combinations of molybdenum and silver serve very effectively. Molybdenum, like silver, forms a solid solution with components of stainless steel and also forms an insoluble chloride.
According to the disclosure in the earlier case, therefore, a special steel was described which presented the inherent characteristic of autogenous protection against pit corrosion. The protective function or effect was developed upon subjection of the steel to the corrosive environment during use.
It has now been found that improved results are secured by insuring the formation of a continuous film of the protective agent on the steel during fabrication so that the steel, or article made therefrom, is provided with a continuous protective film before actual use.
Such a method presents many advantages. In the first place, by utilizing this concept, the protective film of silver chloride, for example, may be formed over the entire exposed area of the steel plate or article, thus insuring the protective effect from the very beginning without resorting to the autogenous development of the film on portions of the metal during use. Again,
by establishing the continuous adherent coating under conditions which may readily and accurately be controlled, the degree of formation of the chloride, or the depth of the protective case, may be governed to conform it to the requirements of any particular use.
The present improvement of developing the protective surface as a preformed film presents other and marked advantages in respect to the character of the protective surface. As explained in the earlier application, the essential feature of this novel mode of protection against pit corrosion is the formation of a tightly adherent or bonded film, or case, which is insoluble in the particular environment, i. e., a relatively active electrolyte. In this earlier application such film was described as comprising a reaction product of a component of the alloy, such as silver, and a component of the corrosive medium, that is, chlorine. In these circumstances the ultimate case necessarily was silver chloride. By invoking the principles of the present invention, that is to say by subjecting a stainless steel article to a special treatment to preform the film, specifically different types of protective films may be produced. In other words, with this type of treatment it is not necessary to form only a silver chloride film, but, on the contrary, the steel article may be treated with any reagent which will react with the silver (or molybdenum) component to form compounds therewith which are insoluble in the saline corrosive medium. Thus the invention specifically comprehends not'only the production of a steel article with a preformed case of silver chloride or molybdenum chloride, but also includes the fabrication of stainless steel articles provided with a preformed film, or case, of other insoluble silver compounds, such as silver cyanide, silver ferricyanide, silver phosphates, and the like. Similarly, where molybdenum is employed as the potential insoluble saltforming metal, either alone or in conjunction with silver, the fabricated steel article may be subjected to treatment with a suitable reagent to preform, on such article, a continuous adherent film of any suitable insoluble molybdenum compound.
With this concept in view, as will be understood by those skilled in the art, a number of specifically different types of treating agents may be employed. Such reagents, as the exigencies of a particular case require, may be utilized in the liquid or vapor phase and under conditions which tend to accelerate the reaction, such as elevated temperatures, pressures, and the like. Similarly, the particular film which is to be formed may be chosen from the relatively large number available to more particularly adapt the treated article to the special use to which it is to be put.
In carrying out the invention it is to be understood that the special l88 type stainless steels, described in the earlier application, are preferred. The additional of 'silver, as there explained, not only functions ultimately to form a protective surface on the steel but also imparts improved physical characteristics to the steel, such as: increased thermal conductivity, diminished work hardening, improved machinability, and the like. However, it is to be understood that the present invention is likewise applicable to the nickelchrome alloys generally which are susceptible to pit corrosion, or similar corrosive action, and which are desired to be protected.
With the given concept in mind, a number of sponding methods of establishing a preformed film of an insoluble silver or molybdenum compound will occur to those skilled in the art. For example, as typifying the general method of procedure contemplated, a steel article fabricated from the improved silver-containing stainless steel may be chloridized in any suitable manner to convert the silver in the surface of the alloy to the silver chloride. Thus the fabricated article may first be cleaned, if necessary, by a dip in a relatively dilute sulphuric acid solution. After cleaning the article may be rinsed and then subjected to the action of a reagent which is effective to form the silver chloride. For this purpose the article may be immersed in an aqueous solution .of a suitable metal chloride, a hypochlorite, or the like, as a typical example, the article may be immersed for a period of four hours more or less in an aqueous solution of ferric chloride containing approximately 20 cc. of 2.4 N hydrochloric acid per liter. The chloridizing reaction may be accelerated by employing elevated temperatures, electrochemical action, and the like. The time of treatment may be prolonged to any desired degree to secure a corresponding depth of the protective silver chloride case.
Again, such chloridizing treatment may be carried out in a suitable apparatus in which the articles are contacted with chlorine gas for a period of from one-half to three or more hours. Here, as will be understood, the temperature, pressure and moisture condition of the gas, and the time of treatment, may be controlled to secure the desired characteristics in the final film.
It will likewise be appreciated that by utilizing equivalent methods a preformed protective case, or film, of other insoluble silver compounds may be produced. Thus, when desired, the steel articles may be subjected to special solutions to insure the formation of a skin. or film, of insoluble silver phosphates by methods well known to those skilled in the art. Similarly, the articles to be protected may be submitted to any effective cyaniding treatment to form a film of insoluble silver cyanide.
While particular reference is made to treatments adapted to convert the silver component, contained in the surface of the alloy, to insoluble silver compounds, it will be understood that the invention likewise contemplates corresponding treatments for the conversion of molybdenum to insoluble salts, when this particular metal is utilized in the alloy as the potentially reactive protective agent. It will thus be appreciated that the concept of protecting alloys, of the general types described, against this special form of corrosion by establishing a preformed film presents marked advantages. The protective film may be produced under the most advantageous, accurately controlled conditions, with correimprovements in its effectiveness, rather than relying upon the development of such a film during use under uncertain and indeterminable conditions. This method of preforming the protective. surface also permits a wide range in the choice of particular compounds utilized; thus at once presenting the possibility of choosing the best surface for a specific or particular service which the article is to undergo. Under the invention, therefore, stainless steel articles of a novel character may be produced, such articles being characterized by an ability to resist the peculiar corrosive effect of saline media from the outset of service.
Under the invention, therefore, novel types of stainless steel articles may be produced. Such articles may be of any desired shape and size, since the simple types of treatment impose no substantial limitations upon the class of articles that can be processed under the invention.
While preferred modifications of the invention have been described, it is to be understood that these are given to explain the underlying principle, and to typify any method of protecting alloy steels against the type of corrosion described by instituting or establishing a preformed protective film.
We claim:
1. The method of increasing the resistance of stainless .steels to electrochemical corrosion induced in saline media, which comprises preforming on the surface thereof, prior to service use, a continuous, insoluble film of a metal chloride originating from a metal included in the steel.
2. The method of increasing the resistance of stainless steels to pit corrosion, which comprises preforming on the surface thereof, prior to service use, a continuous film of an insoluble silver compound .from silver intragranularly incorporated in the steel.
3. The method of increasing the resistance of stainless steels to pit corrosion, which comprises preforming on the surface thereof, prior to service use, a continuous film of an insoluble silver salt originating from silver contained in the steel.
4. The method of increasing the resistance of chrome-nickel and equivalent stainless steels to electrochemical corrosion induced in saline media, which comprises including in an iron-chromiumnickel melt an alloying metal which is insoluble in chromium and iron but which is soluble in nickel; forming an article from thesteel thus produced; and subjecting the article to a chloridizing action to form on the exposed surface thereof an insoluble salt of the said metal.
5. That method of producing stainless steels which are characterized by a high resistance to pit corrosion, which comprises incorporating silver in stainless steel in such amounts that the silver is largely contained in the grain of the alloy, and subjecting the exposed surface of the resulting alloy, prior to service use, to a chloridizing environment to positively establish a continuous adherent film of silver chloride thereon.
6. That method of producing stainless steels to impart thereto a high resistance to pit corrosion, which comprises intragranularly incorporating a. predetermined quantity of silver in an ironnickel-chromium alloy and, prior to service use, subjecting the alloy to the action of a solution containing available chlorine to form a continuous adherent film of silver chloride on the exposed surface.
7. That method of increasing the resistance of chrome steels to pit corrosion in saline media, which comprisesincorporating in the steel an alloying element which forms a solid solution with chromium and iron and in which silver is soluble; incorporatingsilver in the alloy, and then preforming on the surface a continuous, adherent film of silver chloride.
8. A stainless steel article for use in saline environment and characterized by a marked resistance to pit corrosion which comprises iron, nickel, chromium and silver, in which the silver is intragranularly incorporated in the alloy, and which article has a preformed continuous, adherent film of silver chloride on the exposed surface.
9. That method of increasing the resistance of chrome steel articles to pit corrosion which comprises preiorming on the surface of the article a continuous, adherent film of silver chloride originating from silver which is intra-granularly included in the steel.
10. That method of increasing the resistance of chrome steel alloys to pit corrosion which comprises intra-granularly incorporating in the alloy an alloying metal which forms a water insoluble chloride; preforming on the surface of the article a continuous film of a water insoluble salt of such alloy metal.
11. That method of increasing the resistance of chrome steel articles to pit corrosion, which comprises preforming on the surface of the article a continuous, adherent film of an insoluble molybdenum salt.
12. That method of increasing the resistance of chrome steel articles to pit corrosion, which comprises preforming on the surface of the article a continuous, adherent film 0f molybdenum chloride.
13. That method of increasing the resistance of chrome steel articles to pit corrosion in saline media, which comprises preforming on the surface of the article a continuous, adherent film of silver and molybdenum chloride.
14. A method of increasing the resistance of chrome-nickel and equivalent stainless steels to electrochemical corrosion in saline media, which comprises including in the steel an alloying element insoluble in chromium and iron, but/soluble in another ingredient of the steel, and which element is capable of forming a water insoluble chloride, and subjecting the steel to a chloridizing treatment to form on the exposed surface thereof a continuous, adherent film of an insoluble chloride of said element.
ALBERT L. KAYE. ROBERT S. WILLIAMS. JOHN C. WULFF,
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US137930A US2172388A (en) | 1937-04-20 | 1937-04-20 | Stainless steel |
US285522A US2267866A (en) | 1937-04-20 | 1939-07-20 | Stainless steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US137930A US2172388A (en) | 1937-04-20 | 1937-04-20 | Stainless steel |
Publications (1)
Publication Number | Publication Date |
---|---|
US2172388A true US2172388A (en) | 1939-09-12 |
Family
ID=22479681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US137930A Expired - Lifetime US2172388A (en) | 1937-04-20 | 1937-04-20 | Stainless steel |
Country Status (1)
Country | Link |
---|---|
US (1) | US2172388A (en) |
-
1937
- 1937-04-20 US US137930A patent/US2172388A/en not_active Expired - Lifetime
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fossati et al. | Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions | |
Gurrappa | Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications | |
Lizlovs et al. | Anodic Polarization Behavior of High‐Purity 13 and 18% Cr Stainless Steels | |
Copson | Effects of velocity on corrosion by water | |
Rebak et al. | Corrosion behavior of nickel alloys in wet hydrofluoric acid | |
Tuaweri et al. | Corrosion inhibition of heat treated mild steel with neem leave extract in a chloride medium | |
Greene et al. | Variable corrosion resistance of 18Cr-8Ni stainless steels: Influence of environmental and metallurgical factors | |
Olubambi et al. | Corrosion behaviour of superferritic stainless steels cathodically modified with minor additions of ruthenium in sulphuric and hydrochloric acids | |
Takamura | Corrosion Resistance of Ti and a Ti-Pd Alloy in Hot, Concentrated Sodium Chloride Solutions | |
US2267866A (en) | Stainless steel | |
Arcos et al. | Suitability of nickel aluminium bronze alloy fabricated by laser powder bed fusion to be used in the marine environment | |
US2172388A (en) | Stainless steel | |
Kruger et al. | Electrochemistry of corrosion | |
CA1223760A (en) | Crucible for receiving salt baths for the boration of steel | |
Ogundare et al. | Atmospheric corrosion studies of ductile iron and austenitic stainless steel in an extreme marine environment | |
France | Crevice corrosion of metals | |
Singh | Corrosion behavior of alloy 625 | |
Ogunleye et al. | Corrosion Characteristics and Passive Behavioral Responses | |
Ajeel et al. | Effects of H2SO4 and HCL concentration on the corrosion resistance of protected low carbon steel | |
US4402759A (en) | Process for inhibiting the corrosion of a metal installation in contact with an acid bath | |
Manning | An Improved Intergranular Corrosion Test for HASTELLOY® Alloy C-276 | |
Salvago et al. | The distribution of stainless steel breakdown potentials: experimental method and the effect of metallurgical conditions | |
Spacht | The corrosion resistance of aluminum and its alloys. | |
Ahmed | Corrosion and corrosion prevention of aluminium alloys in desalination plants: Part 2 | |
Alagbe | Inhibition of NST–44 mild steel corrosion by some Inorganic substances in 0.1 M Ammonium Nitrate solutions |